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Cile predmétu

Seznamit studenta se zaklady teorie neuronovych siti a dat mu potiebnou motivaci pro
pochopeni dllezitosti teorie pro praxi. Diraz bude kladen nejen na zékladni teorii, ale i na
schopnost ji aplikovat pfi feseni konkrétnich piiklada.

Po prostudovani textu budete znat:

TYTO UCEBNI TEXTY JSOU URCENY STUDENTUM
INFORMATIKY PRO PREDMET NEURONOTVE SITE 1.
JSOU V NICH VYSVETLENY VSECHNY ZAKLADNI
POJMY Z TEORIE UMELYCH NEURONOVYCH SiTi.

V JEDNOTLIVYCH KAPITOLACH JSOU POSTUPNE
PODLE OBTIZNOSTI UVEDENY ZAKLADNI MODELY
NEURONOVYCH SITi (T]J. PERCEPTRON, ADALINE,
MADALINE, DOPREDNA VICEVRSTVA NEURONOVA
SIT S ADAPTACNI METODOU BACKPROPAGATION,
ASOCIATIVNI NEURONOVE SITE A NEURONOVE SITE
PRACUJICI NA PRINCIPU SAMOORGANIZACE), A TO
JEJICH ARCHITEKTURA, AKTIVNI DYNAMIKA A
ADAPTIVNI DYNAMIKA.
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UVOD DO PROBLEMATIKY NEURONOVYCH SiTI.

V této uvodni kapitole se stru¢né seznamite s historii neuronovych siti a se
zédkladnim matematickym modelem biologického neuronu, tj. formalnim neuronem.
Z tohoto modelu budeme dale vychdazet, a proto je nutné, abyste jeho pochopeni
vénovali zvySenou pozornost.

Klic¢ova slova této kapitoly:
stav neuronu, bias neuronu, vnitini potencial neuronu, synaptické vahy,
aktivacni(prenosova) funkce.

Historie neuronovych siti

Za pocatek vzniku oboru neuronovych siti je povazovana prace Warrena McCullocha a Waltera Pittse z
roku 1943, ktefi vytvofili velmi jednoduchy matematicky model neuronu, coz je zékladni buiika nervové
soustavy. Ciselné hodnoty parametru v tomto modelu byly pievazné bipolarni, tj. z mnoziny {-1,0,1}. Ukazali,
ze nejjednodussi typy neuronovych siti mohou v principu pocitat libovolnou aritmetickou nebo logickou funkeci.
Ackoliv nepocitali s moznosti bezprostiedniho praktického vyuziti svého modelu, jejich ¢lanek mél velky vliv na
ostatni badatele. Naptiklad zakladatel kybernetiky Norbert Wiener se jim inspiroval pfi studiu podobnosti
¢innosti nervové soustavy a systému vypocetni techniky. Nebo autor amerického projektu elektronickych
pocitacti John von Neumann napsal prace, ve kterych navrhoval vyzkum pocitaci, které by byly inspirovany
¢innosti mozku. Tyto navrhy, pfestoze byly hojné€ citovany, nepfinesly zpocatku ocekavané vysledky.

V roce 1949 napsal Donald Hebb knihu ,,The Organization of Behaviour*, ve které navrhl uéici pravidlo
pro synapse neuront (mezineuronové rozhrani). Toto pravidlo bylo inspirovano myslenkou, ze podminéné
reflexy, které jsou pozorovatelné u vSech zivocichd, jsou vlastnostmi jednotlivych neurontl. Hebb se snazil
vysvétlit nekteré experimentalni vysledky psychologie. Také jeho prace ovlivnila ostatni védce, ktefi se zacali
zabyvat podobnymi otazkami. AvSak 40. a 50. l1éta zatim jesté nepfinesla zasadni pokroky v oblasti
neurovypoctd. Typickym piikladem vyzkumu v tomto obdobi byla v roce 1951 konstrukce prvniho
neuropocitac¢e Snark, u jehoz zrodu stal Marvin Minsky. Snark byl sice uspésny z technického hlediska, dokonce
Jjiz automaticky adaptoval vahy (tj. mira synaptické propustnosti), ale ve skutecnosti nebyl nikdy vyuzit k feseni
néjakého zajimavého praktického problému. Nicméné jeho architektura pozdéji inspirovala dalsi konstruktéry
neuropocitacii.

V roce 1957 Frank Rosenblatt vynalezl tzv. perceptron, ktery je zobecnénim McCullochova a Pittsova
modelu neuronu pro realny ¢iselny obor parametrd. Pro tento model navrhl uc¢ici algoritmus, o kterém
matematicky dokazal, ze pro dana tréninkova data nalezne po koneéném poctu krokt odpovidajici vahovy vektor
parametrt (pokud existuje) nezavisle na jeho poc¢atecnim nastaveni. Rosenblatt také napsal jednu z prvnich knih
o neurovypoctech ,,Principles of Neurodynamics®.

Na zakladé tohoto vyzkumu Rosenblatt spolu s Charlesem Wightmanem a dalSimi sestrojili béhem let
1957 a 1958 prvni uspé$ny neuropocitaé, ktery nesl jméno ,,Mark I Perceptron®. Protoze ptivodnim odbornym
zajmem Rosenblatta bylo rozpoznavani obrazcu, ,,Mark I Perceptron byl navrzen pro rozpoznavani znakd. Znak
byl promitan na svételnou tabuli, ze které byl sniman polem 20x20 fotovodici. Intenzita 400 obrazovych boda
byla vstupem do neuronové sité perceptrond, jejimz tkolem bylo klasifikovat, o jaky znak se jedna (napf. ,,A“,
,»B“ apod.). ,Mark I Perceptron® mél 512 adaptovatelnych vahovych parametr, které byly realizovany polem
8x8x8 potenciometri. Hodnota odporu u kazdého potenciometru, ktera praveé odpovidala ptislusné vaze, byla
nastavovana automaticky samostatnym motorem. Ten byl fizen analogovym obvodem, ktery implementoval
perceptronovy ucici algoritmus. Jednotlivé perceptrony bylo mozné spojit se vstupy libovolnym zptisobem.
Typicky bylo pouzito ndhodné zapojeni, aby se ilustrovala schopnost perceptronu ucit se pozadované vzory bez
ptfesného zapojeni dratd v protikladu ke klasickym programovatelnym pocitac¢im. Diky Gsp€sné presentaci



uvedeného neuropocitace se neurovypocty, které byly alternativou ke klasickym vypoctim realizovanym na von
neumannovské architektufe pocitaée, staly novym predmétem vyzkumu. Frank Rossenblatt je proto dodnes
nékterymi odborniky povazovan za zakladatele tohoto nového oboru.

Kratce po objevu perceptronu Bernard Widrow se svymi studenty vyvinul dalsi typ neuronového vypocetniho
prvku, ktery nazval ,, ADALINE* (ADAptive LInear NEuron). Tento model byl vybaven novym vykonnym
ucicim pravidlem, které se dodnes nezménilo. Widrow se svymi studenty demonstroval funkénost ,,ADALINE®
na mnoha jednoduchych typovych prikladech. Widrow také zalozil prvni firmu (Memistor Corporation)
orientovanou na hardware neuropocitacii, kterd v prvni poloving€ 60. let vyrabéla a prodavala neuropocitace a
jejich komponenty.

Na pielomu 50. a 60. let dochazi k ispésnému rozvoji neurovypoctl v oblasti navrhu novych modeld
neuronovych siti a jejich implementaci. Naptiklad Karel Steinbuch vyvinul model binarni asociativni sit¢ nebo
Roger Barron a Lewey Gilstrap zalozil v roce 1960 prvni firmu zamétenou na aplikace neurovypocti. Vysledky
z uvedeného obdobi jsou shrnuty v knize Nilse Nilssona ,,Learning Machines* z roku 1965.

Pfes nesporné uspéchy dosazené v tomto obdobi se obor neuronovych siti potykal se dvéma problémy.
Za prvé, vétsina badatell piistupovala k neuronovym sitim z experimentalniho hlediska a zanedbavala
analyticky vyzkum neuronovych modeld. Za druhé, nadseni n€kterych vyzkumnych pracovniki vedlo k velké
publicité neopodstatnénych prohlaseni (napt. za n¢kolik malo let bude vyvinut umély mozek). Tyto skutecnosti
diskreditovaly neuronové sité v o¢ich odborniki z jinych oblasti a odradily védce a inzenyry, ktefi se o
neurovypocty zajimali. Navic se samostatny obor neuronovych siti vycerpal a dalsi krok v této oblasti by byval
pozadoval radikaln¢ nové myslenky a postupy. Nejlepsi odbornici oblast neuronovych siti opoustéli a zacali se
zabyvat pfibuznymi obory umélé inteligence.

Posledni epizodou tohoto obdobi byla kampan vedena Marvinem Minskym a Seymourem Papertem,
ktefi vyuzili svij vliv na to, aby zdiskreditovali vyzkum neuronovych siti, nachazejici se v krizi, ve snaze pfenést
finanéni zdroje z této oblasti na jiny vyzkum v oblasti umélé inteligence. V té dob¢ koloval rukopis jejich
vyzkumné zpravy, kterd napomahala tomuto zaméru. Uvedeny rukopis byl v upravené formé publikovan roce
1969 pod nazvem ,,Perceptrons®. V této knize Minsky a Papert vyuZili pro svou argumentaci znamého
trivialniho faktu, Ze jeden perceptron nemize pocitat jednoduchou logickou funkci, tzv. vylucovaci disjunkci
(XOR). Tento problém Ize sice vyfesit vytvorenim dvouvrstve sité se tiemi neurony, ale pro vicevrstvy
perceptron nebyl v této dob€ znam ucici algoritmus. Autofi z toho nespravné vyvodili, Ze takovy algoritmus
vzhledem ke komplikovanosti funkce, kterou vicevrstva sit’ po€itd, snad ani neni mozny. Jejich tvrzeni bylo
vSeobecné prijato a povazovano za matematicky dokazané. Kampan Minského a Paperta byla tispésna, vyzkum
neuronovych siti nebyl jiz déle dotovan a neurovypocty byly povazovany za neperspektivni.

V dal§im obdobi od roku 1967 do 1982 probihal vyzkum neuronovych siti ojedinéle a izolovang,
pfevazn€ mimo Gzemi Spojenych statd, kde kniha ,,Perceptrons® méla velky vliv. Vétsina praci byla publikovana
napt. pod hlavi¢kou adaptivni zpracovani signald, rozpoznavani obrazci a biologické modelovani. Avsak jiz v
pocatcich tohoto tichého obdobi se neurovypoéty zacali zabyvat talentovani badatelé, mezi nimi byli napf.
Shun-Ichi Amari, James Anderson, Kunihiko Fukushima, Stephen Grossberg, Harry Klopf, Teuvo Kohonen a
David Willshaw. Tito védci prispéli svymi objevy k renesanci neuronovych siti.

Pocatkem 80. let se badatelé v oblasti neurovypocti osmélili a zacali podavat vlastni grantové projekty
zamétené na vyvoj neuropocitact a jejich aplikace. Zasluhou programového manazera Ira Skurnicka zacala v
roce 1983 americkd grantova agentura DARPA (Defense Advanced Research Projects Agency) financné
podporovat vyzkum neuronovych siti a jejiho ptikladu v kratké dobé nésledovaly i jiné organizace podporujici
zékladni i aplikovany vyzkum.

Dalsi zasluhu na renesanci oboru neuronovych siti mél svétoveé uznavany fyzik John Hopfield, ktery se
v této dob¢ zabyval neurovypocty. Své vysledky publikoval v roce 1982 a 1984. Ukazal souvislost n¢kterych
modell neuronovych siti s fyzikalnimi modely magnetickych materiald. Svymi zvanymi prednaskami, které mél
po celém svété, ziskal pro neuronové sité stovky kvalifikovanych védcli, matematikd a technologu.

V roce 1986 publikovali své vysledky badatelé z tzv. ,,PDP skupiny* (Parallel Distributed Processing
Group). Ve svych pracich popsali u¢ici algoritmus zpétného $ifeni chyby (backpropagation) pro vicevrstvou
neuronovou sit’ a vyfesili tak problém, ktery se Minskému a Pappertovi v 60. letech jevil jako neptekonatelna
prekazka pro vyuziti a dalsi rozvoj neuronovych siti. Tento algoritmus je doposud nejpouzivanéjsi uc¢ici metodou
neuronovych siti a jeho publikovanim dosahl zajem o neuronové sité svého vrcholu.

V roce 1987 se v San Diegu konala prvni vétsi konference specializovana na neuronové sité (IEEE
International Conference on Neural Networks), na které byla zaloZzena mezinarodni spole¢nost pro vyzkum
neuronovych siti INNS (International Neural Network Society). O rok pozdéji INNS zacala vydavat svilj Casopis
»Neural Networks®. V nasledujicich letech vznikly dalsi specializované ¢asopisy: Neural Computing (1989),
IEEE Transactions on Neural Networks (1990) a mnoho jinych (napt. v Praze vychazi od roku 1991 mezinarodni
casopis Neural Network World). Od roku 1987 mnoho renovovanych univerzit zalozilo nové vyzkumné tstavy



zabyvajici se neuronovymi sitémi a vyhlasilo vyukové programy zaméfené na neurovypocty. Tento trend
pokracéuje dodnes.

Biologicky neuron

Plivodnim cilem vyzkumu neuronovych siti byla snaha pochopit a modelovat zptsob, jakym myslime a
zpusob, jak funguje lidsky mozek. Neurofyziologické poznatky umoznily vytvorit zjednodusené matematické
modely, které se daji vyuzit pro neurovypocCty pfi feseni praktickych tloh z oblasti umélé inteligence. To
znamena, ze neurofyziologie zde slouzi jen jako zdroj inspiraci a navrzené modely neuronovych siti jsou jiz dale
rozvijeny bez ohledu na to, zda modeluji lidsky mozek. Pfi vytvareni modelti neuronovych siti ndm nejde o
vytvoreni identickych kopii lidského mozku, ale chceme napodobit pouze jeho zakladni funkce.

Zakladnim stavebnim funkénim prvkem nervové soustavy je nervova burika, neuron. Neurony jsou
samostatné specializované buriky, urcené k pfenosu, zpracovani a uchovani informaci, které jsou nutné pro
realizaci Zivotnich funkci organismu. Struktura neuronu je schématicky zndzornéna na obrazku 1.

Télo buiiky Synapse

Axonové vldkno
=T
T Dendrity @

Obrazek 1: Biologicky neuron.

Neuron je pfizpisoben pro pienos signali tak, ze kromé vlastniho téla (somatu), ma i vstupni a vystupni
ptenosové kanaly: dendrity a axon. Z axonu odbocCuje fada vétvi (terminalii), zakoncenych blanou, ktera se
prevazne styka s vybézky (zrny), dendritd jinych neuront. K pfenosu informace pak slouzi unikatni
mezineuronové rozhrani, synapse. Mira synaptické propustnosti je nositelem vSech vyzna¢nych informaci béhem
celého zivota organismu. Z funkéniho hlediska lze synapse rozd€lit na excitacni, které umoziuji rozsiteni
vzruchu v nervové soustaveé a na inhibicni, které zptisobuji jeho utlum. Pamétova stopa v nervové soustaveé
vznika pravdépodobné zakodovanim synaptickych vazeb na cesté mezi receptorem (¢idlem organu) a efektorem
(vykonnym organem). Sifeni informace je umoznéno tim, Ze soma i axon jsou obaleny membranou, ktera ma
schopnost za jistych okolnosti generovat elektrické impulsy. Tyto impulsy jsou z axonu piendSeny na dendrity
jinych neurontl synaptickymi branami, které svoji propustnosti urcuji intenzitu podrazdéni dalSich neuront.
Takto podrazdéné neurony pti dosazeni urcité hranicni meze, tzv. prahu, samy generuji impuls a zajistuji tak
Sifeni pfislusné informace. Po kazdém prichodu signalu se synapticka propustnost méni, coz je predpokladem
pamétové schopnosti neurond. Také propojeni neuronti prodélava béhem zivota organismu svij vyvoj:

v prubéhu uceni se vytvari nové pamétové stopy nebo pii zapominani se synaptické spoje prerusuji.

Nervova soustava ¢loveéka je velmi slozity systém, ktery je stale pfedmétem zkoumani. Uvedené velmi
zjednodusené neurofyziologické principy nam vSak v dostate¢né mife staci k formulaci matematického modelu
neuronove sité.

V dalSich kapitolach budeme pouzZivat nasledujiciho znaceni:

X Y Stav neurontt X, Y, tj.
pro vstupni neurony X; je x; vstupni signal;
pro ostatni neurony Y; je y; =f(v_in,).

W Vaha pfifazena spojeni z neuronu X; do neuronu Y,



Bias neuronu Y.
Vnitini potencidl neuronu Yj:
Véahova matice: W = {wy/.

7
Vektor vah: wj— (W, wy, ..., wy) ..
Je to j.sloupec vahové matice.

Norma nebo velikost vektoru x.

Prah pro aktivac¢ni funkci neuronu Y.

Tréninkovy vstupni vektor: s = (s, s, ...

Tréninkovy vystupni vektor: t = (¢;, 1, ...

Vstupni vektor: x = (x;, x5, ..., X,).

Zména vahy wy: A wy; = [wy(new) - wy(old)].

Koeficient uceni.

Formalni neuron

Zakladem matematického modelu neuronové sité je formalni neuron. Jeho struktura je schematicky

zobrazena na obrazku 2. Formdlni neuron Y; (dale jen neuron) ma n obecné redlnych vstupii x;,....x,, které
modeluji dendrity. Vstupy jsou ohodnoceny realnymi synaptickymi vahami wy, , wy,., které urCuji jejich
propustnost.Ve shod¢ s neurofyziologickou motivaci mohou byt synaptické vahy i zdporné, ¢imz se vyjadiuje
jejich inhibi¢ni charakter.

Vazena suma vstupnich hodnot ptedstavuje vnitini potencidl j. neuronu:

Obrazek 2: F
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dlni neuron s biasem.



Bias muze byt do vztahu v¢lenén ptfidanim komponent x, = / k vektoru x, tj. x=(1, x;, x,, ..., x,). Bias je dale
zpracovavan jako jakdkoliv jind véha, tj. wy = b;. Vstup do neuronu Y; je dan nasledujicim vztahem

n
y_ing =2 wyx,
i=0
n
=wyt )XW,
i=1

n
=b + inwl.j .
i=1

Hodnota vnitfniho potencidlu y_in; po dosaZeni prahové hodnoty b; indukuje vystup (stav) neuronu y;, ktery
modeluje elektricky impuls axonu. Nelinearni nartst vystupni hodnoty y; = f(y_in;) pti dosazeni prahové hodnoty
potencialu b; je dan aktivacni (prenosovou ) funkci f. Nejjednoduss$im typem pienosové funkce je ostra
nelinearita, kterd ma pro j. neuron (Y)) tvar:

1 pokudy_in, >0;

f(y_inj)= 0 pokudy in; <O0.

Nekteti autofi nepouzivaji vahovy bias, ale misto toho pracuji s fixnim prahem & pro aktiva¢ni funkci. V tomto
piipad¢ ma pienosové funkce ostrd nelinearita pro j. neuron (Y;) tvar:

1 pokudy_in, 26,

f(y_inj) 10 pokud y_in,; <0,

kde
n
y_in; = WX, .
i=1

K lepsimu pochopeni funkce jednoho neuronu ndm pomize geometricka predstava nacrtnuta na obrazku 3.
Vstupy neuronu budeme chépat jako soutadnice bodu v n-rozmérném Euklidovském vstupnim prostoru E,.

n
w, + Zl_zlw,xi =0

+ +
[x ey X ]eE - -
19 )
" " [x1 ,...,xn]eEn

n +
w, + Zizlw.x. > ()

—>y=

n _
w, + Zl_zlwixi <0

—->y=0

Obrazek 3: Geometricka interpretace funkce neuronu.

V tomto prostoru ma rovnice nadroviny (v E; pfimka, v E; rovina) tvar:

n
w, + Zwixi =0.

i=1



Tato nadrovina dé&li vstupni prostor na dva poloprostory. Soufadnice bodt [x;,...,x," ], které lezi v jednom
poloprostoru, splituji nasledujici nerovnost:

n
w, + ZWixi+ >0.
i=1

Body [x,....X, ] z druhého poloprostoru pak vyhovuji relaci s opacnym relaénim znaménkem:

n
w, + Zwl.x; <0.

i=1

Synaptické vahy neuronu wy,..., w, (v€etné biasu) lze chéapat jako koeficienty této nadroviny. Je ziejmé,
ze neuron klasifikuje, ve kterém z obou poloprostorti ur¢enych nadrovinou lezi bod, jehoz soufadnice jsou na
vstupu, tj. neuron realizuje dichotomii vstupniho prostoru. Neuron je tedy aktivni, je-1i jeho stav y = I a pasivni,
pokud je jeho stav y = 0.

