
A Taxonomy of Task Types in Computing
Matt Bower

Macquarie University
Sydney, NSW

Australia

mbower@ics.mq.edu.au

ABSTRACT
Based on the systematic development of a curriculum for our
undergraduate computer science units, an analysis of general
education and CSE literature and consultation with other
computer science educators, a taxonomy of task types in
computing is proposed. These task types are related to one
another in a hierarchical fashion based on their cognitive
interdependencies. The taxonomy can be applied by academics
to guide the development of curriculum that meets student
process based learning needs rather than just content needs, the
latter being the current norm.

Categories and Subject Descriptors
K.3.2 [Computers in Education]: Computer and Information
Science Education – computer science education.

General Terms
Design, Theory.

Keywords
Task Types, Taxonomy, Pedagogy, Computer Science
Education

1. INTRODUCTION
Traditionally the Computer Science education community has
placed a great deal of emphasis upon defining the type of
conceptual knowledge that students need to acquire, and the
hierarchical relationship between that knowledge [8, 20, 22, 23].
This represents a pedagogical emphasis on content, which is
inevitably perpetuated by teachers who adopt or refer to such
curriculum guides. Recent efforts by the Computer Science
Learning Taxonomy Working Group [11] commenced shifting
emphasis towards programming practices, however at the time
of their presentation at ITiCSE07 their work was still in early
stages of development and represented one point of view in an
area open to many interpretations. Note that this working group
has recently published a formalization of their ideas [12].
This paper proposes a Taxonomy of Task Types that identifies
the different types of programming processes that students
undertake when learning computing and sequences them on the

basis of their cognitive interdependencies. In this paper task
type is defined as the activity or process which students are
expected to perform in order to learn the concepts being
presented to them. The defining characteristic of the task is what
it requires learners to actually do. This can range anywhere from
recalling a fact to solving a problem, and a comprehensive
hierarchy of such tasks is to follow. Before the taxonomy of task
types is proposed, a rationale for such work is provided and
literature relevant to the formation of such a taxonomy is
presented.

2. RATIONALE
The computer science education fraternity has invested a great
deal of energy in defining the content that students are expected
to learn. There have been major efforts to classify computing in
terms of the concepts underpinning the body of knowledge such
as the Association for Computing Machinery (ACM) and the
Institute of Electrical and Electronic Engineers (IEEE)
Computing Curricula joint task force [20]. There have also been
related efforts to develop Computer Science ontologies that can
be applied for pedagogical purposes [8], as well as efforts to
graphically represent the relationships between the various
components of knowledge [7]. Significant work has also been
performed at the K-12 level [23]. Based on these curriculum
resources, classroom educators spend considerable time
ensuring that the learning pathway through the content is
appropriately sequenced in so far as previous topics cover all
required conceptual prerequisites to understand the next concept
being addressed. This represents an emphasis on factual and
conceptual knowledge (content, as described in most computing
curricula) which is but one component of computing education.
Historically less emphasis has been placed upon the types of
tasks (or processes) in which students engage [18].
Process is not only crucial because programming is a “skill in
practice”, but also because process is the means by which
factual and conceptual knowledge are formed into well defined
schema [2]. Some authors have emphasized the importance of
process, not just content. Davies [9] distinguishes between
‘programming knowledge’ (knowledge of a declarative nature,
for example, being able to state how a ‘for’ loop works) and
‘programming strategies’ (the way knowledge is used and
applied, for example, using a ‘for’ loop appropriately in a
program). Rogalski & Samurcay [1990, cited in 18] make the
distinction between cognitive representations or schema (static,
‘program as text’) in computer programming versus ‘plans’
(action oriented, ‘programming as activity’). Rist [17] has
constructed an elaborate model of how programs are generated
based on students’ underlying knowledge structures, providing a
framework for analyzing the various strategies that students use
to write computing code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE'08, June 30 – July 2, 2008, Madrid, Spain.
Copyright 2008 ACM 978-1-60558-115-6/08/06...$5.00.

281

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1384271.1384346&domain=pdf&date_stamp=2008-06-30

The taxonomy proposed in this paper provides a resource that
can be used to assist the systematic integration of task type into
curricula. Such a taxonomy of task types allows dependencies to
be identified and appropriations made within a curriculum,
based on the corresponding level of task difficulty.