Ukoly:

Vytvorte geometrickou interpretaci funkce jednoho neuronu ve 2-rozmérném Euklidovskem prostoru.
Vstupy neuronu jsou souradnice bodu v E,.



HEBBOVO UCENI.

Diive nez se pustite do studia této kapitoly, dikladné se seznamte
s problematikou formdlniho neuronu a s pouzivanym zrnacenim
(viz kapitola ,,Uvod do problematiky neuronovych siti*).

Klic¢ova slova této kapitoly:
Hebbovo uceni, tréninkovy vzor, vahovy prirustek.

Hebbovo uceni

Hebbovo uceni je zaloZzeno na myslence, ze vahové hodnoty na spojeni mezi dvéma neurony, které jsou
soucasné ve stavu ,,on“, budou nartistat a naopak: vahové hodnoty na spojeni mezi dvéma neurony, které jsou
soucasné ve stavu ,,0ff", se budou zmensovat. Uvazujme jednovrstvou (dopfednou) neuronovou sit, ve které jsou
vSechny vstupni neurony propojeny s jedinym vystupni neuronem, ale ne jiz navzajem mezi sebou. Pokud jsou
data reprezentovana v bipolarni forme, 1ze vahové hodnoty aktualizovat nasledovné:

wi(new) = wy(old) + x;.

Popis algoritmu

Krok 0. Inicializace vsech vah:
w;=0 (i=1azn)
Krok 1. Pro kazdy vzor - tréninkovy par, tj. vstupni vektor (s) a prislusny vystup (t), opakovat

nasledujici kroky (2 az 4).
Krok 2. Aktivovat vstupni neurony:

x;=s; (i=1azn).

Krok 3. Aktivovat vystupni neuron:
y=_r
Krok 4. Aktualizovat vahy podle

wi(new) = wy(old) + xy (i=1azn).
Aktualizovat biasy podle
b(new) = b(old) + y.

Bias 1ze zapsat také jako vahovou hodnotu pfifazenou vystupu z neuronu, jehoz aktivace ma vzdy hodnotu 1.
Aktualizace vahovych hodnot muze byt také vyjadiena ve vektorové formé jako

w(new) = w(old) + xy.
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Vahovy prirtstek lze zapsat ve tvaru
Aw =xy

a potom
w(new) = w(old) + Aw.

Vyse uvedeny algoritmus je pouze jednim z mnoha zptisobu implementace Hebbova pravidla ué¢eni. Tento
algoritmus vyzaduje pouze jeden prichod tréninkovou mnozinou. Existuji vsak i jiné ekvivalentni metody
nalezeni vhodnych vahovych hodnot, které jsou popsany dale.

Priklad:
Hebbovo pravidlo uceni pro logickou funkci ,,AND* v bipolarni reprezentaci.
VSTUP POZADOVANY

X; X b VYSTUP

1 1 1 1

1 -1 1 -1

-1 1 1 -1

-1 -1 1 -1

Po ptedlozeni prvniho tréninkového vzoru, dostavame nasledujici:

VSTUP POZADOVANY PRIRUSTKY VAHOVE HODNOTY
VYSTUP VAH
X X b Aw; Aw, Ab Wi W) b
0 0 0

1 1 1 1 1 1 1 1 1 1
Separujici nadrovina je dana rovnici primky
Xy ==X - I.

X2

X1

\ Obrazek 4: Hebbovo pravidlo uceni pro logickou
Sfunkci ,, AND “ v bipoldrni reprezentaci - prvni
tréninkovy vzor.

Predlozime-li druhy tréninkovy vzor, dostavame nasledujici:

VSTUP POZADOVANY PRIRUSTKY VAHOVE HODNOTY
VYSTUP VAH
X X b Aw; Aw, Ab Wi W) b

1 -1 1 -1 -1 1 -1 0 2 0



Separujici nadrovina je pak dana rovnici primky

Xy = 0.
X2

N\
\2

X1

Obrazek 5: Hebbovo pravidlo uceni pro logickou
funkci ,, AND*“ v bipolarni reprezentaci - druhy
tréninkovy vzor.

Po predlozeni tretiho tréninkového vzoru, dostavame:

VSTUP POZADOVANY PRIRUSTKY VAHOVE HODNOTY
VYSTUP VAH
X; X b Aw; Aw, Ab Wy w> b
0 2
-1 1 1 -1 1 -1 -1 1 1 -1

Separujici nadrovina je dana rovnici pfimky
X, =-x; + 1.

X2

N

X1

Obrazek 6: Hebbovo pravidlo uceni pro logickou
funkci ,, AND v bipolarni reprezentaci - treti a
ctvrty tréninkovy vzor.

A nakonec po ptedlozeni ctvrteho tréninkového vzoru, dostavame:

VSTUP POZADOVANY PRIRUSTKY VAHOVE HODNOTY
VYSTUP VAH
X; X b Aw; Aw, Ab Wy w> b
1 1 -1

-1 -1 1 -1 1 1 -1 2 2 -2



Tvar separujici nadroviny (pfimky) se nezménil, tj.

X, =-x; + I.

Ukoly:

Objasnéte Hebbovo pravidlo uceni pro logickou funkci ,, OR* v bipolarni reprezentaci.



NEURONOVA SIifT.

Tato kapitola je uvodni kapitolou zabyvajici se problematikou vzajemného
propojeni neuronu, tj. architekturou neuronové sité. Dale si zde ozfejmime i
zpusob, jakym probiha §iFeni a zpracovdani informace v neuronové siti.

Vsechny zde uvedené pojmy doporucuji peclivé nastudovat, protoze je budeme
dale velmi ¢asto pouzivat.

Klic¢ova slova této kapitoly:
architektura (topologie) neuronové site, organizacni dynamika neuronové
sité, aktivni dynamika neuronové sité, adaptivni dynamika neuronové site,
homogenni neuronova sit, uceni s ucitelem, samoorganizace.

Neuronova sit’

Kazda neuronova sit’ je sloZzena z formalnich neuront, které jsou vzajemné propojeny tak, ze vystup
jednoho neuronu je vstupem do (obecné i vice) neurond. Obdobné jsou terminaly axonu biologického neuronu
pres synaptické vazby spojeny s dendrity jinych neuroni. Pocet neuront a jejich vzajemné propojeni v siti urcuje
architekturu (topologii) neuronové site€. Z hlediska vyuziti rozli§ujeme v siti vstupni, pracovni (skryté, mezilehle,
vnitini) a vystupni neurony. Sifeni a zpracovani informace v siti je umoznéno zménou stavii neuroni leZicich na
cesté mezi vstupnimi a vystupnimi neurony. Stavy vSech neurontl v siti uréuji stav neuronové sité a synaptické
vahy vSech spoju predstavuji konfiguraci neuronové sité.

Neuronova sit’ se v ¢ase vyviji, méni se stav neuronti, adaptuji se vahy. V souvislosti se zménou téchto
charakteristik v Case je tiCelné rozdélit celkovou dynamiku neuronové sité do tfi dynamik a uvazovat pak tfi
rezimy prace sité: organizacni (zména topologie), aktivni (zména stavu) a adaptivni (zména konfigurace).
Uvedené dynamiky neuronové sité jsou obvykle zadany pocateénim stavem a matematickou rovnici, resp.
pravidlem, které urcuje vyvoj pfislusné charakteristiky sité (topologie, stav, konfigurace) v ¢ase. Zmény, které se
fidi témito zékonitostmi probihaji v odpovidajicich rezimech prace neuronové site.

Konkretizaci jednotlivych dynamik pak obdrzime rizné modely neuronovych siti vhodné pro feSeni
riznych tfid uloh.

Organiza¢ni dynamika

Organiza¢ni dynamika specifikuje architekturu neuronové sité a jeji pfipadnou zménu. Zmeéna topologie
se vetsinou uplatituje v ramci adaptivniho rezimu tak, Ze sit’ je v piipadé potieby rozsifena o dalsi neurony a
prislusné spoje. Avsak organiza¢ni dynamika pievazné piedpoklada pevnou architekturu neuronové sité (tj.
takovou architekturu, ktera se jiz v ¢ase neméni). RozliSujeme dva typy architektury: cyklicka (rekurentni) a
acyklicka (dopredna) sit. V pripadé cyklické topologie existuje v siti skupina neurond, ktera je spojena v kruhu
(tzv. cyklus). To znamena, ze v této skupiné neurontl je vystup prvniho neuronu vstupem druhého neuronu, jehoz
vystup je opét vstupem tfetiho neuronu atd., az vystup posledniho neuronu v této skuping je vstupem prvniho
neuronu. Nejjednodussim prikladem cyklu je zpétna vazba neuronu, jehoZz vystup je zarovein jeho vstupem.
Nejvice cykl je v uplné topologii cyklické neuronoveé site, kde vystup libovolného neuronu je vstupem kazdého
neuronu. Pfiklad obecné cyklické neuronové sité je uveden na obrazku 7, kde jsou vyznaceny vSechny mozné
cykly.



N\

\

Obrazek 7: Piiklad cyklické architektury.

V acyklickych sitich naopak cyklus neexistuje a v§echny cesty vedou jednim smérem. Piiklad acyklické
sit¢ je na obrazku 8, kde je vyznacena nejdelsi cesta.

=

Obrazek 8: Piiklad acyklické architektury.
U acyklické neuronové sité 1ze neurony vzdy (disjunktné) rozdélit do vrstev, které jsou uspotadany (napt. nad

sebou) tak, Ze spoje mezi neurony vedou jen z nizSich vrstev do vrstev vyssich (obecné vSak mohou preskocit
jednu nebo i vice vrstev). Specialnim pfipadem takové architektury je vicevrstva neuronova sit.

Q vystupni vrstva
skryté vrstvy
/ vstupni vrstva

Obrazek 9: Piiklad architektury vicevrstvé neuronové sité
3-4-3-2.



V této siti je prvni (dolni), tzv. vstupni vrstva tvofena vstupnimi neurony a posledni (horni), tzv. vystupni vrstva
je slozena z vystupnich neuronti. Ostatni, tzv. skryté (mezilehlé, vnitini) vrstvy jsou slozeny ze skrytych
(vnitinich) neuronti. V topologii vicevrstvé sité jsou neurony jedné vrstvy spojeny se viemi neurony
bezprostredné nasledujici vrstvy. Proto architekturu takové sité 1ze zadat jen pocty neuroni v jednotlivych
vrstvach (oddélenych pomlckou), v potadi od vstupni k vystupni vrstveé. Také cesta v takové siti vede smérem od
vstupni vrstvy k vystupni, pfi¢emz obsahuje po jednom neuronu z kazdé vrstvy. Priklad architektury tiivrstvé
neuronové sité 3-4-3-2 s jednou vyznacenou cestou je na obrazku 9, kde kromé vstupni a vystupni vrstvy jsou i
dve skryté vrstvy.

Aktivni dynamika

Aktivni dynamika specifikuje pocdtecni stav sité a zpusob jeho zmény v Case pii pevné topologii a
konfiguraci. V aktivnim rezimu se na zacatku nastavi stavy vstupnich neuronti na tzv. vstup sité a zbylé neurony
jsou v uvedeném pocate¢nim stavu. VSechny mozné vstupy, resp. stavy sité, tvoti vstupni prostor, resp. stavovy
prostor, neuronové sité. Po inicializaci stavu sité probiha vlastni vypocet. Obecné se predpoklada spojity vyvoj
stavu neuronové sité v Case a hovoii se o spojitém modelu, kdy stav sité je spojitou funkci Casu, ktera je obvykle
v aktivni dynamice zadana diferencialni rovnici. VétSinou se vSak predpoklada diskrétni Cas, tj. na pocatku se sit’
nachazi v ¢ase 0 a stav sité se méni jen v Case 1, 2, 3, . ...V kazdém takové ¢asové kroku je podle daného
pravidla aktivni dynamiky vybran jeden neuron (tzv. sekvencni vypocet) nebo vice neuront (tzv. paralelni
vypocet), které aktualizuji (méni) svij stav na zaklade svych vstupd, tj. stavii sousednich neurontl, jejichz
vystupy jsou vstupy aktualizovanych neuront. Podle toho, zda neurony méni svij stav nezavisle na sobé nebo je
jejich aktualizace fizena centralng, rozliSujeme synchronni a asynchronni modely neuronovych siti. Stav
vystupnich neuronu, ktery se obecné méni v Case, je vystupem neuronové site (tj. vysledkem vypoctu). Obvykle
se v§ak uvazuje takova aktivni dynamika, Ze vystup sité je po néjakém ¢ase konstantni a neuronova sit’ tak
v aktivnim rezimu realizuje néjakou funkci na vstupnim prostoru, tj. ke kazdému vstupu sité vypocita praveé
jeden vystup. Tato tzv. funkce neuronové sité je dana aktivni dynamikou, jejiz rovnice parametricky zavisi na
topologii a konfiguraci, které se v aktivnim rezimu, jak jiz bylo uvedeno, neméni. Je zfejmé, Ze v aktivnim
rezimu se neuronova sit’ vyuziva k vlastnim vypodétim.

Aktivni dynamika neuronové sité také urcuje funkci jednoho neuronu, jejiz predpis (matematicky
vzorec) je vétSinou pro vSechny (nevstupni) neurony v siti stejny (tzv. homogenni neuronova sit’). Mtizeme se
setkat s nasledujicimi sigmoidnimi aktivacnimi funkcemi:

I pokud x2>1

f(x)= ostra nelinearita
0 pokud x<0

1 x2>1

f(x)=9x 0<x<1 saturovana linearni funkce

)

x<0

1
f(x)= Tao~ standardni (logistickd) sigmoida
e

l—e™
= —— hyperbolicky tangens
l+e

f(x)

Grafy téchto funkci jsou znazornény na obrazku 10. Podle toho, zda je funkce neuronu diskrétni nebo spojita
rozliSujeme diskrétni a analogové modely neuronovych siti.
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Obrazek 10: Grafy sigmoidnich aktivacénich funkci

Adaptivni dynamika

Adaptivni dynamika neuronové sité specifikuje pocatecni konfiguraci sit€ a zptisob, jakym se méni
vahové hodnoty na spojenich mezi jednotlivymi neurony v ¢ase. VSechny mozné konfigurace sité tvofi vahovy



prostor neuronové sité. V adaptivnim rezimu se tedy na zacatku nastavi vahy vSech spoju v siti na pocatecni
konfiguraci (napf. nahodné). Po inicializaci konfigurace sité probiha vlastni adaptace. Podobné¢ jako v aktivni
dynamice se obecné uvazuje spojity model se spojitym vyvojem konfigurace neuronové sité v ¢ase, kdy vahy
sit€ jsou (spojitou) funkei ¢asu, kterd je obvykle v adaptivni dynamice zadana diferencialni rovnici. VétSinou se
vsak predpoklada diskrétni cas adaptace.

Vime, zZe funkce sité v aktivnim rezimu zavisi na konfiguraci. Cilem adaptace je nalézt takovou
konfiguraci sité¢ ve vahovém prostoru, ktera by v aktivnim rezimu realizovala predepsanou funkci. Jestlize
aktivni rezim sit¢ se vyuziva k vlastnimu vypoctu funkce sité pro dany vstup, pak adaptivni rezim slouzi k uceni
(,,programovani‘) této funkce.

Pozadovana funkce sité je obvykle zadana tzv. tréninkovou mnozinou (posloupnosti) dvojic
vstup/vystup sité (tzv. tréninkovy vzor). Zptsobu adaptace, kdy poZzadované chovani sité modeluje ucitel, ktery
pro vzorové vstupy sité informuje adaptivni mechanismus o spravném vystupu sité, se fika uceni s ucitelem
(supervised learning). Nékdy ucitel hodnoti kvalitu momentalni skutecné odpovédi (vystupu) sité pro dany
vzorovy vstup pomoci znamky, ktera je zadana misto pozadované hodnoty vystupu sité (tzv. klasifikované
uceni). Jinym typem adaptace je tzv. samoorganizace. V tomto ptipadé¢ tréninkovd mnozina obsahuje jen vstupy
sité. To modeluje situaci, kdy neni k dispozici uéitel, proto se tomuto zptsobu adaptace také fika uceni bez
ucitele. Neuronova sit’ v adaptivnim rezimu sama organizuje tréninkové vzory (napft. do shlukl) a odhaluje jejich
souborné vlastnosti.

Ukoly:

Zopakujte si vSechny zékladni pojmy této kapitoly (viz ,, KLICOVA SLOVA* kapitoly)



PERCEPTRON.

Pti popisu algoritmu adaptace perceptronu budeme pouzivat zrnaceni, které je
uvedeno v kapitole ,,Uvod do problematiky neuronovych siti*.

Perceptron je nejjednodussi neuronova sit’ s jednim pracovnim neuronem a na jeho
adaptacnim algoritmu si vysvétlime proces uceni s ucitelem.

Klic¢ova slova této kapitoly:
perceptron, adaptacéni pravidlo perceptronu, koeficient uceni, prah.

Perceptron

Autorem této nejjednodussi neuronové sité je Frank Rosenblatt (r. 1957). Za typicky perceptron je
povazovana jednoducha neuronova sit’ s n vstupy (x;, x, ..., X,,) a jednim pracovnim neuronem spojenym se
vSemi svymi vstupy. Kazdému takovému spojeni je pfifazena vahova hodnota (w;, w,, ..., w,). Signal pfenaseny
vstupnimi neurony je bud’ binarni (tj. ma hodnotu 0 nebo 1), nebo bipolarni (tj. ma hodnotu -1, 0 nebo 1).
Vystupem z perceptronu je pak y = f{y_in), kde aktivac¢ni funkce fma tvar (@ je libovolny, ale pevny prah
aktiva¢ni funkce f):

1 pokud y in>0
f(y_in): 0 pokud —0<y in<é@
-1 pokud y in<-6
Vahové hodnoty jsou adaptovany podle adaptacniho pravidla perceptronu tak, aby diference mezi skute¢nym a

pozadovanym vystupem byla co nejmensi. Adaptacni pravidlo perceptronu je mnohem silngjsi nez Hebbovo
adaptacni pravidlo.

Popis algoritmu

Krok 0. Inicializace vah w; (i = I azn) abiasu b malymi nahodnymi Cisly.
Pritazeni inicializa¢ni hodnoty koeficientu uéeni o (0 <a <1).
Krok 1. Dokud neni splnéna podminka ukonceni vypoctu, opakovat kroky (2 az 6).
Krok 2. Pro kazdy tréninkovy par s:t (tj. vstupni vektor s a pfislusny vystup t),
provadét kroky (3 az 5).
Krok 3. Aktivuj vstupni neurony:

Xj = 8.



Krok 4 Vypocitej skute¢nou hodnotu na vystupu:

y_in:b+2xiwi;.
i

1 pokud y in>60
vy=10  pokud —-60<y in<6
-1 pokud y in<-6
Krok 5 Aktualizuj vahové hodnoty a bias pro dany vzor
jestlize y #t,
wi(new) = wyold) + atx; (i=1azn).
bmew) = b(old) + a t.
jinak
wi(new) = w;(old)
bmew) = b(old)
Krok 6. Podminka ukonceni:
jestlize ve 2. kroku jiz nenastava zadna zména vahovych hodnot, stop; jinak,

pokracovat.

Aktualizaci podléhaji pouze ty vdhové hodnoty, které neprodukuji pozadovany vystup y. To znamena, Ze ¢im
vice tréninkovych vzord ma korektni vystupy, tim méné je potieba Casu k jejich tréninku. Prah aktivacni funkce
je pevna nezaporna hodnota 6. Tvar aktivacni funkce pracovniho neuronu je takovy, Ze umoziuje vznik pasu
pevné §itky (uréené hodnotou €) odd¢€lujiciho oblast pozitivni odezvy od oblasti negativni odezvy na vstupni
signal. Pfedchazejici analyza o zaménitelnosti prahu a biasu zde nema uplatnéni, protoze zména € méni sitku
oblasti, ne vSak jeji umisténi. Misto jedné separujici pfimky tedy mame pas ur¢eny dvéma rovnob&znymi
pfimkami:

1. Primka separujici oblast pozitivni odezvy od oblasti nulové odezvy na vstupni signal; tato hrani¢ni pfimka
ma4 tvar:

W1X1+W2X2+b>9.

2. Piimka separujici oblast nulové odezvy od oblasti negativni odezvy na vstupni signal;. tato hrani¢ni ptimka
ma tvar:
Wi Xg +W2X2+b<-0.




Po predlozeni prvniho tréninkového vzoru, dostdvame nésledujici:

VSTUP VYSTUP PRIRUSTKY VAHOVE HODNOTY
VAH
X; X, b y_in y t Aw; Aw, Ab Wy W) b
0 0 0
1 1 1 0 0 1 1 1 1 1 1 1

Separujici pfimky jsou dany rovnicemi
X7 +X_7+ 1= 0,2

X1+X_7+]:-0,2
X2

X1

Obrazek 11: Hranicni pas pro logickou funkci
,AND* - prvni tréninkovy vzor.

Predlozime-li druhy tréninkovy vzor, dostavame nasledujici:

VSTUP VYSTUP PRIRUSTKY VAHOVE HODNOTY
VAH
Xy X; b y_in y t Aw,; Aw, Ab wy W) b
1 1 1
1 0 1 2 1 -1 -1 0 -1 0 1 0

Separujici pfimky maji tvar



X2

X1

Obrazek 12: Hranicni pas pro logickou funkci

L AND *“ - druhy tréninkovy vzor

Po ptredloZeni tetiho tréninkového vzoru, dostdvame:
VSTUP VYSTUP PRIRUSTKY VAHOVE HODNOTY
VAH

X X b y_in % t Aw; Aw, Ab wy ws b
0 1 0
0 1 1 1 1 -1 0 -1 -1 0 0 -1

Pro uplnost prvniho tréninkového cyklu predlozime i ¢tv

rty vzor a dostavame nasledujici:

VSTUP VYSTUP PRIRUSTKY VAHOVE HODNOTY
VAH

X X b y_in h% t Aw; Aw, Ab ] 5 b

0 0 -1
0 0 1 -1 -1 -1 0 0 0 0 0 -1

Vysledky po desdtém tréninkovém cyklu jsou:

] 1 1 ] 1 1 0 0 0 2 3 -4
] 0 1 -2 -1 -1 0 0 0 2 3 -4
0 1 1 -1 -1 -1 0 0 0 2 3 -4
0 0 1 -4 -1 -1 0 0 0 2 3 -4

X2

\

Obrazek 13: Hranicni pas pro logickou funkci ,,AND* po
adaptaci algoritmem perceptronu.



Kladné odezva je dana vSemi body, pro které plati
2x; +3x; -4>0,2.
Hrani¢ni piimka oblasti ma tvar

X, :—§X1 +g.

Zaporna odezva je dana vSemi body, pro které plati
2.\'/ + 3.\'3 4 <-02.
Hrani¢ni pfimka oblasti ma pak tvar

X, Z—EXI +E.

Ukoly:
1. Srovnejte Hebbovo adaptacni pravidlo a adaptacni pravidlo perceptronu.

2. Objasnéte adaptacni algoritmus perceptronu pro logickou funkci ,,OR*“ v bipolarni reprezentaci.

Korespondencni ukoly:

Vytvorte pocitacovy program pro realizaci adaptacniho algoritmu perceptronu.



ADALINE.
MADALINE.

Pii popisu adaptacniho algoritmu pro Adaline a Madaline budeme vychdzet ze
znaceni, které je uvedeno v kapitole ,,Uvod do problematiky neuronovych siti* a
které bude v této kapitole rozsiteno.

Adaptacni algoritmus neuronu Adaline bude srovnan s adaptacnim algoritmem
percetronu.

V zavéru pak budou uvedeny moznosti klasifikace riznych typ neuronovych siti
(tj. 1-vrstvé, vrstvé a 3-vrstvé neuronové sité).

Klic¢ova slova této kapitoly:
Adaline, Madaline, adaptacni algoritmus pro Adaline, delta pravidlo.

Adaline

Adaline, tj. Adaptive Linear Neuron. Pro své vstupy obvykle pouziva bipolarni aktivaci (1 nebo -1),
vystupni hodnota je nejcastéji také bipolarni. Adaline ma rovnéz bias chovajici se jako regulovatelna vaha (wy)
pfifazena spojeni, které vychazi z neuronu, jehoz aktivace je vzdy 1.
Adaptacni algoritmus pro Adaline ma nasledujici tvar:

Krok 0. Inicializace vah malymi nadhodnymi hodnotami.

Pfifazeni inicializa¢ni hodnoty koeficientu uéeni & (viz poznamky za

algoritmem).
Krok 1. Dokud neni spInéna podminka ukonéeni vypoctu, opakovat kroky (2 az 6).
Krok 2. Pro kazdy bipolarni tréninkovy par s:t (tj. vstupni vektor s a prislusny vystup
t), provadét kroky (3 az 5).
Krok 3. Aktivovat vstupni neurony:
X;=S;
Krok 4 Vypocitat skuteCnou hodnotu na vystupu:
y_ in=b+ inwi ;.
y=y_in.
Krok 5 Aktualizovat vahové hodnoty ai =/, ..., n.

wi(new) = wi(old) + o (t - y_in) x;.
b(new) = b(old) + a (t-y_in).
Krok 6. Podminka ukonéeni:
jestlize nejvétsi zména vahovych hodnot, ktera se vyskytuje v kroku 2 je

mensi nez maximalni povolena chyba, stop; jinak, pokracovat.



Nastaveni vhodné hodnoty koeficientu uceni o se déje nasledovné:

Podle Hecht-Nielsena lze za jeho horni hrani¢ni hodnotu povazovat nejvétsi vlastni Cislo korelacni
matice R vstupu (fadku) vektoru x(p),

1 & T
R=—2.x(p) x(p),
P
tedy
a < jedna polovina nejvétsi hodnoty viastniho cisla R.

Jelikoz hodnota R neni béhem vypoctu mé€néna, obvykle se voli i & jako 0.1 <na<1.0, kde n je pocet vstupi.
Pokud dosadime za « pfili§ velkou hodnotu, adaptacni algoritmus nebude konvergovat. Pokud dosadime za
pfili§ malou hodnotu, proces uceni bude extrémné pomaly.

Dukaz konvergence adaptacniho pravidla pro Adaline je obsazen v derivaci delta pravidla. Delta
pravidlo méni vahové hodnoty na spojenich mezi jednotlivymi neurony tak, aby byl minimalizovan rozdil mezi
vstupnim signalem y_in vystupniho neuronu a pozadovanym vystupem ¢. Cilem adaptace je minimalizovat tuto
chybu ptes vSechny tréninkové vzory. Piislusné vahové korekce jsou akumulovany a po kazdém tréninkovém
cyklu jsou vSechny vahové hodnoty aktualizovany najednou.

Delta pravidlo pfislusejici /. vahové hodnot¢ je pro kazdy vzor zapsano nasledovné:

Aw, = a(t - y_in) X,

Dale budeme pouzivat toto oznaceni:

X Vektor aktivaci vstupnich neuronil, ma » slozek.
y_in Hodnota vstupniho signalu vystupniho neuronu Y je
n
y_in= Z X W,
i=1
t Pozadovany vystup.
Derivace:

Pro kazdy tréninkovy vzor je dana chybova funkce E = E(w), tj. funkce vSech vahovych hodnot w;,
i=1, .., nvztahem

E=(t-y in)

Gradient £ je vektor, jehoz slozky jsou parcialni derivace E podle vSech slozek vektoru w. Gradient udava smér
nejveétsiho rustu (chyby E); pokud vSak ma opacny smér zpusobuje jeji nejrychlejsi zmensovani. Chybova funkce

E je minimalizovana prostfednictvim uprav vahovych hodnot w; ve sméru — ﬁ .
1
n
Protoze y_in= in w;
i=1
ow, ow,

=-2 (t—y_in)x,.
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Chyba (F) bude tedy redukovana rychleji, pokud budou piislusné vahové hodnoty upravovany podle delta
pravidla,

Aw, = a(t - y_in) X, .
Priklad.:

Adaptacni algoritmus Adaline pro logickou funkei ,,OR* (bipolarni vstupni i vystupni hodnoty) je
zapsan nasledovné:

VSTUP POZADOVANY
X X5 VYSTUP
1 1 1
1 -1 1
-1 1 1
-1 -1 -1

Jak jiz bylo vySe naznaceno, je adaptacni algoritmus Adaline navrzen k nalezeni takovych vahovych hodnot w;,
aby minimalizovaly celkovou chybu

E=3 (e + (o + = ()

p=1
kde

xl(p)w1 +x, (p)w2 +w,
je vstupni signal vedouci do vystupniho neuronu pro vzor p a #(p) je pozadovany vystup piislusejici vzoru p.

Vahové hodnoty, které¢ minimalizuji chybovou funkci, maji v tomto piikladé tvar:

: 1
bias w, = 5

Separujici pfimka je tedy urcend rovnici

Geometricky vyznam funkce Adaline se nepatrné 1isi od perceptronu. Uvazujme vstup x=(x;, ..., x,,), tj. bod
[xs, ..., X,] v n-rozmérném vstupnim prostoru. Nadrovina s koeficienty w pro dany neuron Adaline uréena rovnici

n
Wy + z wix; =0
i=1
rozdéluje tento prostor na dva poloprostory, ve kterych ma hodnota vystupu y zapsaného rovnici
n
Y= Z WX,
i=1

odli$né znaménko (tj. je bud’ kladna, nebo zaporna). Pro body leZici na této nadroviné je hodnota vystupu
nulova. Vzdalenost p bodu [x, ..., x,] od této nadroviny je dana rovnici:



1
P= PR
N2 Wi
i=1 1

Tedy absolutni hodnota |y| vystupu z neuronu Adaline zavisi linedrné na vzdalenosti bodu od nadroviny ve

n
W, + i Wixi‘ ‘yj‘

vstupnim prostoru:

Body ze vstupniho prostoru, které maji stejny vystup, lezi na jedné nadrovin€ rovnobézné s nadrovinou
n

w, + Z w,x; = 0, ktera je od ni ve vzdalenosti p ve sméru daném znaménkem y. Uvedena situace je
i=1
nacrtnuta na obrazku 14, kde nadrovina ur¢ena stejnym vystupem je znazornéna pierusovanou ¢arou.

n
w, + zizlwixi =0

[X7, .0 Xn]

=2 e

Obrazek 14: Geometricka interpretace funkce neuronu
Adaline.



Madaline

Madaline, tj. Many Adaptive Linear Neurons. Zakladnim prvkem v tomto modelu je neuron Adaline,
ktery je velmi podobny perceptronu (viz pfedchazejici kapitola). Jednoduchd architektura neuronové sité
Madaline je zobrazena na obrazku 15. Vystupy (z; a z, ) z obou skrytych neuronti typu Adaline (Z; a Z,), jsou
urceny stejnymi signaly (x; a x,) vychazejicimi z neurontt X; a X, které samoziejme zavisi na ptislusné
prahové funkci. Pak i skute¢ny vystup y je nelinearni funkci vstupniho vektoru (x;, x,) a ptislusné prahové
funkce. Pouziti skrytych neuront Z; a Z, sice dava siti vétsi vypoctové moznosti, ale naproti tomu komplikuje
adaptacni proces.

Q. q

Wi b,
Wio Vi
Y
/
\Z)
Wai Vs
- Wn b,

Obrazek 15: Madaline se dvéma skrytymi neurony Adaline
a jednim vystupnim neuronem Adaline.

Piivodni adaptacni algoritmus MRI (z roku 1960) adaptuje pouze vahové hodnoty prislusejici obéma skrytym
neuronim, zatimco vahové hodnoty pfislusejici vystupnimu neuronu jsou fixni. Adaptacni algoritmus MRII (z
roku 1987) upravuje vSechny vahové hodnoty. Déale budeme pracovat pouze s adaptacnim algoritmem MRI:
Vahové hodnoty v; a v, abias b;, piislusejici vystupnimu neuronu Y, jsou urceny tak, ze vystupni signal z ¥ je
roven /, pokud je alespon jedna hodnota signalu vychazejiciho ze skrytych neuront (tj. Z; a Z, nebo obou z
nich) rovna jedné. Pokud jsou oba signaly vysilané ze Z; i Z, rovny -1, ma vystupni signal z Y hodnotu -/.
Jinymi slovy, vystupni neuron Y provadi logickou funkci ,,OR® na signalech vysilanych z neuront Z; a Z,.
Mizeme tedy pfifadit

=
I

-

<
S
Il

i~
w
Il

Viahové hodnoty pfisluSejici prvnimu skrytému neuronu Adaline (w;; a w;;) a vahové hodnoty pfislusejici
druhému skrytému neuronu Adaline (w;, a w;;) jsou adaptovany podle algoritmu MRI takto:

Aktivacni funkce pro Z;, Z, a Y je déna nasledovné:
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1 pokud x> 0;
-1 pokud x < 0.



Adaptacni algoritmus MRI

Krok 0.

Krok 1.

Véahové hodnoty v; a v, a bias b; jsou inicializovany vyse uvedenym zptisobem.

Inicializace zbyvajicich vah malymi ndhodnymi hodnotami.

Ptitazeni inicializacni hodnoty koeficientu uceni . stejnym zptisobem jako v adaptaénim

algoritmu pro neuron Adaline.

Dokud neni spInéna podminka ukonceni vypoctu, opakovat kroky (2 az 8).

Krok 2. Pro kazdy bipolarni tréninkovy par s:t provadét kroky (3 az 7).

Krok 3.

Krok 4

Krok 5

Krok 6

Krok 7

Aktivovat vstupni neurony:
X; =S
Vypocitat vstupni hodnoty skrytych neuronti:
z_in, =b, +x,w,, +x,W,,
z_in, =b, +x,w, +x,W,,.
Stanoveni vystupnich hodnot skrytych neuront:
z, = f(z_inl),
z, = f(z_z'nz).
Stanoveni skutecné vystupni hodnoty signalu neuronové
sité¢ Madaline:
y_ in=b,+zv, +z,v,;
yv=f ( v in).

Aktualizovat vahové hodnoty:
Pokud je y = ¢, nenastavaji zddné zmény.
Jinak (pro y #1):
Je-li t= 1, potom pro vahové hodnoty na spojenich
vedoucich k Z; (J=1,2) plati:

wiy(new) = wy(old) + a (I - z_iny) x;.

by(new) =b,(old) + a (I - z_iny).
Je-1i ¢ = -1, potom pro vdhové hodnoty na spojenich
vedoucich k Zx (K=1,2) plati:

wik (new) = wig (old) + a (-1 - z_ing) x;.

bg (new) = bg (old) + o (-1 - z_ing).

Krok 8. Podminka ukonceni:

pokud jiz nenastavaji zadné zmény vahovych hodnot nebo pokud jiz bylo

vykonano maximalné definované mnozstvi vahovych zmén, stop; jinak,

pokracovat.



Priklad:
Adaptacni algoritmus MRI pro logickou funkci ,,XOR* (bipolarni vstupni i vystupni hodnoty) je zapsan
nasledovné:

VSTUP POZADOVANY
X X VYSTUP
1 1 -1
1 -1 1
-1
-1 -1 -1

Krok 0. a =0.5;

Inicializace vdhovych hodnot:

vahy vedouci do Z; vahy vedouci do Z, vahy vedouci do Y
Wi; Wa; b; Wio W) b, 7 V) b;
0.05 0.2 0.3 0.1 0.2 0.15 0.5 0.5 0.5
Krok 1. Adaptace:
Krok 2. Pro prvni tréninkovy par; (1,1):-1
Krok 3. x; =1,
X, =1.
Krok 4 z in;=03+0.05+0.2=0.55,
z in,=015+0.1+0.2=045
Krok 5 z; =1,
z,=1.
Krok 6 yin=05+05+0.5;
y=1.
Krok 7 t-y=-1-1=-2#0,

Pokud je ¢ = -1, potom aktualizovat vahové hodnoty na

spojenich vedoucich k Z;:
b, (new) = bl(old) + a(—l -z inl)
= 03+(05)(-155)
=-0475
w“(new) = wll(old) + a(—l -z inl)x1
=0.05+(0.5)(-155)
=-0.725
W, (new) =Ww,, (old) + a(—l -z in, )x2
=02 +(0.5)(-155)
=-0.575

a aktualizovat vahové hodnoty na spojenich vedoucich k Z,:



b, (new) =b, (old) + a(—l -z inz)
=015+ (0.5)(-145)
=-0.575
Wi, (new) =w, (old) + a(—l —z_in, )x1
= 0.1+ (05)(-145)
=-0.625
W, (new) =W, (old) + a(—l -z in, )x2
=02 +(05)(-145)
=-0.525

Geometricka interpretace nalezenych vahovych hodnot:
Oblast kladné odezvy vznikne sjednocenim obou oblasti pozitivni odezvy skrytych neuront Z; a Z,.

Pro skryty neuron Z; ma hrani¢ni ptimka tvar

Wi b,
X, =——X, —
Wo Wa
0.73 0.99
=X+
153 153
= 0.48x, +0.65.
Pro skryty neuron Z, ma hraniéni pfimka tvar
Wia b,
Xy =~ X =
Wani Wi
1.27 1.09
=—x +
1.33 133
= 0.96x, — 0.82.

Vypocitané oblasti kladné a zaporné odezvy na vstupni signal jsou znazornény na nasledujicich obrazcich.



X2
+ /

X1

Obrazek 16: Oblast kladné odezvy pro Z;.

X2

Obrazek 17: Oblast kladné odezvy pro Z,.

X2
+ / -

/ X1

Obrazek 18: Oblast kladné odezvy pro Madaline pro
wXOR“ funkci.



Ukoly:
1. Srovnejte adaptacni algoritmus neuronu Adaline a perceptronu.
2. Srovnejte geometrickou interpretaci funkce neuronu Adaline a perceptronu.

3. Objasnéte adaptacni algoritmus MRI pro vybranou logickou funkci v bipolarni reprezentaci.

Kor €SDOTZd€I’lCVI’ll’ l/’lkOIV (vybrany ukol vykonejte).

1. Vytvorte pocitacovy program pro realizaci adaptacniho algoritmu neuronu Adaline.

2. Vytvorte pocitacovy program pro realizaci adaptacniho algoritmu MRI.

Shrnuti: Na nésledujicich dvou obrazcich jsou souhrnné zobrazeny rizné tyty neuronovych siti (tj. neuronové
sit€ s riznym poctem vnitinich vrstev) a jejich moznosti klasifikace.

STRUKTURA XOR PROBLEM OBTEKANI OBLASTI OBECNE OBLASTI

NEURONOVE SITE
lvrstva (perceptron)

/TK

2 vrstvy (Madaline)

x
%ﬁ?@

Obrazek 19: Neuronové sité s ruznym poltem vnitinich
vrstev a jejich moZnosti klasifikace.



1-vrstva 2-vrstva 3-vrstva
neuronova sit’ neuronova sit  neuronova sit’
(perceptron) (Madaline)

|lineérni oblasti | .|konvexn1’ oblasti[ obecné |
: oblasti [

o/

ni .

vstup pracovni

nheurony neurony
(ptenaseji

vstupni signal)

Obrazek 20: Mezni oblasti rozpoznavané neuronovou
s riznym poétem vnit¥Fnich vrstev.

v
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BACKPROPAGATION.

. r

V této kapitole se podrobn¢ sezndmite s adaptacnim algoritmem zpétného Sifeni
chyby (backpropagation), jez je pouzivan v ptriblizné 80% vSech aplikaci
neuronovych (tj. je nejrozSifenc¢jSim adaptacnim algoritmem vicevrstvych

neuronovych siti).

Zavedeme si zde i dal8i znaceni, které budeme pouzivat i v nadslednych kapitolach.

Klic¢ova slova této kapitoly:

backpropagation (adaptacni algoritmus zpétného sireni chyby),
generalizace, trénovaci mnozina, dopredné (feedforward) sireni

V této kapitole budeme pouzivat nasledujici znaceni:

Wor

Yy

Vstupni vektor: x = (x;, ..., X;, ..., Xp).
Vystupni tréninkovy vektor: t = (¢, ..., , ..., 1)

Castecné vahové korekce pro wy prislusejici chybé na spojenich vedoucich k neuronu Y
ve vystupni vrstve.

Castecné vahové korekce pro v;; prislusejici chybé na spojenich vedoucich k neuronu Z;
ve skryté vrstve.

Koeficient uceni.

i. neuron ve vstupni vrstve:
Pro neurony ve vstupni vrstvé je hodnota vstupniho i vystupniho signalu stejna, x; .

Bias j. neuronu ve skryté vrstve.

Jj. neuron ve skryté vrstve:

Hodnota vstupniho signalu pro Z; je z_in;:
Z_l}’lj = VOj + le.vl.j .
i

Hodnota vstupniho signalu pro Z; je z;:

z, :f(z_znj).
Bias k. neuronu ve vystupni vrstve.

k. neuron ve vystupni vrstve:
Hodnota vstupniho signalu pro Y je y_iny
y_in, =wy + szwjk.
J
Hodnota vstupniho signalu pro Z; je z;:

v =fy_in,).