3. RELEVANT WORK
There are several bodies of knowledge and areas of research that
have fed into the development of the Taxonomy of Task Types.
Cognitive Science and Educational Researchers generally
identify three levels of knowledge [3, 6]:

– declarative (or factual) knowledge, such as that
relating to the syntax required to write a ‘for’ loop

– procedural knowledge, for instance, how to operate
the Integrated Development Environment to debug
and compile programs

– conceptual knowledge, relating to understanding how
the mechanics of a ‘for’ loop can be used to design a
solution to the task at hand.

Conceptual knowledge is founded upon procedural knowledge,
which is comprised of related pieces of declarative knowledge.
These dependencies provide a basis for ordering the hierarchical
levels of the taxonomy, with conceptual knowledge are
generally at a higher level than those requiring procedural
knowledge, which in turn is higher than those requiring
declarative knowledge.
The SOLO taxonomy [4] classifies the level to which learners
have been able to relate relevant pieces of information as either
being pre-structural, uni-structural, multistructural, relational, or
extended abstract. In the SOLO model higher levels of cognition
involve greater levels of interrelated knowledge. This is
reflected in the taxonomy of computing tasks in so far as higher
level task types involve the integration of knowledge and skills
acquired at lower levels.
McGill and Volet [14] create a conceptual framework for
analysing computing thinking that integrates these three types of
thinking from cognitive psychology literature (effectively
declarative, procedural and conceptual) with three distinct types
of programming knowledge emerging from the educational
computing literature (syntactic, semantic, and strategic). These
latter dimensions feature within the taxonomy presented in this
paper, as tasks requiring more strategic thinking are at a higher
level than semantic thinking, which is in turn at a higher level
than tasks requiring syntactic thinking.
There have also been efforts to classify programming concepts
and thinking in terms of levels of abstractness and generality.
For instance, Ahoroni [2] presents a model portraying the level
of abstraction from programming languages that students can
perform, from Programming Language oriented thinking (low
level abstraction, based on the syntax of a language) to Program
Oriented Thinking (where reference to a programming language
is required, but not necessarily a specific one) to Programming-
Free Thinking (high level abstraction, not dependent on aspects
of programming languages). Novrat, [15] describes the
difference between abstraction and generalization in computing
thinking, with abstraction denoting a movement away from
levels of detail, as opposed to generalization which is movement
up a class hierarchy. Both of these approaches to classifying
programming concepts support discrimination between levels of

thought, and as such more abstract thinking is represented at
more advanced levels of the taxonomy.
One crucial computer science education principle that informs
the Taxonomy of Task Types is that of the students’ mental
model of the computer, or ‘notional machine’ [18]. The notional
machine is “an idealised, conceptual computer whose properties
are implied by the constructs in the programming language
employed” [10, p. 431]. Robins [18, p. 249] states “the purpose
of the notional machine is to provide a foundation for
understanding the behavior of running programs”. The notional
machine is important in discriminating between the types of
process in which computing students can engage; while factual
recall tasks may not require a well developed notional machine,
for practical programming tasks it is essential.
Some general educational taxonomies such as Bloom’s [5] and
Anderson and Krathwohl’s [3] do consider the hierarchical
nature of learning processes, such as ‘application’, ‘synthesis’
and ‘evaluation’, and these feed directly into the taxonomy
presented in this paper. However because these are built on a
generalization of learning that can be applied to any domain
they lack a level of focus on processes unique to Computer
Science Education such as debugging and system design, and as
such a computing specific taxonomy is proposed. It is worth
noting that Porter and Calder [16] do briefly make reference to
how Bloom’s Taxonomy can be applied to the field of computer
science education. However their mapping is one-to-one from
Bloom’s Taxonomy to computer science education whereas the
taxonomy presented here expands upon Bloom’s Taxonomy and
incorporates other literature to devise a taxonomy that is directly
based upon tasks in computing.