Pravdépodobné nejrozsitengjsi zplsob propojeni neurontt se sigmoidni aktivacni funkei jsou vicevrstvé
sité. Vicevrstva neuronova sit’ s jednou vnitini vrstvou neuronti (neurony jsou oznaceny Z;, j = 1,..., p) je
zobrazena na obrazku 21. Vystupni neurony (neurony jsou oznaceny Y;, k = 1,..., m). Neurony ve vystupni a
vnitini vrstvé musi mit definovany bias. Typické oznaceni pro bias k. neuronu (Y;) ve vystupni vrstve je wey, a
typické oznaceni pro bias j. neuronu (Z) ve vnitini vrstvé je vy. Bias (napf. j. neuronu) odpovida, jak jiZ bylo
diive uvedeno, vahové hodnot€ pfifazené spojeni mezi danym neuronem a fiktivnim neuronem, jehoz aktivace je
vzdy 1. Z uvedeného obrazku tedy vyplyva, Ze vicevrstva neuronova sit’ je tvofena minimalné tfemi vrstvami
neurond: vstupni, vystupni a alespoii jednou vnitini vrstvou. Vzdy mezi dvémi sousednimi vrstvami se pak
nachazi tzv. uplné propojeni neuroni, tedy kazdy neuron niz$i vrstvy je spojen se vSemi neurony vrstvy vySsi.

VYSTUPNI VRSTVA

VSTUPNI VRSTVA

Obrazek 21: Neuronova sit’” s jednou vnitini vrstvou
neuroni.

Adaptacni algoritmus zpétného Sifeni chyby (backpropagation) je pouzivan v ptiblizné 80% vsech
aplikaci neuronovych siti. Samotny algoritmus obsahuje tfi etapy: doptedné (feedforward) Siteni vstupniho
signalu tréninkového vzoru, zpétné Sifeni chyby a aktualizace vahovych hodnot na spojenich.

Béhem dopredného Sifeni signalu obdrzi kazdy neuron ve vstupni vrstvé (X;, i = 1,..., n) vstupni signal
(x;) a zprostiedkuje jeho pfenos ke vSem neuronim vnitini vrstvy (Z,, ..., Z,). Kazdy neuron ve vnitini vrstvé
vypocita svou aktivaci (z;) a poSle tento signal v§em neuronlim ve vystupni vrstvé. KaZzdy neuron ve vystupni
vrstvé vypocita svou aktivaci (y;), ktera odpovida jeho skute¢nému vystupu (£ neuronu) po predlozeni
vstupniho vzoru.

V podstaté timto zptisobem ziskame odezvu neuronové sité na vstupni podnét dany excitaci neuronti
vstupni vrstvy. Takovym zptisobem probiha Sifeni signald i v biologickém systému, kde vstupni vrstva mize byt
tvofena napi. zrakovymi buiikami a ve vystupni vrstvé mozku jsou pak identifikovany jednotlivé objekty
sledovani. Otazkou pak zistava to nejdilezitéjsi, jakym zpisobem jsou stanoveny synaptické vahy vedouci ke
korektni odezvé na vstupni signal. Proces stanoveni synaptickych vah je opét spjat s pojmem ucéeni - adaptace -
neuronove sité.

Dalsi otazkou je schopnost generalizace (zobecnéni) nad nau¢enym materialem, jinymi slovy jak je
neuronova sit’ schopna na zakladé nauceného usuzovat na jevy, které nebyly soucasti uceni, které vsak lze
néjakym zptsobem z naucené¢ho odvodit. I tady je citit jakasi analogie s lidskym uc¢enim dana rozdilem mezi
bezduchym biflovanim a ucenim spjatym se schopnosti porozumét problematice tak, aby mohlo byt nové
odvozeno z pfedchoziho.

Co je nutné k nauceni neuronové sit€? Je to jednak tzv. trénovaci mnozina obsahujici prvky popisujici
feSenou problematiku a dale pak metoda, ktera dokaze tyto vzorky zafixovat v neuronové siti formou hodnot



synaptickych vah pokud mozno v¢etné jiz uvedené schopnosti generalizovat. Zastavme se nejdiive u trénovaci
mnoziny. Kazdy vzor trénovaci mnoziny popisuje jakym zptsobem jsou excitovany neurony vstupni a vystupni
vrIstvy.

Formalné mizeme za trénovaci mnozinu T povazovat mnozinu prvki (vzorl), které jsou definovany
usporadanymi dvojicemi nésledujicim zptisobem:

T={{s.1} {S.5} .. {S,.T}}
S.=[s1 Sy, ... Sn] s; e<0,1>

L= t ... t,] ¢ €0

kde q pocet vzoru trénovaci mnoziny
S; vektor excitaci vstupni vrstvy tvofené n neurony
T; vektor excitaci vystupni vrstvy tvofené m neurony

8j 4 excitace j-tého neuronu vstupni resp. vystupni vrstvy.

Metoda, ktera umoziuje adaptaci neuronové sité nad danou trénovaci mnozinou se nazyva
backpropagation, coz v piekladu znamena metodu zpétného Sifeni. Na rozdil od uz popsaného dopiedného
vrstev vyssich k vrstvam niz§im.

Béhem adaptace neuronové sit¢ metodou backpropagation jsou srovnavany vypocitané aktivace y; s
definovanymi vystupnimi hodnotami #; pro kazdy neuron ve vystupni vrstve a pro kazdy tréninkovy vzor. Na
zéaklad¢ tohoto srovnani je definovana chyba neuronové sité, pro kterou je vypocitan faktor & (k= 1, ..., m). &
je, jak jiz bylo uvedeno, ¢asti chyby, ktera se §iti zpétn€ z neuronu Y, ke vSem neurontim pfedchazejici vrstvy,
JjeZ maji s timto neuronem definované spojeni. Podobné lze definovat i faktor & (j = 1, ..., p), ktery je Casti chyby
Sifené zpétné z neuronu Z; ke vSem neuroniim vstupni vrstvy, jez maji s timto neuronem definované spojeni.

Uprava vahovych hodnot Wi na spojenich mezi neurony vnitini a vystupni vrstvy zavisi na faktoru J; a
aktivacich z; neurontl Z; ve vnitini vrstvé. Uprava vahovych hodnot v; na spojenich mezi neurony vstupni a
vnitini vrstvy zavisi na faktoru ¢; a aktivacich x; neuronli X; ve vstupni vrstvé.

Aktivacni funkce pro neuronové sité s adaptacni metodou backpropagation musi mit nasledujici
vlastnosti: musi byt spojita, diferencovatelna a monotonné neklesajici. Nejcastéji pouzivanou aktivacni funkci je
proto standardni (logickd) sigmoida a hyperbolicky tangens.

Chyba sité E(w) je vzhledem k tréninkové mnoziné definovana jako soucet parcialnich chyb sité E,(w)
vzhledem k jednotlivym tréninkovym vzortim a zavisi na konfiguraci sité w:

q

E(w)= ZEI(W).

/=1

Parcialni chyba E;(w) sité pro /. tréninkovy vzor (/ = 1, ...,¢q) je imérna sou¢tu mocnin odchylek skute¢nych
hodnot vystupu sité pro vstup /-tréninkového vzoru od pozadovanych hodnot vystupti u tohoto vzoru:

keY

Cilem adaptace je minimalizace chyby sité ve vahovém prostoru. Vzhledem k tomu, Ze chyba sité piimo zavisi
na komplikované nelinearni slozené funkci vicevrstvé sité, pfedstavuje tento cil netrivialni optimaliza¢ni
problém. Pro jeho feSeni se v zakladnim modelu pouZziva nejjednodussi varianta gradientni metody, ktera
vyzaduje diferencovatelnost chybové funkce. K lepsimu pochopeni naim pomuze geometricka predstava.

Na obrazku 22 je schematicky znazornéna chybova funkce E(w) tak, ze konfigurace, kterd predstavuje
mnohorozmérny vektor vah w , se promita na osu x. Chybova funkce urcuje chybu sité vzhledem k pevné
tréninkové mnoziné v zavislosti na konfiguraci sit¢. Pfi adaptaci sit¢ hledame takovou konfiguraci, pro kterou je
chybova funkce minimalni. Zaéneme s nahodné zvolenou konfiguraci w® , kdy odpovidajici chyba sité od
pozadované funkce bude pravdépodobné velka. V analogii s lidskym ucenim to odpovida poc¢atecnimu nastaveni



synaptickych vah u novorozence, ktery misto pozadovaného chovani jako chiize, fe¢ apod. provadi nahodné
pohyby a vydava neur¢ité zvuky. Pii adaptaci sestrojime v tomto bodé w ke grafu chybové funkce te¢ny vektor

E ([ (o
(gradient) %(W( ) ) a posuneme se ve sméru tohoto vektoru dolt o &£. Pro dostatecné malé £ tak ziskame

novou konfiguraci w® = w® + Aw® | pro kterou je chybové funkce mensi neZ pro pivodni konfiguraci w® , t;.
EW®)>E (w"). Cely proces konstrukce te¢ného vektoru opakujeme pro w a ziskame tak w takové, 7e
EWwW"Y)>E w?)atd., az se limitn& dostaneme do lokalniho minima chybové funkce. Ve vicerozmérném
vahovém prostoru tento postup presahuje nasi predstavivost. I kdyz pfi vhodné volbé¢ koeficientu uceni (o) tato
metoda vzdy konverguje k n€jakému lokalnimu minimu z libovolné pocatecni konfigurace, neni viibec zaruceno,
ze se tak stane v redlném case. Obvykle je tento proces ¢asoveé velmi narocny (nékolik dnd vypoctu PC) i pro
malé topologie vicevrstvé sité (desitky neuront).

E

0 (D W@

W W W ... w
G

Obrazek 22: radientni metoda.

Hlavnim problémem gradientni metody je, Ze pokud jiz nalezne lokalni minimum, pak toto minimum
nemusi byt globalni (viz obr.22). Uvedeny postup adaptace se v takovém minimu zastavi (nulovy gradient) a
chyba sité se jiz dale nesnizuje. To lze v nasi analogii s ucenim clovéka interpretovat tak, ze pocatecni nastaveni
konfigurace v okoli n¢jakého minima chybové funkce urcuje moznosti jedince ucit se. Inteligentnéjsi lidé
zacCinaji svou adaptaci v blizkosti hlubsich minim. I zde je v§ak chybova funkce definovana relativné vzhledem k
pozadovanému ,.inteligentnimu chovani (tréninkova mnozina), které vSak nemusi byt univerzalné platné.
Hodnotu ¢lovéka nelze méfit zadnou chybovou funkci. Elektrické Soky aplikované v psychiatrickych 1écebnach
pripominaji nékteré metody adaptace neuronovych siti, které v pripadé, Ze se uéeni zastavilo v me¢lkém lokalnim
minimu chybové funkce, nahodné vnasi Sum do konfigurace sité, aby se sit’ dostala z oblasti abstrakce tohoto
lokalniho minima a mohla popt. konvergovat k hlubsimu minimu.

Popis algoritmu backpropagation

Krok 0. Vahové hodnoty a bias jsou inicializovany malymi nahodnymi ¢isly.

Pfifazeni inicializa¢ni hodnoty koeficientu uéeni a..

Krok 1. Dokud neni splnéna podminka ukonceni vypoctu, opakovat kroky (2 az 9).
Krok 2. Pro kazdy (bipolarni) tréninkovy par s:t provadét kroky (3 az 8).
Feedforward:
Krok 3. Aktivovat vstupni neurony (X;, i=1, ...n)
X; = Sj.
Krok 4 Vypocitat vstupni hodnoty vnitfnich neuronti: (Z;, j=1....,

p):



Krok 5

n
z_in; =vy; + invij'
i=1
Stanoveni vystupnich hodnot vnitinich neuronti
z; = f(z_mj).
Stanoveni skutecnych vystupnich hodnoty signalu

neuronové sité (Y, k=1, ..., m):

P
y_in, =w,, + Zz_/. Wi,
J=1

ve = fly_in,).

Backpropagation:

Krok 6

Krok 7

Ke kazdému neuronu ve vystupni vrstvé (Y, k=1, ..., m) je
pritazena hodnota o¢ekavaného vystupu pro vstupni

tréninkovy vzor. Dale je vypoéteno

8, =(t, =y, )f"(v_in,), které je soucasti vahové
korekce Aw;, =« 0,2, ikorekce biasu

Aw,, =ad,.

Ke kazdému neuronu ve vnitini vrstvé (Zj,j=1, ..., p) je

pfifazena sumace jeho delta vstupi (tj. z neuront, které se
m
nachézeji v nasledujici vrstvé), o_in; = z O\ W)y
k=1
Vynasobenim ziskanych hodnot derivaci jejich aktivacni
funkce obdrzime &, =0 _ injf'(z_ l'nj), které je
soucasti vahové korekce A v, , =& o ;%; 1korekee biasu

Av,,=ad;.

Aktualizace vah a prahii:

Krok 8

Kazdy neuron ve vystupni vrstvé (Y}, k=1, ..., m)
aktualizuje na svych spojenich véhové hodnoty véetné
svého biasu (=0, ..., p):

wjk(new) = wjk(old) +AW, ;.

Kazdy neuron ve vnitini vrstvé (Z;, j=1, ..., p) aktualizuje
na svych spojenich véhové hodnoty véetné svého biasu
(=0, ..., n):

vij(new) =V, (old) +Av, ;.



Krok 9. Podminka ukonéeni:
pokud jiz nenastavaji zadné zmény vahovych hodnot nebo pokud jiz bylo
vykonano maximalné definované mnozstvi vdhovych zmén, stop; jinak,

pokracovat.

Ackoliv vlastni popis uciciho algoritmu backpropagation je formulovan pro klasicky von
neumannovsky model pocitace, pfesto je ziejmé, ze jej Ize implementovat distribuované. Pro kazdy tréninkovy
vzor probiha nejprve aktivni rezim pro jeho vstup tak, ze informace se v neuronové siti $iii od vstupu k jejimu
vystupu. Potom na zakladé externi informace ucitele o pozadovaném vystupu, tj. o chybé u jednotlivych vstupu,
se pocitaji parcialni derivace chybové funkce tak, ze signal se $iii zpét od vystupu ke vstupu. Vypocet sité pii
zpétném chodu probiha sekvenéné po vrstvach, pfitom v ramcei jedné vrstvy mize probihat paralelné.

Odvozeni adaptacniho pravidla standardni backpropagation

Symbolem w,x oznacime vahovou hodnotu na spojeni mezi vnitinim neuronem Z; a neuronem ve
vystupni vrstvé Yy; indexy IJ jsou pouzity analogicky pro vahové spojeni mezi neuronem ve vstupni vrstvé X;
a vnitinim neuronem Z;. Indexy uvedené malymi pismeny se vyskytuji pouze v sumacich. Symbolem f{x)

oznacujeme aktivacni funkci libovolného typu. Derivace této aktivacni funkce je pak ozna¢ena symbolem f".
Zavislost aktivacni funkce na vahovych hodnotach je vyjadiena vztahem:

y_ing :szij ,
J

ktery musime vy¢&islit, abychom nalezli f ( y_ing ) , §j. aktivaéni hodnotu Yx (K. neuronu ve vystupni vrstve).

Chybovou funkci (tj. funkci vahovych hodnot), kterd ma byt minimalizovana, lze zapsat takto:
2
E=05)[t, -».] -
k

Dale nasleduje odvozeni vahového piirdstku nejprve pro spojeni mezi neurony vnitini a vystupni vrstvy, tj. Awk
a potom mezi neurony ve vstupni a vnitinimi vrstve, tj. Avy;.

Y1 Yk Ym

! f

Obrazek 23: Adaptace vah neuronu vystupni vrstvy.



:_[tK _yK]ﬁMJK
__[tK _yK]f’(y_inK)dj
——[tK _yK]f'(y_inK)ZJ'

Pro ptehlednéjsi zapis vyslednych hodnot je vyhodné definovat Jx :

Ok :[tK _yK]f'(y_inK)'

Pro vahové hodnoty na spojenich vedoucich od neuronti vstupni vrstvy k neurontim ve vnitini vrstvé plati:

Obrazek 24: Adaptace vah neuronu vnitini vrstvy.

@—=—Z[t yk] Fl
- Sl bin) 5
:—Zk:é‘kﬁvi”y_m
=Y o 5,

25 Wka( ’”J)[ ]

I zde pro prehlednost nasledujiciho zapisu definujme



0, =—Zk:§kwjkf’(z_inj).

Vratime se opét k indexaci malymi pismeny. Vahové prirtstky pak 1ze zapsat nasledujicimi zpisoby: pro vahové
hodnoty na spojenich mezi neurony ve vnitini a vystupni vrstveé plati

cE
2y
= a[tk — Vi ]f’(y_ in, )Zj
=ao,z;;

Aw,, =-«a

a pro vahové hodnoty na spojenich mezi neurony ve vstupni a vnitini vrstvé plati

Av. . =—a——
ij d}

og”'(z_inj)xizk:5kwjk ,

= Qo x,;.

Uvedené vztahy vyjadiuji podstatu adaptace neuronové sit¢ metodou backpropagation . Pokusme se o
jejich blizsi vysvétleni [7], tj. o priblizeni vyrazu daného souc¢inem koeficientu uceni « a parcialni derivace
chyby E podle pfislusné synaptické vahy. Pokud je hodnota této derivace velka a kladnd, znamena to, ze i
minimalni narust hodnoty synaptické vahy vede k velké chybé odezvy neuronové sité. Je proto nutné "ubrat" z
aktualni hodnoty synaptické vahy, abychom chybu zmensili. Pro velkou, ale zapornou hodnotu derivace
analogicky plati, Ze je naopak nutné hodnotu synaptické vahy zvétsit, pokud by méla byt chyba odezvy v
nasledujicim kroku niz§i. Velikosti iprav synaptickych dat jsou logicky dany nejen hodnotami téchto derivaci,
ale i koeficientem uéeni (). Cim vétsi bude tento koeficient, tim razantngjsi budou zmény v neuronové siti a
naopak, pokud se bude jeho hodnota blizit nule pak zmény budou jen velmi nepatrné. Na tomto misté se opét
nabizi analogie s lidskym chovanim. V prvém ptipad¢ se jedna o ¢lovéka, ktery s kazdou novou informaci
vyrazné piebuduje své nazory Ci znalosti. V druhém piipade se jedna o ¢loveka, ktery s kazdou novou informaci
vyzaduje dlouhé presvédéovani a pisobeni, nez akceptuje néco nového. Jiz z této analogie je patrné jak je tento
koeficient dulezity pro efektivni adaptaci neuronové sité, nicméné jeho stanoveni je véc experimentu a hledani.
Prakticky neexistuje exaktni pravidlo, které by tento problém mohlo vyftesit.

Ukoly:

Pouzijte adaptacni algoritmus backpropagation pro logickou funkci ,, XOR “. Ziskané vysledky srovnejte
s FeSenim téhoz problému pri pouziti adaptacniho algoritmu MRI.

Korespondencni ukoly:

Vytvorte pocitacovy program pro realizaci adaptacniho algoritmu backpropagation.



VARIANTY BACKPROPAGATION.

V této kapitole se sezndmite s moznymi variantami adaptac¢niho pravidla
backpropagation, tj. do standardniho algoritmu zavedeme parametr momentu a
modifikovatelny parametr strmosti.

V zavéru rozebereme problematiku vhodné volby topologie vicevrstvé neuronové
sité, kterd by méla odpovidat slozitosti feSené¢ho problému.

V celé kapitole budeme pouzivat znaceni zavedené v kapitole ,,Backpropagation®.

Klic¢ova slova této kapitoly:
parametr momentu, parametr strmosti, heterogenni sit, overfitting
(preucenti).

Popsana standardni metoda backpropagation se vzhledem ke své jednoduchosti ¢asto pouziva, i kdyZ neni
prilis efektni. Jeji jednoduché a celkem frekventovana modifikace, ktera se snazi tento nedostatek ¢aste¢n¢
odstranit, zohlediuje pfi vypoctu nejen zmeény vah ve sméru gradientu chybové funkce, ale navic i pfedeslou
zménu vah, tzv. moment (u). Piirtistky vahovych hodnot odvozené standardni metodou backpropagation pak
mizeme piepsat do nasledujicich tvari:

w(t+1)=w,(t)+ad,z, + u [wjk(t)— w, (1 - 1)],

nebo-li
Aw (t+1)= oz, + uAw, (¢)
a
v e+ 1) =v, () + a8, x, + v, ()= v, (- 1)]
nebo-li

Av, (t+1)=ad,x, + uAv, (1),

kde 0 < <1 je parametr momentu, ktery urcuje miru vlivu pfedchozi zmény (obvykle se voli z= 0.9). Pomoci
momentu gradientni metoda 1épe opisuje tvar chybové funkce E(w), protoze bere do ivahy piedchozi gradient.

Doposud jsme se v naSem vykladu zabyvali pouze adaptaci synaptickych vah na spojenich mezi
neurony, protoze jsme pracovali pouze s neurony, které maji stejnou aktivacni funkci, pfesnéji: aktivacni funkei
se stejnou strmosti sigmoidu o. Nicméné nic nebrani tomu, abychom adaptaci podrobili nejen synaptické vahy,
ale 1 vySe zminéné strmosti sigmoidl jednotlivych neuronil. Konfigurace sité je pak dana vektorem vsech vah w
a vektorem vsech strmosti o. Pti u€eni adaptujeme tuto konfiguraci tak, Ze chybu sit€¢ minimalizujeme gradientni
metodou v prostoru vah a strmosti. Tim zvySujeme stupen volnosti adaptace, kdy tvar aktivacni funkce (tj. mira
rozhodnosti jednotlivych neuronit) se miize ptizpusobit tréninkové mnozing€ a snaze nalezne globalni minimum
chybové funkce sité. Na druhou stranu pfi zvySeni poctu adaptovanych parametri roste pocet numerickych
operaci a uceni se zpomaluje.

Sigmoidalni aktivaéni funkce standardni (logicka) sigmoida, je potom piepsana do nasledujiciho tvaru:

1

f(X)=W-



Derivace této funkce je pak zapsana takto

X
Obrazek 25: Bindrni sigmoida s modifikovanou strmosti:
o =1a o = 3.

Timto zptsobem lze ziskat tzv. heterogenni sit, kde obecné¢ kazdy neuron mtize mit svou aktivacni dynamiku.
Tato vlastnost ve vétSiné piipadii zvysuje schopnost sité¢ konvergovat k nau¢enému stavu. Adaptac¢ni metoda
vyuzivajici této moznosti je popsana v nasledujici kapitole.

Backpropagation s adaptivni strmosti sigmoidu

Odvozeni adaptacniho pravidla backpropagation s adaptivni strmosti sigmoidu je velmi podobné
odvozeni adaptacniho pravidla standardni backpropagation. Budeme pouzivat i stejnou indexaci. Rovnéz i volba
aktivacni funkce f{x) je libovolna.

Uvazujme vstupni signal x pro neurony ve vystupni vrstve, Yy

X=0gYy_ 1Ny
a stejnym zptuisobem oznaceny vstupni signal pro neurony ve vnitini vrstveé, Z;
X=0,z_in,.

Aktivacni funkce potom zavisi nejen na vahovych hodnotach
y_ing = ZZjoK ,
J

ale i na hodnot¢ parametru oy , ktery je pfitazen kazdému neuronu. Stejné ivahy provedeme i pro neurony
vnitini vrstvy. [ kdyz ma kazdy neuron pfifazen svilj parametr oy , tvar aktivacni funkce je pro vSechny tyto
neurony identicky. Za téchto pfedpoklad budeme odvozovat hodnoty vahovych pfirustkt parametrické
backpropagation, tj. budeme minimalizovat i v tomto pfipadé chybovou funkci, kterou zapiseme nasledujicim

zpusobem:
E=052[t, —v.|
k

Odvozeni vahového pfirGstku provedeme rovné€z nejprve pro spojeni mezi neurony vnitini a vystupni vrstvy, tj.
Aw,x a potom mezi neurony ve vstupni a vnitfnimi vrstve, tj. Avyy.



2 o 2
v, = v, O.SZk:[tk —yk]

__9 O.5;[fk—f(o'1<y_ml<)]2

w

0 .
= _[tK _yK]d/V—f(O-Ky_an)

J K

= _[tK _yK]f’(GKy—inK)O"Wif(o-Ky_inK)

JK
= _[ZK - yK]f'(O-Ky_inK)O-KZJ'

Stejné jako vahové hodnoty, musime také pro kazdy neuron adaptovat hodnoty parametru og. Toto odvozeni
rovnéz provedeme nejprve neurony vystupni vrstvy, tj. Aoy a potom pro neurony ve vnitinimi vrstvé, tj. Ao;.

0
Z(aKy_inK)

Z_[tK _yK]f,(O-Ky_inK)y_inK'

o = _[tK _yK]f'(O-Ky_inK)

Pro piehlednost i zde pouzijeme nasledujiciho zapisu:
Oy = [tK — Yk ]f'(o-Ky_inK )
Pro vahové hodnoty na spojenich vedoucich od neuronti vstupni vrstvy k neuronim ve vnitini vrstve plati:
2 [ 7
= - _Z i _yk]—yk
2 1J k & 1J
, N :
= _Z[tk — Vi ]f (O-ky_lnk ) Py O, y_uy
k 1J
J .
= _Z 0,0 Y y_imny
k 1J
o
= _Zé‘ko-kwjk Y Zy
k 1J

= —gdkakwjkf'(ﬁjz_i”J)O'J [x, ]

a pro parametry o; vnitfnich neurond plati:



cE o
o = _Zk:[tk - yk]?ﬁyk

o
=2t vl low_in)——o,y_in,
- Jdo

J

o
= —Z 6,0} y_in
k do,
0
= —Z RATN Zy
k do,
= —Z5kakwjkf’(ajz_inj)z_inj.
k
Také zde pro lepsi ptehlednost dalSich zapisim definujme

o, = —Zk:ékakwjkf’(O'Jz_inJ).

Nyni se vratime opét k indexaci malymi pismeny a vahové prirastky resp. prirtistky parametru strmosti sigmoidu
pak zapiSeme nasledujicimi zpisoby:
pro vahové hodnoty na spojenich mezi neurony vnitini a vystupni vrstvy plati

E
w,,

J

Aw; =-a

B a[tk — Vi ]f,(o_ky—ink )szj

=Q0,0,z;;

pro vahové hodnoty na spojenich mezi neurony vstupni a vnitini vrstvy plati

E
AV, = —a—-
&,

, .
ao . f (O'J.z_mj)xiz5k0'kwjk,
k

Qo 0 ,x;;
resp. pro strmosti sigmoidu neuront vystupni vrstvy plati

A CE
o, =—-a——
g oo,

= a[lk -V ]f’(aky_ink )y_ink
=Qa0,y_in,;

a pro strmosti sigmoidu neuront vnitini vrstvy plati



OE
Ao, =-a——
: oo .

J
_ , . .
= aZé‘kawjkf (O'jz_mj)z_mj,
k

=ad,z_in;.

Volba topologie vicevrstvé neuronové sité

Velkym problémem modelu vicevrstvé neuronové sité s adaptacnim algoritmem backpropagation je
(krom¢ minimalizace chybové funkce) volba vhodné topologie pro feseni konkrétniho praktického problému.
Ztidkakdy jsou podrobnéji znamy vztahy mezi vstupy a vystupy, které by se daly vyuzit pii navrhu specialni
architektury. VétSinou se pouziva vicevrstva topologie s jednou nebo dvémi vnitinimi vrstvami a ocekava se, ze
ucici algoritmus backpropagation zobecni pfislusné vztahy z tréninkové mnoziny ve vahach jednotlivych spoju
mezi neurony. [ v tomto ptipad¢ je vSak potieba vhodné volit pocty neuront ve vnitinich vrstvach. Je ziejmé, ze
tento problém organiza¢ni dynamiky tzce souvisi s adaptaci a generalizaci neuronové sité.

Architektura vicevrstvé neuronové sité (tj. ureni vhodného poctu vnitinich neuronti a jejich spojeni),
by méla odpovidat slozitosti feSeného problému, tj. poctu tréninkovych vzort, jejich vstupti a vystupti a struktufe
vztaht, které popisuji. Je zfejmé, ze mala sit’ nemuze fesit komplikovany problém. Pfi uceni pomoci algoritmu
backpropagation se piili§ mala sit’ obvykle zastavi v n¢jakém mélkém lokalnim minimu a je potfeba topologii
doplnit o dalsi vnitini neurony, aby adaptace méla vétsi stupen volnosti. Na druhou stranu bohata architektura
sice pii uceni mnohdy umozni nalézt globalni minimum chybové funkce, i kdyz s vétSim poctem vah roste
vypocetni naro¢nost adaptace. Avsak nalezena konfigurace sité obvykle pfili§ zobeciiuyje tréninkové vzory véetné
jejich nepfesnosti a chyb a pro nenaucené vzory dava chybné vysledky, tj. Spatné generalizuje. Tomuto
pfesnému zapamatovani tréninkové mnoziny bez zobecnéni zakonitosti v ni obsazenych se fika preuceni
(overfitting). Na obrazku 26 jsou graficky znazornény dvé funkce sité spolu s tréninkovymi vzory (body), ze
kterych byly nauéeny. Silna ¢ara predstavuje preucenou sit’, jejiz funkce se prizptisobila nepfesnym tréninkovym
vzorim, zatimco tenka ¢ara predstavuje funkci sité, ktera ,,spravné* generalizovala zakonitosti v tréninkové
mnoziné. Zda se tedy, Ze existuje optimalni topologie, ktera je na jednu stranu dostatecné bohata, aby byla
schopna fesit dany problém, a na druhou stranu ne moc velka, aby spravné zobecnila potiebné vztahy mezi
vstupy a vystupy.

X

Obrazek 26: Graf funkce pieucené sité (tucéné) se
wSprdvnou®“ generalizaci.

Existuji teoretické vysledky ohledné horniho odhadu poctu vnitinich neuront postacujicich pro realizaci
libovolné funkce z urcité t¥idy, avSak pro praktické potieby jsou piili§ nadhodnocené, a tedy nepouzitelné. V
praxi se obvykle topologie voli heuristicky, napf. v prvni vnitini vrstvé o néco vice neurontl, nez je vstupti a v
druhé vrstvé aritmeticky primét mezi poctem vystupli a neuronti v prvni vnitini vrstvé. Po adaptaci se v piipadé
velké chyby sité ptipadné pfida, respektive pii chudé generalizaci odebere nékolik neuront a adaptivni rezim se



cely opakuje pro novou architekturu. Pro test kvality generalizace neuronové sité€ se pocita chyba sit¢ vzhledem k
tzv. testovaci mnoziné, coz je ¢ast tréninkové mnoziny, ktera se zamérné nevyuzila k adaptaci.

Ukoly:

1. Reste logickou funkci ,, XOR * standardnim adaptacnim algoritmem zpétného $iveni chyby i algoritmem
backpropagation s adaptivni strmosti sigmoidii. Oba vysledky Feseni porovnejte.

2. Reste vybranou logickou funkci standardnim adaptacnim algoritmem zpétného Sirenti chyby pri stanoveni
riizného poctu neuronii ve vnitrni vrstve. Ziskané vysledky reseni srovnejte.



SAMOORGANIZACE.

V této kapitole se budeme vénovat modelim neuronovych siti, které vyuzivaji
soutézni strategie uceni (competitive learning). Spoleénym principem téchto
modeld je, Ze vystupni neurony sité spolu soutézi o to, ktery z nich bude aktivni.
Na rozdil od jinych ucicich principt (naptf. Hebbovo uceni) je tedy v urCitém case
aktivni vzdy jen jeden neuron.

Klic¢ova slova této kapitoly:
adaptace bez ucitele, samoorganizace, soutézini strategie uceni
(competitive learning), laterdlni inhibice, sousedstvi, proces
shlukovani, kvantovani vektorii ucenim (LVQ).

Kohonenovy samoorganiza¢ni mapy

architekturou vychazejici ze strategie soutézniho uceni (tj. uceni bez ucitele). Zékladnim principem uéiciho
procesu je vytvofeni mnoziny reprezentanti majici stejné pravdépodobnosti vybéru. Pfesnéji, hledame takové
reprezentanty, pro které plati: vybereme-li nahodny vstupni vektor z rozdéleni pravdépodobnosti odpovidajici
rozdéleni tréninkové mnoziny, bude mit kazdy takovy reprezentant pfifazenu pravdépodobnost, ktera je mu
nejblize. Algoritmus tedy nema informace o pozadovanych aktivitich vystupnich neurond v prubéhu adaptace,
ale adaptace vah odrazi statistické vlastnosti trénovaci mnoziny. Jsou-li si tedy dva libovolné vzory blizké ve
vstupnim prostoru zptsobuji v siti odezvu na neuronech, které jsou si fyzicky blizké ve vystupnim prostoru.
Hlavni ideou téchto neuronovych siti je nalézt prostorovou reprezentaci slozitych datovych struktur.
Mnohodimenzionalni data se timto zpisobem zobrazuji v daleko jednodussim prostoru. Uvedena vlastnost je
typicka i pro skute¢ny mozek, kde napiiklad jeden konec sluchové ¢asti mozkové kury reaguje na nizké
frekvence, zatimco opacny konec reaguje na frekvence vysoké.

Organizacni dynamika sité:

Jedna se o dvouvrstvou sit’ s aplnym propojenim neuronti mezi vrstvami. Vystupni neurony jsou navic
usporadany do né&jaké topologické struktury, nejéastéji to byva dvojrozmérna mtizka nebo jednorozmérna rada
jednotek. Tato topologicka struktura uréuje, které neurony spolu v siti sousedi (pro adaptaéni proces je to
nezbytné). Pro adaptacni proces je rovnéz dulezité zavést pojem okoli J vystupniho neuronu (j*) o polomeru
(velikosti) R, coz je mnozina v§ech neuronti (j € J), jejichZ vzdalenost v siti je od daného neuronu (j*) mensi
nebo rovna R:

J={j,d{j*) <R}.

To, jak métime vzdalenost d(j,j*), je zavislé na topologické struktufe vystupnich neurond. Napt. pro linearni
oblast obsahujici m neurontl ve vystupni vrstve plati pro vSechny j e J:

max(1l,J- R) < j<min (J+R, m).



Obecna architektura Kohonenovy samoorganiza¢ni mapy obsahujici m neurond ve vystupni vrstvé (tj. Yy,..., ¥y,)
a n neurond ve vstupni vrstvé (tj. X,..., X)) je zobrazena na obrazku 27.

Obrazek 27: Kohonenova samoorganizacni mapa.

Sousedstvi neuronu ozna¢ené¢ho # jepro R =2 {}, R=1 (), R=0][] v jednorozmérné vystupni oblasti
zobrazeno na obrazku 28 (m = 10 je pocet neurontl ve vystupni vrstve)

Obrazek 28: Sousedstvi definovand v linedrni vystupni
oblasti pro riizné hodnoty parametru R.

Sousedstvi neuronu oznacené¢ho # je pro R =2, 1, 0 ve dvourozmérné pravouhlé vystupni oblasti zobrazeno na
obrazku 29.
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Obrazek 29: Sousedstvi v pravouhlé dvojrozmérné oblasti.

Sousedstvi neuronu oznaceného # je pro R =2, 1, 0 ve dvourozmérné hexagonalni vystupni oblasti zobrazeno
na obrazku 30.



Obrazek 30: Sousedstvi v hexagondlni dvojrozmérné
oblasti.

Princip adaptivni dynamiky je jednoduchy: Prochdzime celou tréninkovou mnozinu a po ptedlozeni
jednoho tréninkového vzoru prob&hne mezi neurony sit€¢ kompetice. Jeji vitéz pak spolu s neurony, které jsou v
jeho okoli, zméni své vahové hodnoty. Redlny parametr uceni 0 < a < 1 ur€uje miru zmény vah. Na pocatku
uceni je obvykle blizky jedné a postupné se zmensuje az na nulovou hodnotu, coz zabezpecuje ukonceni procesu
adaptace. Rovnéz i velikost okoli R neni konstantni: na zac¢atku adaptace je okoli obvykle velké (napft. polovina
velikosti sit¢) a na konci u¢eni potom zahrnuje jen jeden samotny vitézny neuron (tj. R = 0).

Popis algoritmu

Krok 0. Inicializace vSech vahovych hodnot w;;:
Inicializace poloméru sousedstvi; tj okoli (R).

Inicializace parametru uceni (o).

Krok 1. Pokud neni splnéna podminka ukonceni, provadét kroky (2 az 8).
Krok 2. Pro kazdy vstupni vektor x = (x;,...,x,) opakovat kroky 3 az 5.
Krok 3. Pro kazdé j (j = 1,..., m) vypocitat:
2
D(])z Z(WU —x[) .
1
Krok 4. Najit index J takovy, Zze D(J) je minimum.
Krok 5. Aktualizace vahovych hodnot vSech neuroni (j€J)

tvoricich topologické sousedstvi charakterizované indexem

J, tj. pro vSechna i (i = 1,..., n) plati:

w, _/(new) = wij(old) + a[xi - wij(old)].

Krok 6. Aktualizace parametru uceni.
Krok 7. ZmenSeni poloméru R topologického sousedstvi.
Krok 8. Test podminky ukonceni.

Geometricky vyznam popsaného algoritmu je takovy, Ze vitézny neuron i vSichni jeho sousedé v siti,
ktefi by od n&j neméli byt piili§ vzdaleni ani ve vstupnim prostoru, posunou sviij vahovy vektor o urcitou



pomérnou vzdalenost smérem k aktudlnimu vstupu. Motivaci tohoto pfistupu je snaha, aby vitézny neuron, ktery
nejlépe reprezentuje predlozeny vstup (je mu nejblize), jesté vice zlepsil svou relativni pozici viéi nému.

Problémem vzniklym pfi adaptaci mize byt nevhodna nahodna inicializace vah, ktera vede k blizkym
pocatecnim neuroniim ve vystupni vrstvé a tudiz pouze jeden z nich vyhrava kompetici zatimco ostatni zistavaji
nevyuzity. Jedna z moznosti jak je mozné tuto situaci vyresit, je princip zalozeny na "svédomi" kazdého z
neurond tak, ze v pfipad¢ prilis§ Castych vitézstvi jednoho z nich, je tento neuron z procesu soutéze na chvili
vyjmut, aby dostali Sanci i ostatni neurony vystupni vrstvy.

V aktivnim reZimu se pak sousedstvi neuront neprojevuje: pfedlozime-li siti vstupni vektor, soutézi
vystupni neurony o to, kdo je mu nejblize, a tento neuron se pak excituje na hodnotu rovnu jedné, zatimco
vystupy ostatnich neuront jsou rovny nule. Kazdy neuron tak reprezentuje néjaky objekt, ¢i tfidu objektl ze
vstupniho prostoru: tj. pouze jeden neuron horni vrstvy, jehoz potencial (Zw.x) je maximalni odpovida
vstupnimu vektoru x. Tento neuron je navic schopen rozpoznat celou tiidu takovych, podobnych si vektort

Princip ,,vitéz bere vSe* se realizuje tzv. laterdalni inhibici; vSechny vystupni neurony jsou navzajem
propojeny lateralnimi vazbami, které mezi nimi pienaseji inhibicni signaly. Kazdy vystupni neuron se pak snazi
v kompetici zeslabit ostatni neurony silou umérnou jeho potencialu, ktery je tim vétsi, ¢im je neuron blize
vstupu. Vysledkem tedy je, Ze vystupni neuron s nejvetsim potencidlem utlumi ostatni vystupni neurony a sam
zustane aktivnim.
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(02-1)" +(0.6-1)" +(05-0)" +(09-0)" = 186;
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(08—1)" +(04-1)" +(0.7-0)" +(03-0)" =098

Wi, (new) =w,, (old) + 0.6[xi -w,, (old)]
= 04w,,(old ) + 0.6x, .



Aktualizace druhého sloupce vahové matice

02 092
0.6 0.76
05 028
09 012
Krok 2. Pro druhy vektor (0, 0, 0, I) opakovat kroky 3-5.
Krok 3. D(1)=(02-0)" +(0.6-0)" +(0.5-0)" +(0.9-1)" = 0.66;

D(2)=(092-0)" +(0.76 - 0)" + (028 0)" +(0.12—1)" = 2.2768.

Krok 4. Vstupni vektor je blize uzlu 1, tak J = 1.

Krok 5. Aktualizace prvniho sloupce vdhové matice
0.08 0.92
024 0.76
020 0.28
096 0.12

Krok 2. Pro tfeti vektor (/, 0, 0, 0) opakovat kroky 3-5.
Krok 3. D(1)=(0.08-1)" +(024-0)" +(02-0)" +(096-0)" = 1.8656;

D(2)=(092-1)" +(0.76 - 0)" + (028 - 0)" +(0.12—0)" = 0.6768.

Krok 4. Vstupni vektor je blize uzlu 2, tak J = 2.

Krok 5. Aktualizace druhého sloupce vahové matice
0.08 0.968
024 0304
020 0112
096 0.048

Krok 2. Pro Ctvrty vektor (0, 0, 1, I) opakovat kroky 3-5.
Krok 3. D(1)=(0.08-0)" +(024-0)" +(02—1)" +(0.96—1)" = 0.7056;

D(2)=(0968-0)" +(0304-0)" +(0112-1)" +(0.048 - 1) = 2.724.

Krok 4. Vstupni vektor je blize uzlu 1, tak J = 1.

Krok 5. Aktualizace prvniho sloupce vdhové matice

0.032  0.968
0.096 0304
0.680 0.112
0.984 0.048

Krok 6. ZmenSeni parametru uceni:

a=0.5(0.6)=0.3.