4. THE TAXONOMY OF TASK TYPES
The taxonomy of computing task types proposed herein includes
10 levels, as follows:

1. Declarative tasks

2. Comprehension tasks

3. Debugging tasks

4. Prediction tasks

5. Provide-an-example tasks

6. Provide-a-model tasks

7. Evaluate tasks

8. Meet-a-Design-Specification tasks

9. Solve-a-problem tasks

10. Self-reflect tasks

Figure 1 – Taxonomy of Task Types in Computing
The task types represented in Figure 1 have been developed
based upon a systematic analysis of existing computer science
curricula, consultation with academics from general education
and computer science (both intra and extra institutional), and an
analysis of educational literature (aforementioned). Specifically,
curricula from within our institution were deconstructed, not by
conceptual content but by the task they expected students to
perform. On this basis the various categories were formed. At
the same time general education and computer science education
was reviewed to not only provide examples of other tasks, but
also to offer insight into other approaches to classifying task

282

types in computing. Finally, the hierarchy was presented to
computer science and education academics for feedback and
verification.
It is by no means proposed that this is the only way that task
types in computing could be classified, however proposing such
a framework provides a catalyst for discussion within the
computer science education community and a reference point
for comparison to other efforts.
The levels of the taxonomy are now described, along with the
rationale for their sequence. Two exemplar tasks are provided
up-front for each level so as to offer an illustration of the type as
well as an indication of the variety of task types that can fall
within each category. While the taxonomy is not absolute in the
same way that tasks set at the different levels of Bloom’s [5]
taxonomy do not automatically ascend in degree of difficulty, it
does provide a general hierarchical framework and reference
point which computer science educators can use to plan
curricula.

5. LEVELS OF THE TAXONOMY
5.1 Declarative Tasks

• True or false: To include a backslash character ‘\’ in a
string you need to ‘escape’ it by placing another
backslash before it.

• What is an ‘accessor’ method?
Declarative knowledge is static, and usually involves at most
one relationship between pieces of information. It is working at
the level of recognition and recollection. Declarative tasks are
the lowest level of tasks that students can be prescribed, and the
knowledge that they embody underpins all tasks at higher levels.

5.2 Comprehension Tasks
• Explain the difference between the int 127 and the String

“127”.
• Why it is more difficult to test equality for floating-point

numbers than integers?
Typically comprehension involves being presented with an
artifact (such as a piece of code) or an item of declarative
knowledge and providing an explanation (entire or part). They
represent a movement away from straight recall of facts towards
tasks requiring an understanding of underlying concepts.
Comprehension tasks require students to generate solutions
based on an underlying mental model of the concept or
situation.

5.3 Debugging Tasks
• What are the syntactic errors in the piece of code?

System.outprntln("Hello);

• What are the semantic errors within this program?
int i;
int factorial = 1;
for (i = 1; i<=5; i++);
 {factorial = factorial * i;}
System.out.println(i+"! = "+ factorial);

Debugging tasks require students to detect errors in
programming code, often based upon an anticipation of what the
program is trying to achieve. Syntactic debugging tasks rely on
well formed declarative knowledge, whereas semantic
debugging tasks rely more on well formed comprehensive type

understanding. Also, debugging tasks incorporate a significantly
greater process aspect than declarative or comprehension tasks,
which is another reason that they at a higher level in the
taxonomy.

5.4 Prediction Tasks
• What does this line of code print?
 System.out.println("11 + 5" + 20);

• What will be the effect of replacing the 5 with i+1 in
the following code?

 public class TwoDtester
 {

public static void main(String[] args)
{
 int[][] steps = new int [4][];
 for (int i = 0; i<steps.length;i++)
 {

 steps[i] = new int[5];
 for (int j=0; j<steps[i].length; j++)

 {
 steps[i][j] = i+j;
 System.out.print(steps[i][j] + ",");

 }
 }
}

 }

Prediction tasks are central to computing because without the
ability to predict the effect of the statements comprising a piece
of code students cannot write programs. Accurate prediction
relies on both accurate comprehension and declarative
knowledge. Prediction tasks are generally more cognitively
demanding their debugging counterpart, because they rely more
heavily on a student’s notional machine. As well, Prediction
tasks require students to be generative and be able to interpret
most all of the code in a program instead of merely identifying
particular errors.