Aktualizace vahovych hodnot vit€zného neuronu j (j = I, 2) ve druhém cyklu bude provadéna podle

vztahu:



w,.j(new) = wij(old) +0.3 [x,. - wij(old)]
=0.7w, ,(old) + 0.3x, .
Vahova matice ma po druhém tréninkovém cyklu tvar:

0.016 0.980
0.047 0360
0.630 0.055
0.999 0.024

Parametr u¢eni zmensil svou hodnotu béhem 100 iteraci (cykli) z 0.6 na 0.01 a vdhova matice

nabyvala béhem adaptaci nasledujicich hodnot:

02 08
Iterace 0O: Vahova matice: (())g 847‘ )
09 03

0032 0.970
Iterace 1: Vahova matice: 8238 (())?(1)8

10980 0.048

[ 0.0053  0.9900
s | 838
| 1.0000  0.0086
[ 15e—7  1.0000

| 10000 23e-7
[1.9¢-19 1.0000 |
Iterace 50: Vahova matice: 5'70e.5_3(1)(5) 66064—7(1)(5)
| 10000 28e-15
[6.7¢—17 1.0000 |
2.0e—16 0.4900
05100 23e-16
1.0000  1.0e—16 |

Iterace 100: Vahova matice:

Tato matice konverguje k matici:

—oo9
oSULho o
SO —
oo wno

Jeji prvni sloupec nabyva hodnot, které odpovidaji primérnym hodnotam slozek obou vektort
pfifazenym prvnimu neuronu vystupni vrstvy (tj. vektoru 2: (0, 0, 0, 1) a vektoru 4: (0, 0, 1, 1)).
Jeji druhy sloupec nabyva hodnot, které odpovidaji primérnym hodnotam slozek obou vektort

pfifazenym druhému neuronu vystupni vrstvy (tj. vektoru 1: (1, 1, 0, 0) a vektoru 3: (1, 0, 0, ,0)).



Proces shlukovdni jesté jednou vysvétlime prostiednictvim funkce hustoty pravdépodobnosti. Tato
funkce reprezentuje statisticky nastroj popisujici rozlozeni dat v prostoru. Pro dany bod prostoru Ize tedy
stanovit pravdépodobnost, Ze vektor bude v daném bodu nalezen. Je-li dan vstupni prostor a funkce hustoty
pravdépodobnosti, pak je mozné dosahnout takové organizace mapy, ktera se této funkci ptiblizuje (za
predpokladu, Ze je k dispozici reprezentativni vzorek dat). Jinymi slovy feceno, pokud jsou vzory ve vstupnim
prostoru rozloZeny podle néjaké distribucni funkce, budou vahové vektory rozlozeny analogicky.

Pokusme se vySe uvedené demonstrovat na piikladu, kdy vstupni data jsou rovnomérné rozlozena v
dvojdimenzionalnim prostoru, konkrétné ve ¢tvercové oblasti. Vahové vektory budou tedy také
dvojdimenzionalni a budou zobrazovany formou bodu v prostoru vah. Dale budou v témze prostoru
vykreslovany pfimky spojujici body (vahy) sousedicich neuronti. Toto zobrazeni pak vyjadiuje prostorové
vztahy mezi neurony v prostoru vah. Vyvoj prostorového usporadani vahovych vektori 1ze demonstrovat na
nasledujicich diagramech.

t=0 =25
=500 t=10 000

Obrazek 31: Proces adaptace mapy.

Z obrazku 31 je patrné, Ze neurony byly optimalné rozlozeny tak, aby pokryly vstupni datovy prostor.

DP verze Kohonenova algoritmu

(DP angl. Dot Product); V zékladni verzi Kohonenova algoritmu (n¢kdy ozna¢ované ED angl.
Euclidean Distance) hleddme neuron ve vystupni vrstveé, jehoz vahovy vektor je nejblizsi aktualnimu vstupu ve
smyslu Euklidovské vzdalenosti. Vitézny neuron vSak mizeme hledat i na zakladé¢ skalarniho soucinu vektort
vah jednotlivych neuronti a vstupniho vektoru. Vitézem soutéze se v dlisledku lateralni inhibice stava ten neuron,
jehoz vstupni potencial je nejvetsi a tedy predlozeny vstup spada do kategorie vstupnich vektorti
reprezentovanych vitéznym neuronem. Pokud se pokusime vyjadtit tuto situaci prostfednictvim vektorového
poctu, pak jednotlivé potencialy neuront vyjadiuji skalarni souciny vektort vah jednotlivych neuront



(w;, j=1,..., m; m je pocet neuronti ve vystupni vrstvé) a vstupniho vektoru (x) a tudiz tyto souciny miizeme
chapat jako projekce vektori vah na vstupni vektor:

wix=|w |-l cose

Cim mensi je sevieny thel mezi obéma vektory (o), tim delsi je i projekce vahy na vstupni vektor

(viz. obrazek 32). Adaptacni pravidlo je zalozeno na ¢astecné rotaci vahového vektoru vitézného neuronu a jeho
topologickych sousedl smérem ke vstupnimu vektoru x. Jedna se v podstaté o u¢eni Hebbova typu s naslednym
normovanim vektord vah. Normovani vah je nutné proto, aby se zamezilo jejich nekontrolovatelnému rustu
béhem procesu adaptace. Soucasné s tim dosdhneme i efektu nalezeni vitéze kompetice na zakladé jediného
parametru, kterym je tthel mezi vahovym vektorem a aktualnim vstupnim vektorem.

kde

| =ll=1.

Wi

Obrazek 32: Skaldrni souc¢iny vektorit vah a vstupu

Maximalni potencial neuronu rovny 1 je ziejmé dosazitelny v piipad€ Ze w; =x. Zda-li tento j. neuron bude
zastupovat i ostatni vstupni vektory zavisi na tom, jak jsou tyto vektory podobné vektoru x. Z obrazku je patrné,
ze vektory blizké pivodnimu vstupu téméf zachovavaji i normalitu novych vah. V pfipadé, ze novy vektor je
ptili§ vzdalen ptivodnimu tak dochazi k poruseni této podminky. Tento jev by ale mél vést ke stavu, Ze tento
vstup bude excitovat jiny neuron vystupni vrstvy, kolem kterého by se méla vytvorit dalsi téida, ¢i populace
vstupnich vektort. Postupné se tak vytvori shluky vstupnich neuronti odpovidajicich svému neuronu vystupni
vrstvy. Velmi podstatny je i fakt, Ze k vytvoreni téchto shlukt doslo (jak jiz bylo dfive uvedeno) prostiednictvim
adaptace bez ucitele: sit’ je tak schopna samoorganizace.

Shrnuti:

Obe¢ popsané verze Kohonenova adaptacniho algoritmu spolu navzajem souvisi: tj. hledani maX(Wij)

za ptedpokladu, Ze v prvnim pfipad€ jsou vahové vektory w; normované (lezi

odpovida hledani min”x ~- W,

na povrchu hyperkoule). Je to patrné z rovnosti
2 2
— 2 T
Hx— ij = x| —2wjx+ijH .

2
konstantni diky normovani, tak neuron, jehoz vahovy

Pokud je aktualni vstup nezavisly na j a pokud je |[W

. ol {evwr . v v . v , " T . . vvr
vektor je nejbliz§i vstupu X, je soucasné neuronem, jehoz skalarni soucin W i X Je nejvetsi.



Kvantovani vektoru ué¢enim

(LVG angl. Learning Vector Quantization); Prozatim jsme vyuzivali neuronovou sit’ Kohonenovy mapy
pro uceni bez ulitele. Nyni se budeme zabyvat tim, jak lze tuto sit’ pouZzit pro feseni problému klasifikace dat do
nékolika kategorii. Ukazeme si zpisob, kterym oznadime vystupni neurony sité kategoriemi a uvedeme
algoritmy, které se pouzivaji pro douceni sité, jeZ chceme pouzit k témto Gcelim. Kvantovani vektort u¢enim
vychazi z uvedenych principti Kohonenova uceni s jedinym rozdilem, ze misto jiz vySe zminéné samoorganizace
chceme zajistit aby pro kazdou kategorii si podobnych vektorl existoval ji odpovidajici a nami definovany
neuron ve vystupni vrstve sité. Nejprve tedy musime urcit kolik takovych kategorii ¢i tfid budeme pozadovat.
Kazdé této tride pak pfifadime jeden neuron vystupni vrstvy. Nasleduje proces postupného predkladani vektort
vstupniho prostoru a adaptace sité, tentokrate s ucitelem, ktery rozhoduje o spravnosti odezvy. Vlastni odezva je
realizovana stejnym zpisobem jako v pfipadé Kohonenovych map, tj. postavend na zakladé kompetice. Klicovy
rozdil spociva ve zpisobu tpravy vah neuronové sité.

Obecna architektura LVQ sité je totozna s architekturou Kohonenovy mapy zobrazené na obrazku 27
(bez topologické struktury neurond ve vystupni vrstve). Navic vSak ma, jak uz bylo uvedeno, kazdy vystupni
neuron pfifazenou znamou tfidu vstupt, které reprezentuje.

Cilem adaptacniho algoritmu LVQ sité je nalezeni takového neuronu ve vystupni vrstveé
(charakterizovaného vahovymi hodnotami w,), ktery je nejblizsi pro zadany vstupni vektor (x). Algoritmus
kon¢i, pokud x 1 w, patii do téze tridy klasifikace. Pokud x i w. nalezi do riznych tfidy klasifikace, hodnoty
vahového vektoru w, adaptujeme tak dlouho, aby byl tento nedostatek odstranén.

Dale budeme pouZivat nasledujici oznaceni:

X Vstupni tréninkovy vektor: X = (x, ..., X ..., X,).
T Korektni tfida pfifazena tréninkovému vektoru.
w; Vektor vah pro j. neuron ve vystupni vrstveé: w;— (wy;, w; W)
J pro. ystup eI W, Lip W2j wees Wyj) .
G Ttida reprezentujici j. neuron ve vystupni vrstve.
HX - W, H Euklidovska vzdalenost mezi vstupnim vektorem x a vahovym vektorem. j. neuronu ve

vystupni vrstve Wi

Popis algoritmu

Krok 0. Pritazeni tfid vstupnim tréninkovym vektorum.
Inicializace referencnich vektort (viz ptiklady).

Inicializace parametru uceni ().

Krok 1. Pokud neni splnéna podminka ukonceni, provadéet kroky (2 az 6).
Krok 2. Pro kazdy vstupni vektor x = (x,,...,x,) opakovat kroky 3 az 4.
Krok 3. Nalezeni takového J, ze HX -W, H je minimum.
Krok 4. Aktualizace vahovych hodnot w;:

pokud 7 = C, pak
w,(new) =w, (old) + a[x -w, (old)]
pokud 7#C,, pak

w,(new)=w,(old) - a[x -w, (old)]

Krok 6. Aktualizace parametru uéeni (zmenseni jeho hodnoty).



Krok 7. Test podminky ukonceni.

V piipadé, Ze se jedna o sprdvnou odezvu, adaptace probiha podle znamého vztahu:
w,(new) = w,(old) + a[x - wiJ(old)].

Timto dochazi k priblizeni vah neuronu smérem ke vstupnimu vektoru.

V piipadé¢ chybné odezvy bude naSim cilem vahy chybného vitéze spise oddalit od vstupu, coz vede k
nasledujicimu ptedpisu pro adaptaci jeho vah

w,(new)=w, (old) - a[x - wij(old)].

Cela situace je znazornéna na nasledujicim obrazku 33.

Vstupni vektor

Posun vah pro spravnou
odezvu

Posun vah pro chybnou

Vahovy odezvu

vektor vitéze

Obrazek 33: Adaptace vah pro neuronovou sit LVQ.

Tento piistup vsak lze jesté dale zdokonalit. Pfedpokladejme, ze pro ptredlozeny vstup se stal vitézem
opé€t j-ty neuron namisto k-tého. Az doposud jsme uvazovali pouze o adaptaci vah u tohoto vitéze. V ptipadé
chybné odezvy by tedy doslo k jeho odsunuti od vstupu, zatimco vahy pozadovaného k-tého neuronu zistaly
nezménény. Pro¢ tedy v ramci této adaptace neadaptovat vahy pozadovaného vitéze tak, aby se pfiblizil
vstupnimu vektoru? Znamena to, Ze budeme pro vSechny vstupni vektory adaptovat vahy pozadovanych neuronti
nezavisle na tom, zda jsou ¢i nejsou vitézi soutéze. V ptipade, zZe vit€zem se stal nezadouci neuron, bude
nasledovat jeho odsun od vstupu.

Ukoly:

Mejme pét vektoru: (1,1,0,0), (0,0,0,1), (0,0,1,1), (1,0,0,0), (0,1,1,0). Maximalni pocet shlukii je: m=2.
Reste priklad a) algoritmem adaptace Kohonenovy samoorganizacni mapy (vhodné si definujte vztah
proparametr uceni); b) adaptacnim algoritmem LVQ (vhodné si rozdeélte vstupni vektory do dvou kategorii).
Obé reSent porovnejte.

Korespondencni ukoly:

Vytvorte pocitacovy program pro realizaci adaptacniho algoritmu pracujiciho na principu soutézni strategie
ucent.



COUNTERPROPAGATION.

Counterpropagation je model umélé neuronové sité (navrzené Hecht-Nielsenem v r.
1986), ktera se snazi vyuzit samoorganizacéni sit v kombinaci s dal§im pfidavnym
mechanismem k feSeni problémi uceni s ucitelem. Sit’, kterou dale popiSeme je
pouze jednou z moznych variant této neuronové sité. Sit counterpropagation
pracuje jako vyhledavaci tabulka (lookup table), kterd k danému vstupu najde
nejbliz§iho reprezentanta a odpovi vystupni hodnotou, kterd je s timto
reprezentantem spojena.

Klic¢ova slova této kapitoly:
Grossbergovy jednotky , instar’

‘

, Grossbergovo adaptacni pravidlo.

Dopredna sit’ typu counterpropagation

Dopredna sit’ typu counterpropagation (angl. Forward-Only Counterpropagation ) je tvofena tfemi
vrstvami neurontl (viz obrazek 34 ). Vstupni vrstvu tvofi n vstupnich neuront distribuujicich do dalsi vrstvy
vstupni signaly x;,,..., x,. Druha vrstva je tvofena p samoorganiza¢nimi jednotkami (viz Kohonenovy
samoorganizacni mapy), které jsou vzajemn¢ propojeny, coZ neni z obrazku patrné. Treti vrstvu tvoii m
Grossbergovych jednotek instar. Jejich vystupy pak tvofi vystupy celé neuronove site.

Wi —>
Wik
7
N
Wpm — 3
VSTUPNI KOHONENOVA VYSTUPNI
VRSTVA VRSTVA VRSTVA

Obrazek 34 : Dopiednd sit typu counterpropagation

Adaptivni dynamika této sité probiha ve dvou fazich. Nejprve se Kohonenovym uéenim bez ucitele
nastavi vahy v; (i = 1,..., n; j = I,..., p) samoorganizacnich jednotek mezi vstupni a vnitini vrstvou. Po skonceni
prvni faze uceni, ve které se pouziva jen vstupni ¢asti tréninkovych vzort, se vahy v fixuji a dochazi ke druhé
fazi uceni, kterd nastavi vahy wy (j = 1,..., p; k= 1,..., m) mezi vnitini a vystupni vrstvou. V této ¢asti
adaptacniho algoritmu je vypocten aktualni vystup sité pro vSechny neurony vystupni vrstvy a porovnan



s pozadovanym vystupem sité. Pokud neni splnéna podminka ukonceni, jsou vahové hodnoty w upravovany
tzv. Grossbergovym adaptacnim pravidlem (viz dale).

Pravidlo pro adaptaci vahovych hodnot mezi vstupni a vnitini vrstvou

vl.J(new):vl.J +a(xl. —vl.J)

=(1— a)v,.J(old)+ ax;,

kde J je index vitézného neuronu v kompetici po predlozeni vstupu x,;
X; je inicializa¢ni hodnota . neuronu ve vstupni vrstve;
o je parametr uceni; snizuje svou velikost v ¢ase (0<a<1);

doporucena inicializa¢ni hodnota je 0.6.

Pravidlo pro adaptaci vahovych hodnot mezi vnitini a vystupni vrstvou

wjk(new)zwjk +a(yk —wjk)

:(1— a)wjk(old)+ ay, ,

kde Wk je skute¢na aktivace k. neuronu ve vystupni vrstve,;
a je parametr uceni; snizuje svou velikost v ¢ase (0.5 <a <0.8);
Vi je ocekavana aktivace k. neuronu ve vystupni vrstve.

Aktivace neurond vnitini vrstvy definujeme nasledovné:

. = 1 pokudj=J
/10  jinak.

Adaptacni pravidlo pro vahové hodnoty na spojenich mezi vnitini a vystupni vrstvou prepiSeme do tvaru delta
pravidla (Grossbergovo adaptacni pravidlo):

Popis algoritmu

wjk(new):wjk +azj(yk —wjk).

Krok 0. Inicializace vSech vahovych hodnot, parametrt u€eni, atd.
Krok 1. Pokud neni splnéna podminka ukonceni 1. fize adaptace, provadét kroky 2 az 7.
Krok 2. Pro kazdy vstupni vektor x = (x;,...,x,) opakovat kroky 3 az 5.

Krok 3. Aktivovat vstupni vrstvu vektorem x.
Krok 4. Najit vitéze kompetice ve vnitini vrstve, oznadit jeho index
J
Krok 5. Aktualizace vahovych hodnot na spojenich vedoucich k neuronu

Zy,tj. pro vSechnai (i = I,..., n) plati:
v, J(new) = (1 - a)vi J(old) +ax,

Krok 6. Snizit hodnotu parametru uéeni a.



Krok 7. Test podminky ukonceni 1. faze.

Krok 8. Pokud neni splnéna podminka ukonceni 2. fdze adaptace, provadét kroky 9 - 15.
(Poznamka: oo ma béhem celé 2. faze adaptace velmi malou konstantni hodnotu.)
Krok 9. Pro kazdy tréninkovy vstupni par vektor x:p; (x = (xy,-...x), ¥ = Vb ¥Vm) ),
opakovat kroky 10 az 13.
Krok 10. Aktivovat vstupni vrstvu vektorem x;

Aktivovat vystupni vrstvu vektorem y.

Krok 11. Najit vitéze kompetice ve vnitini vrstveé, oznacit jeho index
J.
Krok 12. Aktualizace vahovych hodnot na spojenich ze vstupni

vrstvy do neuronu Z; (o je velmi malg), tj. pro vSechna i
(i=1,..., n) plati:
vij(new) = (1 - a)v”(old) +ax,

Krok 13. Aktualizace vahovych hodnot na spojenich vedoucich z

neuronu Z; do vystupni vrstvy,

tj. pro vSechna k (k = 1,..., m) plati:
W, (new) = (1— a)WJk (old)+ ay, ,

Krok 14. Snizit hodnotu parametru uéeni a.

Krok 15. Test podminky ukonceni 2. faze.

Shriime nyni statistické vlastnosti naucené sité: Diky samoorganizacnimu uceni s vyuzitim lokalni
paméti aproximuji vektory v hustotu pravdépodobnosti vzori. Vime, ze neurony ve druhé vrstvé maji stejnou
pravdépodobnost vitézstvi v kompetici, za ptedpokladu, Ze vybirdme vstupy ndhodné s rozlozenim
odpovidajicim tréninkové mnoziné. Déle vahy vystupnich neurontl jsou adaptovany tak, aby aproximovaly
prumérnou vystupni hodnotu patfici tém vstuptim, které aktivovaly odpovidajici neurony ve druhé vrstve.

Aktivni faze counterpropagation

Krok 0. Inicializace vSech vahovych hodnot - viz adaptivni faze counterpropagation.
Krok 1. Aktivovat vstupni vrstvu vektorem x.

Krok 2. Najit vitéze kompetice ve vnitini vrstve, oznacit jeho index J.

Krok 3. Vypocitat aktivace neurontl vystupni vrstvy: Ve=Wg, (k= 1,..., m).

PouZivame-li sit’ typu counterpropagation k aproximovani n&jakého zobrazeni, f: R — R™, chova se
optimalné v tom smyslu, ze reprezentanti vstupd jsou zvoleni tak, aby méli stejnou pravdépodobnost vybéru a
vystupni hodnoty piedstavuji primér funkénich hodnot v okoli téchto reprezentantt.

Nespornou vyhodou neuronové sité typu counterpropagation je rychlost jeji adaptace, nevyhodou pak
je mensi piesnost odezvy ve srovnanim s metodou backpropagation.

Ukoly:

Srovnejte reseni logicke funkce ,, XOR “ standardnim adaptacnim algoritmem vicevrstvé neuronove sité
(backpropagation) a adaptacnim algoritmem modelu counterpropagation.



ASOCIATIVNI NEURONOVE SITE.

Na rozdil od klasickych pocitact, kdy klic¢em k vyhledani polozky v paméti je
adresa, u asociativni paméti probihd vybaveni ptfislusné informace na zakladé¢ jeji
c¢astecné znalosti (asociace). Napf. v databazovych aplikacich je znalost nékterych
polozek zdznamu postacujici k vyhledani celého zdznamu. V zdsadé budeme
rozliSovat dva typy asociativni paméti, a to pamét autoasociativni a pamét
heteroasociativni. U autoasociativni paméti ptjde o upfesnéni, ¢i zuplnéni vstupni
informace na zaklad¢ jiz nauc¢eného. Naproti tomu u heteroasociativni pameéti
dochdzi k vybaveni urc¢ité sdruzené informace na zédklad¢é vstupni asociace.

Klicova slova této kapitoly:
autoasociativni pamét, heteroasociativni pameét

Organizac¢ni i aktivni dynamika asocialitivni sité je téméf identicka jako u modelu Madaline. Jediny
rozdil spoc¢iva v tom, Ze linearni asociativni sit’ v aktivnim rezimu misto afinnich kombinaci pocita jen linearni
kombinace vstupd, tj. chybi formalni jednotkovy vstup rovnéz i odpovidajici biasy jsou nulové. V geometrické
interpretaci to znamena, ze ptislusné nadroviny odpovidajici vystupnim neurontim sité prochazi pocatkem.

Asociativni paméti neuronovych siti jsou sité, ve kterych jsou vahové hodnoty determinovany takovym
zpusobem, aby si sit¢ byly schopny zapamatovat mnozinu P asociovanych vzort. Kazdou asociaci tvoii par
vektori (s(p), t(p)), kdep =1, 2,..., P). Kazdy vektor s(p) obsahuje n komponent a kazdy vektor #(p)
obsahuje m komponent. Vahové hodnoty na ptislusnych spojich mohou byt nalezeny napt. Hebbovym
adaptac¢nim pravidlem pro asociované neuronové sit€. (viz dale). Slovné jej lze vyjadiit takto: zména synaptické
vahy spoje mezi dvéma neurony je umérna jejich souhlasné aktivité, tj. soucinu jejich stavi (opacna aktivita tuto
vazbu zeslabuje). Linearni asociativni sit’ ma schopnost reprodukce, tj. predlozime-li siti vstup (vstupni vektor x
), pak na néj odpovi poZzadovanym vystupem (vystupni vektor y). Vstupni vektor x muize byt bud’ vektorem
z tréninkové mnoziny, nebo jinym vektorem (tj. vektorem z tréninkové mnoziny obsahujici Sum).

Heteroasociativni pamét’ neuronové sité

Architektura heteroasociativni paméti neuronové sité je zobrazena na obrazku 35. Jeji adaptace probiha podle
Hebbova adaptacniho pravidla pro asociované neuronové site.

vstupni neurony vystupni neurony

Obrazek 35: Architektura heteroasociativni paméti
neuronové sité.



Hebbovo adaptacni pravidlo pro asociované neuronové sité

je nejbéznéjsi metodou pro stanoveni vahovych hodnot na spojich mezi jednotlivymi neurony. Pracuje
s vektory, které jsou zapsany v binarni i bipolarni reprezentaci. Jeho algoritmus probiha v nasledujicich krocich.

Algoritmus neni vhodny pro dopfedné neuronové sité, které adaptujeme metodou backpropagation.

Popis algoritmu

Krok 0. Inicializace vSech vahovych hodnot w; =0, (i = 1,...n;j = 1,...m).
Krok 1. Pro kazdy testovaci vzor, tj. tréninkovy par s:t, opakovat kroky (2 az 4).
Krok 2. Inicializovat vrstvu X vnéj$im vstupnim vektorem.

x;=s;,(=1,..,n).

Krok 3. Inicializovat vrstvu Y vnéjSim vstupnim vektorem..
yi=t,(G=1..m).
Krok 4. Nastavit vahové hodnoty (i = /,...,n; j = 1,...m);

wij(new) = wl.j(old) +X,5,;.
Cely algoritmus prepiSeme jeste nazornéj$im zptisobem:
Nejprve inicializujeme vSechny vahové hodnoty ¢islem 0, tj. w; =0, (i = I,...,n;j = 1,..m).

Vstupni vektor
S = (81, coey Siy ees S)

tvoii sloupcovou matici S typu nx 1, tj S=s".

Asociovany vystupni vektor
1= (t, o by ooy t)

tvori fadkovou matici T typu [/ xm, tj T=t..

Soucin obou matic S a T

S, st Sit; 8L,
ST=|s; ||t t t, =54 s;t; s.t,
1S, | Sty Syl e S,

pak tvoii vahovou matici, ve které jsou ulozeny informace o asociovaném paru vektord s:z.

Jelikoz budeme déle pracovat s P vzory, musi byt i ve vahové matici uloZené informace o P asociovanych
vektorech s(p):t(p), p =1, 2,..., P, kde

$(p) = (1), -, $ip), -, Su(P))
1p) = (), - 4(p): -, tulD)).

Tyto vektory tvoii vahovou matici W= {w;,}, tj.



ktera ma ve vektorové reprezentaci tvar:

Nyni mizeme piistoupit k popisu algoritmu heteroasociativni paméti, ktery nalezne pro kazdy vstupni vektor x
vhodny vystupni vektor y. Vstupni vektor x muze byt, jak jiz bylo uvedeno, bud’ jednim z nauc¢enych vzort,
nebo novym vzorem (napf. tréninkovym vzorem obsahujicim Sum).

Popis algoritmu heteroasociativni paméti

Krok 0. Inicializace v8ech vdhovych hodnot wy, (i =1,...,n;j = I,...m) podle Hebbova pravidla

adaptace pro asociativni sité.

Krok 1. Pro vstupni vektor x = (x,, ..., x; ..., x,) opakovat kroky (2 az 4).
Krok 2. Inicializovat vrstvu X danym vstupnim vektorem.
Krok 3. Vypocitat potencial vystupnich neuronti

Krok 4a. Vypocitat aktivaci vystupnich neuront;

1 pokudy in; >0
y,=490 pokudy in, =0
—1 pokud y_in; <0,

pro bipolarni reprezentaci (préh 6 = 0).

Krok 4b. Vypoditat aktivaci vystupnich neurond;

1 pokudy in, >0

Yi =0 pokud y_in; <0,

pro binarni reprezentaci(prah € = 0).

Pozndmka:
Heteroasociativni pamét’ neni iteracni.

Autoasociativni neuronové sité

Doptedné autoasociativni neuronové sité jsou specialnim piipadem heteroasociativnich siti popsanych
v predchézejici kapitole. Pro autoasociativni sité jsou oba tréninkové vektory (tj. vstupni vektor s a vystupni
vektor 7) identické. Kazdou asociaci proto tvoii par vektort s(p):s(p), kde p = 1, 2,..., P. Kazdy vektor s(p)
obsahuje n komponent. Vahové hodnoty na ptislusnych spojich jsou rovnéz nastaveny Hebbovym adaptacnim
pravidlem pro asociované neuronové sité (pii feseni uloh jsou dosahovany lepsi vysledky s vektory pracujici
s bipolarni reprezentaci nez s vektory pracujici v binarni reprezentaci).
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Priklad:

PopiSeme proces ulozeni jednoho vzoru reprezentovaného vektorem s =(1, 1, 1, -1) v autoasociativni
pameéti a pak jeho néasledné vybaveni.
Jak jiz bylo uvedeno, autoasociativni pamét’ je specialnim pfipadem heteroasociativni paméti (kde #(p) = s(p)).
Pti feSeni piikladu proto vyuZijeme algoritmus uvedenych v predchézejici kapitole.

Krok 0. Vektor s =(1, 1, 1, -1) je uloZen ve vahové matici
1 1 1 -1
1 1 1 -1
W= .
1 1 1 -1
-1 -1 -1 1
Krok 1. Pro vstupni vektor s =(1, 1, 1, -1).
Krok 2. X =(1,1,1,-1).
Krok 3. yin =(4,4,4,-4).
Krok 4a. y =1(4,4,4,-4) = (1,1, 1,-1).

Vidime, ze vektor y je totozny s vektorem s. Lze tedy fici, Ze na vstup byl dodan vektor z tréninkové mnoziny.

Specialnim pfipadem autoasociativni neuronové sité je iterativni autoasociativni sit. Z nasledujiciho
prikladu uvidime, Ze sit’ v ur¢itém piipadé nereaguje piimo na vstupni signal nau¢enym vystupem. Pokud
vstupni signal neni totozny s nau¢enym vzorem, ale li§i se od n&j pouze v tom smyslu, ze misto +1 nebo --1
obsahuje 0, potom lze vystupni hodnoty ze sité opét povazovat za jeji vstupni signal, atd. Pozadovany vystupni
signal pak dostaneme po urcitém poctu iteraci.

Priklad.

Mg¢jme v autoasociativni paméti ulozen jeden vzor reprezentovany vektorem s =(1, 1, 1, -1). Vahova

vahovou matici s nulami na hlavni diagonale, aniz by to mélo vliv na dalsi feSeni ulohy):

0o 1 1 -1
10 1 -1
W=l 1 0 o
1 -1 -1 0

Vstupni vektor s =(1, 0, 0, 0) je piipad vektoru, ve kterém jsou na rozdil od nau¢eného vzoru nahrazeny tii jeho
komponenty nulami. Itera¢ni proces pak s timto vektorem probiha nasledovné:

Vstupni vektor s =(1, 0, 0, 0):
(1,0,0,0)- W=(0,1,1,-1) > iterace
0, 1,1,-1)- w=(3,2,2,-2) - (1,1, 1,-1),

coz je ulozeny vzor. Pokud je tedy na vstupu vektor (1, 0, 0, 0), tak po dvou iteracich bude na vystupu vektor
(1, 1, 1,-1).

Ukoly:

Diikladneé si jeste jednou prostudujte Hebbovo adaptacni pravidlo pro asociované neuronové sité (véetné
obou resenych prikladi). V dalsi kapitole na néj budeme navazovat!



HOPFIELDOVA SIT.

Model Hopfieldovy sité vychazi z iteracni autoasociativni paméti. Proto dfive nez
se pustite do studia této kapitoly vam doporucuji, abyste se dikladné sezndmili
s obsahem kapitoly ,,Asociativni neuronové sité*.

V této kapitole se seznamite s modelem diskrétni i spojité Hopfieldovy site.
V zavéru je pak uveden algoritmus tfeSeni ,,problému obchodniho cestujiciho*
spojitou Hopfieldovou siti.

Klic¢ova slova této kapitoly:
diskrétni Hopfieldova sit, spojita Hopfieldova sit, proces relaxace,
energeticka funkce sité, probléem obchodniho cestujiciho (angl.
Travelling Salesman Problem - TSP).

Diskrétni Hopfieldova sit’

Diskrétni Hopfieldova sit’ se pouziva jako iteracni autoasociativni pamét. Autorem této neuronové sité
je John Hopfield, ktery se zabyval studiem neurontt podobnych perceptroniim. Model Hopfieldovy neuronové
sité je zaloZen na vyuziti energetické funkce svazané s neuronovou siti tak, jak je to bézné u fyzikalnich systémi.
Organizacni dynamika diskrétni Hopfieldovy sité specifikuje uplnou topologii cyklické neuronové sité s n
neurony, kde kazdy neuron v siti je spojen se vSemi ostatnimi neurony sité, tj. ma vSechny neurony za své
vstupy. Obecné plati, ze mize byt spojen i sdm se sebou. VSechny neurony v siti jsou tedy zaroven vstupni i
vystupni. Architektura Hopfieldovy sité je zndzornéna na obrazku 36. Kazdy spoj v siti mezi neuronem
i(i=1,..,n)aneuronem j (j =1, .., n) je ohodnocen celo¢iselnymi synaptickymi vahami w;; a wy;, které jsou
symetrické, tj. w; = wj;. V zdkladnim modelu plati, Ze Zddny neuron neni spojen sdm se sebou, tj. odpovidajici
vahy w;; =0 (j = 1, ..., n) jsou nulové.

Wh2

Win

Won
" /
Win

W

Obrazek 36: Model diskrétni Hopfieldovy sité.




Hlavni mys$lenka adaptace Hopfieldova modelu spo¢iva v tom, Ze jsou nejprve inicializovany v§echny
neurony sité bud’ binarnimi hodnotami {0, 1} nebo bipolarnimi hodnotami {-1,+1}. Vzhledem k tomu, Ze jsou
vSechny neurony navzajem propojeny, zaénou se ovlivitovat. To znamena, Ze jeden neuron se snaZzi ostatni
neurony excitovat na rozdil od jiného, ktery se snazi o opacné. Probiha cyklus postupnych zmén excitaci
neurond az do okamziku nalezeni kompromisu - sit’ relaxovala do stabilniho stavu. Jinymi slovy vystupy
predchoziho kroku se staly novymi vstupy soucasného kroku. Tento proces je vysvétlitelny nasledujicim
algoritmem: tréninkové vzory nejsou v Hopfieldové siti uloZzeny piimo, ale jsou reprezentovany pomoci vztahtl
mezi stavy neurontl.

Prvni popis adaptacniho algoritmu Hopfieldovy sité pochazi z roku 1982 a pouziva binarni hodnoty pro
excitace neurond.

Pozadovana funkce sité je specifikovana tréninkovou mnozinou P vzort s(p), p = 1, ..., P, znichz
kazdy je zadan vektorem »n binarnich stavi vstupnich resp. vystupnich neuront, které v pfipad€ autoasociativni
paméti splyvaji:

$(0) = (51(2)s 5, (P)s 5, (0):

potom je vahova matice W = {w;} déna nasledujicim vztahem:

w,; = ;[ZSi(p)— 1][2sj(p) - 1] pro i #j

Jiny popis adaptacniho algoritmu Hopfieldovy sit€ pochazi z roku 1984 a pracuje s bipolarnimi
hodnotami pro excitace neuronti.

Pozadovana funkce sité je rovnéz specifikovana tréninkovou mnozinou P vzord s(p), p =1, ..., P,
z nichz kazdy je zadan vektorem n bipolarnich stavli vstupnich resp. vystupnich neuronti, které v piipadé
autoasociativni paméti splyvaji:

$(0) = (51(2)s o5, (P)s 5, ().

potom je vahova matice W = {w;} déna nasledujicim vztahem:

WUIZS[(p)Sj(p) pro i #j

P
a
w,, =0.
Smysl této adaptace vah si oziejmime na nasledujicim obrazku:
|+ 1+ L 1 -
w..
1]
' +1 Q -1
i i i i
a) b) c) d)

Obrazek 37: Adaptace vah Hopfieldovy sité



V piipad€ varianty b) a d) je stav excitace obou neuront totozny. Dle vyse uvedeného to znamena, ze
nova hodnota vahy na spojeni mezi obéma neurony bude dana vztahem:

wij(new) = w,.j(old) +x,x, = wl.j(old) +1.

Znamena to "posileni" propojeni mezi t€émito neurony a v piipade relaxace sité pak oba neurony budou mit snahu
dosahnout stejného stavu. Cim vice bude vzoru s timto stavem obou neuront, tim vétsi bude snaha o dosazeni
totozného stavu obou téchto neuronti pfi relaxaci.

V piipadech a) a c) pak bude postup obraceny. Nova vaha propojeni bude mit nasledujici hodnotu:
wl.j(new) = wl.j(old) +Xx, X, = wl./.(old) -1

a vazba bude sméfovat k takovému stavu, aby pfi relaxaci sité byly stavy obou neuront rizné.

Popis algoritmu

Dale budeme pracovat s binarnim vzorem, protoze vyjadieni aktiva¢ni funkce v bipolarni reprezentaci
je mnohem jednodussi nez kdybychom postupovali opacné.
Krok 0. Inicializace vabh, tj. zapamatovani vzoru.
(PouZitim Hebbova adaptacniho pravidla pro asociované sité.)
Dokud sit’ nezrelaxovala do stabilniho stavu, opakovat kroky (1 az 7).
Krok 1. Pro kazdy vstupni vektor x, opakovat kroky (2 az 6).

Krok 2. Inicializace sit€ vnéj$im vstupnim vektorem x:

Y, =X, (i =1, ,n)
Krok 3. Pro kazdy neuron Y; opakovat kroky (4 az 6).
(Neurony jsou uspotadany nahodné)

Krok 4 Vypocitat vnitini potencial neuronu:

yoin =X+ 3w
j

Krok 5 Stanoveni vystupu neuronu lze chapat jako
aplikaci aktivacni funkce:
1 pokud y in, >0,
v, =4y, pokud y in, =6,
0 pokud y in, <8,.
Krok 6 Transport hodnoty y; ostatnim neurontim.
(Takto budeme aktualizovat hodnoty
aktivac¢niho vektoru.)

Krok 7. Test konvergence.

Prahova hodnota 6. je obvykle nulova. Aktualizace neurond probihaji sice v ndhodném poradi, ale musi byt
provadény stejnou prumérnou rychlosti.



v,
Priklad:

Pomoci diskrétniho Hopfieldova modelu urcit, jestli je vstupni vektor ,,nau¢enym* vzorem (tj. byl
soucasti trénovaci mnoziny) nebo ,,nenauc¢enym vzorem.
Krok 0. Vahova matice pro zapamatovani vektoru (1, 1, 1, 0) (ptepis vektoru do bipolarni reprezentace

(1, 1,1,-1)) ma tvar:

o 1 1 -1
1 0 1 -1
W=
1 1 0 -1
-1 -1 -1 0
Krok 1. Vstupni vektor je x = (0, 0, 1, 0). Pro tento vektor opakovat kroky (2 az 6).
Krok 2. y=(0,0,1,0).
Krok 3. Vybrat Y; a aktualizovat jeho aktivaci:
Krok 4 y_in, =x, +Zijjl =0+1
J
Krok 5 v in; >0 >y, =1
Krok 6 y=(1,0,1,0).
Krok 3. Vybrat Y, a aktualizovat jeho aktivaci:
Krok 4 y_in, =x, +Zijj4 =0+(-2).
J
Krok 5 v in; <0 —>y,=0.
Krok 6 v=(1,0 1, 0).
Krok 3. Vybrat Y; a aktualizovat jeho aktivaci:
Krok 4 y_iny =X, +Zijj3 =1+1
J
Krok 5 v in;>0 —>y; =1
Krok 6 y=(1,0,1,0).
Krok 3. Vybrat Y, a aktualizovat jeho aktivaci:
Krok 4 y_in, =Xx, +Z:ijj2 =0+2.
J
Krok 5 v in,>0 =y, =1
Krok 6 y=(,1,1,0).

Krok 7. Test konvergence.

Aktivace kazdého neuronu byla aktualizovana alespon jednou béhem celého vypoctu. Vstupni vektor konverguje
k ulozenému vzoru.

Funkce energie

K lepsimu pochopeni aktivni dynamiky Hopfieldovy sité byla Hopfieldem, v analogii s fyzikalnimi d&ji
definovana tzv. energeticka funkce E sité, ktera kazdému stavu sité pfifazuje jeho potencialni energii.
Energeticka funkce je tedy funkce, ktera je zdola ohrani¢ena a pro dany stav systému je nerostouci. V teorii
neuronovych siti se stavem systému rozumi mnozina aktivaci vSech neurontl. Pokud je jiz tato energeticka funkce



nalezena, bude sit’ konvergovat ke stabilni mnozin¢ aktivaci neuronti v daném casovém okamziku. Energeticka
funkce pro diskrétni Hopfieldovu sit’ je dana nasledovné:

E= _Oaszzyiijij _inyi + Zeiyi'

i#j

Z definice energetické funkce vyplyva, Ze stavy sité s nizkou energii maji nejvetsi stabilitu. Pokud se
aktivace sit€ zméni o Ay; , zména energie je pak dana nasledovneé:

AE =— Zij[j +x,— 0, |Ay,.
j

(Vztah zavisi na skutecnosti, ze v daném casovém okamziku miize svou aktivaci aktualizovat vzdy pouze jeden
neuron sité.)

Nyni uvazujme dva piipady, které mohou nastat pti zméné Ay; v aktivaci neuronu Y;.; Ay; je kladné,

pokud je i vyraz Z YW +x,— 0 ; | kladny a Ay; je zaporné, pokud je tentyZ vyraz zaporny. V obou
J

ptipadech je AE<O0, tj. energie nemuze rust. Protoze je energeticka funkce ohranic¢ena, sit' musi dosahnout

stabilniho stavu (tj. energie se v nasledujicich iteracich jiz neméni).

Hopfieldova sit’ ma ve srovnani s vicevrstvou siti adaptovanou uc¢icim algoritmem backpropagation
opacny charakter aktivni a adaptivni dynamiky. Zatimco adaptace Hopfieldovy sit¢ podle Hebbova zakona je
jednorazovou zalezitosti, jejiz trvani zavisi jen na poctu tréninkovych vzori, ucici algoritmus backpropagation
realizuje iterativni proces minimalizujici chybu sité gradientni metodou bez zaruky konvergence. Na druhou
stranu délka trvani aktivni faze vicevrstvé sité je dana pouze poctem vrstev, zatimco aktivni rezim Hopfieldovy
sité predstavuje iterativni proces minimalizujici energii sit€¢ diskrétni variantou gradientni metody s nejistou
konvergenci.