5.5 Provide-an-Example Tasks
• Provide an example of a logical error.
• Create an original example of the “dangling else”

problem.
Provide-an-Example tasks are creative tasks that can be either
declarative (factual and syntactic) or comprehensive
(understanding or semantic) in nature. Note that these generative
tasks often demand more intense cognitive engagement than
those of previous levels [18]. This is because they either provide
smaller cues from which students can retrieve their knowledge
(at a declarative level) or require students to synthesise existing
pieces of knowledge to create an original representation. This is
a higher order thinking capacity that is precursory to the sorts of
skills valued by industry.

5.6 Provide-a-Model Tasks
• Explain what happens behind the scenes in your computer

to run a Java program.
• Draw a diagram to illustrate what happens in your

computer’s memory when you:
a) create an object variable (define a new variable

name and give its type)
b) initialise that object variable (by creating an object

to which it refers).
This advances beyond Provide-an-Example tasks to not only
demonstrate the ability to understand examples that have been

283

presented, but to also provide an abstract representation of an
entire situation or process. This sort of task can be attempted at
a fairly low level of cognitive demand if students simply
represent models they have found elsewhere. On the other hand,
if students are challenged (or challenge themselves) to
synthesise their declarative and comprehension knowledge to
derive an original model, such tasks can be rich opportunities
for relating and restructuring concepts, thus leading to deeper
understanding. This sort of task requires declarative and
comprehension knowledge, and often involves linking the two.
Providing an explanatory model can often improve students’
debugging and predictive knowledge by developing their
notional machine.

5.7 Evaluate Tasks
• Evaluate the following method as an approach to

providing the value of the username field of the User
class:

public String getUserName ()
{
 System.out.println("The username is: "

+ username);
 return username;
 }

• What are the advantages and disadvantages of having
types in a programming language?

Evaluation tasks, which have previously often been associated
with the highest order of thinking in taxonomies such as
Bloom’s [5], can actually be pitched at a great variety of
difficulty levels and can achieve many different types of
thinking. For instance, the task “provide a list of the advantages
of applets over applications” will often result in the reproduction
of a text book response or information found on the Internet.
However this task can also be approached at an expert level
when attempting to decide which approach to adopt to roll out a
tool to customers. Evaluation can occur upon the final solutions
presented for Provide-an-Example and Provide-a-Model tasks.
The subjective or “soft knowledge” nature of evaluative tasks is
useful in so far as such activities can usually be attempted by
students of lower abilities, but are also open-ended enough to
stimulate more capable students. These sorts of tasks are
perfectly suited to collaborative approaches because all students
can contribute and the weaker students can benefit from being
exposed to the thought processes of the more able pupils.

5.8 Meet-a-Design-Specification Tasks
• Write a program that uses a ‘for’ loop to print out all the

even numbers between 100 and 2 in reverse order, i.e.,
100, 98, 96, etc.

• Design a system to meet the following specification:
The system contains Lecturers, UnderGradStudents and
PostGradStudents.

a) Every Person in the system has a name.
b) The system also holds:

i) whether a Lecturer is at a senior level ‘S’ or a
normal level ‘N’.

ii) the student number of each Student
iii) the fee structure of each Student (assume

“Full Fee” for PostGradStudent, “HECS” for
UnderGradStudent)

iv) a String outlining the previous qualification of
a PostGradStudent

v) whether an UnderGradStudent wants to be
part of the mentorship program (‘Y’ or ‘N’).

Design tasks require students to combine their knowledge to
present an original and creative solution. Design tasks can be
pitched at an implementation level (e.g. write the code), or a
conceptual level (e.g. provide a UML class diagram).
Implementation level design requires the underlying cognitive
skills developed through declarative, comprehension,
debugging, prediction, and providing example tasks. Conceptual
level design requires only declarative and comprehension
knowledge. Good conceptual design requires pragmatic
understanding developed in debugging, prediction, example
creation and evaluation tasks. That is to say, students can create
models of systems without understanding how to implement
them (ie, provide diagrams and method names), but without an
appreciation of what is required to implement the system their
capacity to construct expert designs is restricted. Whereas
evaluation of Provide-an-Example and Provide-a-Model tasks is
more summative (subsumes these tasks), evaluation should be
an ongoing process that occurs during Meet-a-Design-
Specification tasks (is contained within such tasks). For this
reason Meet-a-Design-Specification tasks have been placed at a
higher level on the taxonomy than Evaluation tasks.

5.9 Solve-a-Problem Tasks
• What is the smallest number that has fifty different

factors?
• Diana wants to check whether her students’ test scores

seem consistent with their assignment marks. Create a
system that aids her attempts to do so.

Solve-a-Problem tasks could be considered another way of
framing design tasks, however because they require the student
to respond to more ill-structured task requirements they have
been classified as a separate category. Some students may be
able to design systems to meet specifications, but less capable at
solving problems where the approach is not well defined. Solve-
a-Problem tasks promote the development of context scoping,
critical thinking, and cognitive flexibility, which are in the
realm of more expert behaviors [1, 21].

5.10 Self-Reflect tasks
• Reflect on the way that you have attempted to complete

this task/attempted to learn this body of knowledge.
• Reflect on the way that you have engaged with others in

this process.
Self-Reflect tasks require students to evaluate the ways in which
they learn (as opposed to evaluating subject matter content).
Reflection can be based on one’s own engagement with the
content or process (i.e., metacognitive). This aids the
development of control skills – the capacity to self-monitor and
evaluate decisions made during the problem solving process –
which is a key determinant of problem solving performance [13,
19]. As well, reflection can also be on one’s engagement with
others (which may or may not relate to the collaborative design
or content of the task) in an attempt to improve one’s ability to
learn from and with others. While reflection does not necessarily
incorporate skills required in all lower levels of tasks, it can be
applied to all previous levels. For this reason it has been
included as the highest level in this taxonomy.

284

6. CLOSING WORDS
The hierarchy presented does not imply that higher level tasks
should be left to the end of an undergraduate computing course
and that tasks at lower levels should only occur at the beginning. It
is important that students at early stages of learning computing are
encouraged to perform tasks that foster higher order thinking,
albeit on a smaller scale and focusing on less complex material
than at later stages of their computing education.
Nor is it proposed that that all tasks will neatly fall within one
level of the Taxonomy; often task types can be prescribed in
combination (for example “Describe the dangling else problem
and compose an original example that illustrates it”).
What is being proposed is that reflecting on the levels of the
Taxonomy during curriculum planning may support a worthwhile
shift in focus. Programming process has often been relatively
ignored when constructing curricula in favor of content. Yet most
Computer Science Educators agree that computer programming is
a practice and not just a body of knowledge. To this extent it
would seem natural to define and create curriculum based at least
in part based upon the tasks that student have to perform, their
dependencies and relationships.
The taxonomy of computing tasks proposed in this paper draws to
the educator’s consciousness the range of tasks in which students
should engage in order to achieve mastery in the area. The way in
which the levels are hierarchically related highlights the need for
incremental and considered deployment of task types in a manner
that accounts for the prerequisite skills of the learners. In that way,
along with content, task type can be used as a means of adjusting
the cognitive demands at different stages of the curriculum,
providing more effective learning sequences for students.

7. REFERENCES
[1] Agnew, N. M., Ford, K. M., and Hayes, P. J., Expertise in

Context: Personally Constructed, Socially Selected and
Reality Relevant?, in Expertise in Context, P.J. Feltovich,
K.M. Ford, and R.R. Hoffman, Editors. 1997, AAAI Press /
The MIT Press: Melno Park, 219-244.

[2] Aharoni, D., Cogito, Ergo sum! cognitive processes of students
dealing with data structures. Proceedings of the thirty-first
SIGCSE technical symposium on Computer science
education, (2000), 26-30.

[3] Anderson, L., and Krathwohl, D., A Taxonomy for Learning,
Teaching and Assessing: A Revision of Bloom's Taxonomy of
Educational Objectives. Longman, New York, 2001.

[4] Biggs, J., and Collis, K., Evaluating the Quality of Learning:
the SOLO taxonomy. Academic Press, London, 1982.

[5] Bloom, B. S., Taxonomy of Educational Objectives, Handbook
I: The Cognitive Domain. David McKay Co Inc, New York,
1956.

[6] Byrnes, J. P., Minds, Brains and Learning. The Guilford Press,
New York, 2001.

[7] Cassel, L. N., Hacquebard, A., McGettrick, A., Davies, G.,
LeBlanc, R., Riedesel, C., Varol, Y. L., Finley, G. T., Mann,
S., and Sloan, R. H., ITiCSE 2005 working group reports: A
synthesis of computing concepts. ACM SIGCSE Bulletin, 37,
4 (2005), 162-172.

[8] Davies, G., Cassel, L. N., and Topi, H. Using a computing
ontology for educational purposes In Proceedings of the 11th
annual SIGCSE conference on Innovation and technology in
computer science education ITICSE '06 2006, 334.

[9] Davies, S. P., Models and Theories of Programming Strategy.
International Journal of Man-Machine Studies, 39, 2 (1993),
237-267.

[10] du Boulay, B., O'Shea, T., and Monk, J., The black box inside
the glass box: presenting computing concepts to novices, in
Studying the Novice Programmer, E. Soloway and J.C.
Spoher, Editors. 1989, Lawrence Erlbaum: Hillsdale, NJ,
431-446.

[11] Fuller, U., and Johnson, C., Working Group Report:
Developing a Computer Science-Specific Learning
Taxonomy in 12th annual SIGCSE conference on Innovation
and technology in computer science education ITICSE '07.
2007: Dundee, Scotland.

[12] Fuller, U., Johnson, C. G., Ahoniemi, T., Cukierman, D.,
Hernán-Losada, I., Jackova, J., Lahtinen, E., Lewis, T. L.,
Thompson, D. M., Riedesel, C., and Thompson, E.,
Developing a computer science-specific learning taxonomy.
ACM SIGCSE Bulletin, 39, 4 (2007), 152-170.

[13] Ginat, D., Metacognitive awareness utilized for learning
control elements in algorithmic problem solving. SIGCSE
Bull., 33, 3 (2001), 81-84.

[14] McGill, T. J., and Volet, S. E., A Conceptual Framework for
Analyzing Students' Knowledge of Programming. Journal of
Research on Computing in Education, 29, 3 (1997), 276-
297.

[15] Novrat, P., Hierarchies of programming concepts: abstraction,
generality, and beyond. SIGCSE Bull., 26, 3 (1994), 17-21.

[16] Porter, R., and Calder, P. Patterns in Learning to Program -
An Experiment? In Proc. Sixth Australasian Computing
Education Conference (ACE2004) 2004, 193-199.

[17] Rist, R. S., Program Structure and Design. Cognitive Science,
19, (1995), 507-562.

[18] Robins, A., Roundtree, J., and Roundtree, N., Learning and
Teaching Programming: A Review and Discussion.
Computer Science Education, 13, 2 (2003), 137-172.

[19] Schoenfeld, A., Mathematical Problem Solving. Academic
Press, New York, 1985.

[20] Shackelford, R., McGettrick, A., Sloan, R., Topi, H., Davies,
G., Kamali, R., Cross, J., Impagliazzo, J., LeBlanc, R., and
Lunt, B. Computing Curricula 2005: The Overview Report In
Proceedings of the 37th SIGCSE technical symposium on
Computer science education SIGCSE '06. (Houston, Texas,
USA). 2006, 456-457.

[21] Spiro, R. J., Coulson, R. L., Feltovich, P. J., and Anderson, D.
Cognitive flexibility theory: Advanced knowledge
acquisition in ill-structured domains. In Proceedings of the
10th Annual Conference of the Cognitive Science Society.
Hillsdale, NJ: Erlbaum 1988.

[22] The Joint Task Force on Computing Curricula, Computing
Curricula 2001. Journal on Educational Resources in
Computing (JERIC), 1, 3 (2001), 1-236.

[23] Tucker, A., Deek, F., Jones, J., McCowan, D., Stephenson,
C., and Verno, A. (2003) A Model Curriculum for K-12
Computer Science: Final Report of the ACM K-12 Education
Task Force Computer Science Curriculum Committee. Last
accessed October 2006 [Available at:
http://www.csta.acm.org/Curriculum/sub/ACMK12CSModel
.html]

285

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