Cilem adaptace Hopfieldovy sité podle Hebbova zakona je nalezeni takové konfigurace, aby funkce sité
v aktivnim rezimu realizovala autoasociativni pamét’. To znamena: bude-li vstup sité blizky néjakému
tréninkovému vzoru, vystup sit¢ by mél potom odpovidat tomuto vzoru. Z hlediska energie by kazdy tréninkovy
vzor mél byt lokalnim minimem energetické funkce, tj. stabilnim stavem sité. V jeho blizkém okoli, v tzv.
oblasti atrakce, se nachazi vSechny vstupy blizké tomuto vzoru. Ty pfedstavuji pocatecni stavy sité, ze kterych
se pii minimalizaci energetické funkce v aktivnim rezimu sit’ dostane do piislusného minima, tj. stabilniho stavu
odpovidajiciho uvazovanému tréninkovému vzoru. Geometricky se tedy energetickd plocha rozpada na oblasti
atrakce lokalnich minim a pfislusna funkce Hopfieldovy sité pfitadi v aktivnim rezimu ke kazdému vstupu
nalezejicimu do oblasti atrakce n&jakého lokalniho minima pravé toto minimum.

Pfi u€eni Hopfieldovy sité podle Hebbova zakona pro asociativni sit¢ samovolné vznikaji na
energetické plose lokalni minima, tzv. nepravé vzory (fantomy), které neodpovidaji zadnym tréninkovym
vzorum. Vystup sité pro vstup dostatecné blizky takovému fantomu neodpovida zadnému vzoru, a tudiz nedava
zadny smysl. Existuji varianty adaptivni dynamiky Hopfieldovy sité, pfi nichz se takto vzniklé fantomy mohou
dodatecné oducit.

Kapacita Hopfieldovy paméti

Hopfield experimentalné nalezl, Ze pocet binarnich vzort, ktery mize byt zapamatovan a opétovné
vyvolan s pozadovanou pfesnosti, je dan priblizné

P =~0,15n,

kde n je pocet neurontl v siti.

Pro sité pracujici s bipolarnimi vzory byl odvozen obdobny vztah:

n

) 2log, n’



I kdyZ se v praxi ukazuje, Ze uvedené teoretické odhady jsou ponékud nadhodnocené, presto zakladni
model Hopfieldovy autoasociativni paméti ma diky své malé kapacité spise teoreticky vyznam. V literature
presto existuje mnoho modifikaci tohoto modelu, které se snazi uvedeny nedostatek odstranit.

Spojita Hopfieldova sit’

Spojita Hopfieldova sit’ je prikladem modelu, u kterého je vyvoj redlného stavu v aktivnim rezimu nejen
spojitou funkci vnitiniho potencialu, ale navic i spojitou funkci ¢asu. Aktivni dynamika je v takovych pfipadech
obvykle zadana diferencialni rovnici, jejiz feSeni nelze explicitné vyjadfit, proto tyto modely (pokud
nepracujeme s jejich diskrétni verzi) nejsou vhodné pro analogovou hardwarovou implementaci pomoci
elektrickych obvodu.

Protoze spojita Hopfieldova sit’ je modifikaci diskrétni Hopfieldovy sité, jsou také spojeni mezi
libovolnymi dvéma neurony obousmérné a rovnéz i vahové hodnoty na téchto spojenich jsou symetrické.

V tomto modelu budeme pouzivat nasledujici znaceni:

U i. neuron.
Wi Vahova hodnota pfifazena spojeni mezi U; a Uj; w; = wy;
U; Vnitini potencial neuronu U,
vi=g(u; Aktivace neuronu U,
S

Pokud budeme definovat funkci energie vztahem

n n

E= O,SZZWUViVj + anﬁl.vl. ,
i=1

i=1 j=1
potom bude sit’ konvergovat ke stabilni konfiguraci, tj. funkce energie dosahne svého minima, kdyz

LE<o
dt

Podle tohoto tvaru energetické funkce bude sit’ konvergovat, budou-li se aktivity vSech neuront ménit (v ¢ase)
podle nasledujici diferencialni rovnice

jak je ukazano dale.

Spojita Hopfieldova sit’ mize byt pouzita bud’ jako autoasociativni pamét'(stejné jako diskrétni
Hopfieldova sit’ ), nebo k feseni optimalizaénich problémti zadanych formou omezujicich podminek. Mezi takto
zadané ulohy patii napt. Problém obchodniho cestujiciho. Princip hledani lokalniho minima energetické funkce
Hopfieldovy sité je v této tloze vyuzitelny zcela jinym zplsobem nez bylo zatim uvedeno: Dokazeme-li
formulovat omezeni n¢jaké optimalizacni ulohy ve formé energetické funkce neuronové sité, pak proces jeji
relaxace povede k nalezeni n¢kterého z optimalnich, ¢i alespon suboptimalnich feSeni. Ve srovnani z pfedchozim
tedy nebudeme sit’ adaptovat na zakladé prvka trénovaci mnoziny, ale pokusime se stanovit vahy mezi
jednotlivymi neurony na zaklad€ porovnani obecn¢ definované funkce energie Hopfieldovy sit¢ a energetické
funkce vyjadfujici nase omezujici podminky. Tento proces probiha v adaptivnim rezim sité. V aktivnim rezimu
potom hleda sit’ pripustné feseni daného problému.



Spojita Hopfieldova sit’ a problém obchodniho cestujiciho

Problém obchodniho cestujiciho (angl. Travelling Salesman Problem - TSP) je klasickou ulohou, kterou
lze vy$e uvedenym postupem uspésn¢ fesit. Cilem ulohy je navstivit vSechna mésta oblasti tak, aby zddné z nich
nebylo navstiveno dvakrat a pfitom, aby délka trasy byla co nejmensi. Nejlepsi feSeni pro TSP je velmi slozité
najit, nebot’ Cas potiebny pro jeho nalezeni roste exponencialng s poctem mést. Proto kazdé "dostatecné dobré"
feseni bude pro nas zajimavé.

Omezeni ulohy TSP lze formulovat nasledovné: kazdé mésto miize byt navstiveno pouze jednou a trasa
musi byt co nejkratsi. Pokud se nam podafi sestavit energetickou funkeci sité tak, ze bude tato omezeni odrazet,
pak jeji minimalizace povede k feSeni optimalizujici zminéna omezeni. Ponévadz vysledkem je seznam meést
navstivenych v uréitém poradi, budeme potiebovat néjakym zptisobem tento fakt vyjadrit. Jestlize budeme chtit
navstivit n mést, pak kazdé z nich se bude nachazet v seznamu na nékteré z n pozic. Pro potieby feseni Glohy
TSP tedy pouzijeme ¢tvercovou matici obsahujici # x n neurond (vSechny jsou vzajemné propojené), kde mésta
jsou reprezentovana fadky matice a poradi jejimi sloupci.

Mésto/Pofadi | 1 2 3 n

A UA,l UA,Z UA73 UA,n
B Us, Us, Usgs Usgn
C Uc, Uc, Ucs Ucn
N Un,i U, Un Unn

Aktivitu neuronu v i-tém sloupci a j-tém fadku interpretujeme jako skute¢nost, ze obchodni cestujici
navstivi j-té mésto jako i-té v poradi na své trase.

Pokusme se nyni formulovat jednotliva omezeni. Je celkem zfejmé, Ze ne vSechny stavy neuronové sité
odpovidaji pripustnému feseni problému. Pfipustnost feseni je zapotiebi zohlednit v ptislusné minimalizované
ucelové funkci. Prvnim indexem - x, y, atd. budeme oznacovat ,,mésto*, zatimco druhym indexem - i, j, atd.
budeme oznacovat jeho ,,pofadi“ na trase.

Prvnim pozadavkem je, aby obchodni cestujici navstivil kazdé mésto nejvyse jednou, tzn. aby na konci adaptace
sit€ byl v kazdém fadku aktivni nejvyse jeden neuron. Tomu odpovidd minimalizace nasledujiciho
vyrazu:

A
EA :Ezzzvx,ivx,j '

i j#i

Parametr 4>0 je mira vlivu £, pfi minimalizaci celkové energetické funkce.

Druhym pozadavkem je, aby obchodni cestujici byl pti kazdé ze svych zastavek pouze v jednom mésté, tzn. aby
byl na konci adaptace sité¢ v kazdém sloupci aktivni nejvyse jeden neuron. Tomu odpovida
minimalizace nésledujiciho vyrazu:

B
E, ZEZZZV"’iV}”i .

X Xx#y

Parametr B>0 je mira vlivu Ej pfi minimalizaci celkové energetické funkce.

Tretim pozadavkem je, aby obchodni cestujici projel v§emi n mésty, ¢emuz odpovida aktivita pravé n neurontd
v siti. Toho dosadhneme minimalizaci nasledujiciho vyrazu:

2
C
E. :3 n—ZZvU .

Parametr C>0 je opét mira vlivu E¢ pfi minimalizaci celkové energetické funkce, n je celkovy pocet
mést na trase.



Soucasnou minimalizaci £, Ep, Ec ve stavovém prostoru sice mame zajisténo, ze neuronova sit’ skonci svou
¢innost ve stavu odpovidajicim ptipustnému feseni problému obchodniho cestujiciho, tzn. Ze bude nalezena
okruzni trasa, ale jeji délka nemusi byt zrovna nejkratsi. Proto jesté musime uvedenou podminku zohlednit

v ucelové funkci, a to nasledovné:

Ctvrtym pozadavkem je, aby nalezen4 trasa byla co nejkratsi. Toho dosdhneme, budeme-li minimalizovat
nasledujici vyraz:

E, =§Zzzdx,yvx,i(vy,i+l + vy,i—l)

X y#EX i

kde d., urcuje vzdalenost mezi x-tym a y-tym méstem. Parametr D>0 je opét mira vlivu Ej pfi
minimalizaci celkové energetické funkce.

Vyslednou tcelovou funkci £, pomoci které ziskame piipustné optimalni feseni problému obchodniho
cestujiciho ziskame souctem vsech dil¢ich energetickych funkci, tj.

E=E,+E, +E.+E,.
Dale musime uvést diferencialni rovnici pro nalezeni aktivace neuronu Uy:

d Uy

EMX’[ =— T’I —AZVXJ —BZvy,, - n—Zva —DZ:dX,y(vy,,+l +vy’1_1).

J#l y£X y=X

Resenim rovnice dostaneme vystupni signal v;, jehoz hodnota je uréena aplikaci sigmoidni aktivaéni funkce (v
intervalu mezi 0 a 1)

v, = g(ui)z 0.5 [1 + tanh(a u )]

1

Porovnanim t¢elové funkce obchodniho cestujiciho s energetickou funkei spojité Hopfieldovy sité ziskame
synaptické vahy, které béhem aktivniho rezimu neuronové sité zajisti minimalizaci £. Vahovou hodnotu na
spojeni mezi neurony U,; a U,; dostaneme nasledovné:

w(x,i;y,j)==468,,(1-0,,)- B3, (1-5,,)- C-Dd, (5, +5,,.,),

kde &, je Kroneckerovo delta, tzn. ;= 1, jestlize i =j a ¢;; = 0, jestliZe i#j. Kazdy neuron déle obdrZi externi
vstupni signal

I .=+CN,

kde N je parametr, jehoz hodnota je vétsi nez n (tj. poCet mést na trase).

Popis algoritmu

Krok 0. Inicializovat aktivace vSech neuroni sité.
Inicializovat A¢ malou hodnotou.

Krok 1. Pokud neni splnéna podminka ukonceni, opakovat kroky (2 az 6).
Krok 2. Provadét kroky (3 az 5) n’-krat (n je pocet mést).

Krok 3. Vybrat nahodné neuron.



Krok 4. Zménit hodnotu jeho vnitini energie:
uy j (new) = uy ; (old)

+At[—ux’,. (old )

A v,

J#i
-BYv,,
VEX

- ”—ZZVX,J

-D> dx,y(vy,iﬂ TV )]

V#EX

Krok 5. Vypocitat hodnotu na jeho vystupu -
v, = 0.5[1 + tanh(a U, )]

Krok 6. Test podminky ukonceni.

Vzhledem k tomu, Ze nalezené minimum energetické funkce nemusi odpovidat minimu globalnimu,
nemusi byt nalezené feseni problému obchodniho cestujiciho (v aktivnim rezimu spojité Hopfieldovy site)
optimalni a dokonce nemusi byt v nékterych pripadech ani pfipustné. Velice dilezité je spravné nastaveni
parametrt A, B, C, D, N a a. Vhodnym nastavenim téchto parametrti a vice pokusy s riznym pocatecnim
nastavenim sité lze dosahnout lepsi aproximace optimalniho feSeni. Obecné vSak neexistuje navod na efektivni
nastaveni uvedenych parametri tak, aby neuronova sit’ konvergovala co nejlépe ke globalnimu minimu.

Korespondencni ukoly:

Vytvorte pocitacovy program pro reseni ,,problému obchodniho cestujiciho ** spojitou Hopfieldovou siti.
Optimalizujte s jeho pouzitim trasu mezi péti mesty (stanovte si sami vzdalenosti mezi jednotlivymi mésty).



DVOUSMERNA ASOCIATIVNI PAMET.

Dvousmérna asociativni pamét (BAM angl. Bidirectional Associative Memory) je
variantou heteroasociativni rekurentni neuronové sité. Autorem fady publikaci toto
téma je pfedevsim B.Kosko a C.Guest.

Klic¢ova slova této kapitoly:
Dvousmérna asociativni pamét (BAM angl. Bidirectional Associative Memory).

Dvousmérna asociativni pamét’ si v adaptivnim rezimu zapamatuje mnozinu asociovanych vzort jako
sumaci bipolarnich korela¢nich matic (typu m, n pro kazdy zapamatovany vzor). Struktura BAM je dana dvémi
vrstvami neuronti (vrstva X obsahuje n neuront a vrstva Y obsahuje m neuronti), které jsou vzajemné Uplné
propojeny obousmérnymi vazbami (viz obrazek 38). Jestlize vahova matice pro signal transportovany vrstvou X
do vrstvy Y je W, pak vahova matice pro signél transportovany vrstvou Y do vrstvy X je W'.

Aktivni rezim BAM probiha tak, Ze si neurony obou vrstev neustale posilaji mezi sebou signal (tj. obéma
smeéry), az v§echny neurony dosahnou rovnovazny stav (tj. aktivace se neméni béhem nékolika kroki). Existuji
tii zakladni varianty BAM - binarni, bipolarni a spojita.

Obrazek 38: Dvousmérnd asociativni pamét.

Diskrétni BAM

Ob¢ formy BAM (. binarni i bipolarni) jsou velmi ptibuzné. V kazdé z nich lze vahové hodnoty nalézt
ze sumace aktivac¢nich hodnot neuronti odpovidajicich si tréninkovych parti. Aktivacni funkce je skokova s
moznosti nenulového prahu.

Vytvoreni vahové matice:
vahova matice pro zapamatovani mnoziny vstupnich a odpovidajicich vystupnich vektort s(?) : t(p),
p=1,.. P kde



mize byt determinovana Hebbovym pravidlem pro asociované sité. Zapis vyslednych hodnot pro vahovou
matici W zavisi na tom, jestli je tréninkovy vektor binarni nebo bipolarni. Pro binarni vstupni vektory je vahova
matice W = {w;} tvofend prvky, které jsou definovany nasledujicim vztahem:

Wy = Z(2si (p)- 1)(2tj (p)- 1)'

p

Pro bipolarni vstupni vektor je vahova matice W = {w;;} tvofend prvky, které jsou definovany
nasledujicim vztahem:

Aktivaéni funkce:

Aktivaéni funkei pro diskrétni BAM je odpovidajici skokova funkce, kterd zavisi na kddovani
tréninkovych vektort.

Pro bindrni vstupni vektory ma aktivacni funkce pro vrstvu ¥ tvar:

1 pokud y in; >0
Y, =4y, pokud y in, =0
0 pokud y_ in, <0,

a aktivacni funkce pro vrstvu X ma tvar:
1 pokud x_in, >0
X, =4x, pokud x_in, =0
0 pokud x in, <O.

Pro bipolarni vstupni vektory ma aktivaéni funkce pro vrstvu ¥ tvar:

1 pokud y_in, >0,
Y, =1y, pokud y _in, =0,
-1 pokud y_in; <6,,

a aktivaéni funkce pro vrstvu X ma tvar:

1  pokud x_in, >0,
X, =<x, pokud x in, =0,

l 1

—1 pokud x_in, <8,.

1

Popis algoritmu

Krok 0. Inicializace vah, tj. zapamatovani P vzoru.

Krok 1. Pro kazdy testovaci vzor opakovat kroky (2 az 6).



Krok 2a.

Krok 2b.

Krok 3.

Inicializovat vrstvu X vnéjSim vstupnim vektorem x.

(tj. nastavit aktivace neurond ve vrstvé X hodnotami vektoru x)

Inicializovat vrstvu Y vnéj$im vstupnim vektorem y.

(Jeden ze dvou vstupnich vektori musi byt nulovy vektor.)

Pokud aktivace neuronti nekonverguji, opakovat kroky (4 az 6).

Krok 4.

Krok 5.

Krok 6.

ST G TS
Bad

H O OH O

Aktualizovat aktivace neuront ve vrstveé Y.

Vypocitat vnitini potencial neuronu:
y_in; = Zwijxi.

i
Vypocitat aktivace neuronti

Vi :f(y—i”.f) '
Transportovat signal vrstveé X.

Aktualizovat aktivace neuronti ve vrstvé X.

Vypoditat vnitini potencial neuronu:
xX_ing =D W,
J
Vypocitat aktivace neuronti
X, :f(x_ml.) .
Transportovat signal vrstve Y.
Test konvergence.

Pokud aktivace vektorid x a y dosahly rovnovazného stavu,

pak stop; jinak pokracovat.

# #
#
#
#

# #



(A—>-1,1) C->1,1 (W, zapamatovani obou vzori)

1 -1 -1 -1 0 -2
-1 1 11 0 2
1 -1 11 2 0
-1 1 11 0 2
1 -1 -1 -1 0 -2
-1 1 -1 -1 2 0
-1 1 11 0 2
-1 1 -1 -1 2 0
-1 1 -1 -1 2 0
-1 1 11 0 2
1 -1 -1 -1 0 -2
-1 1 -1 -1 2 0
-1 1 -1 -1 2 0
1 -1 11 10
-1 1] 1] 0 2]

Nyni ovéfime spravnost zapamatovani obou vstupnich vzort:

VSTUPNI VZOR 4
(-11-11-111111-111-11)W=(-14,16) > (-1, 1).

VSTUPNI VZOR C
(-1111-1-11-1-11-1-1-111)W=(14,18)— (1, 1).

Dale ukazeme, Ze i vrstva ¥ muze byt pouzitd jako vstupni vrstva. Vahovou matici W musime pro tento ucel
transponovat, tj.

WT_OOZO 0o 20 -2 -20 0-2-22290
12202 -2 02 0 02 -2 0 00 2]

Pro vstupni vektor asociovany se vzorem 4, tj. (-1, 1) dostaneme:
T
-, Hw =

(_11)0020 0 -20-2-20 0-2-22290
2202 -2 02 0 02 -2 0 002

=(22-22-222222-222-22
»(-11-11-111111-111-11),

coz je vzor 4.

Pro vstupni vektor asociovany se vzorem C, tj. (1, 1) dostaneme:

(1, Hw'=
(11)0020 O -2 0 -2 -2 0 0 -2 -2 220
Jl-22 02 -2 02 0 02 =2 0 002
:(—2222—2—22—2—22—2—2—222)
»(-1111-1-11-1-11-1-1-11 1),

coz je vzor C.

Informace o obou vzorech jsou ulozeny ve vahové matici W. Sit’ je tedy ukoncila fazi adaptace a je pfipravena k
aktivni fazi.



Spojita BAM

Spojitd dvousmérna asociativni pamét’ transformuje pouzitim sigmoidni aktivaéni funkce hladky a
spojity vstupni signal z intervalu [0,1] na signal vystupni.

Pro binarni vstupni vektory s(?) : ¢(p), p = 1, ..., P, jsou vahové hodnoty determinovany jiz diive
uvedenym vztahem

Wy = Z(Zs,. (p)- 1)(2t1 (p)- 1)'
p
Aktivacni funkce je logisticka sigmoida

1
f(x)— 1+exp(—y_inj) ’
kde
y_in; :bj +le.wij )

Analogické vztahy lze odvodit i pro neurony ve vrstveé X.

Kapacita paméti BAM

Kapacita paméti BAM je velmi omezena. Kosko odhadl, Ze jeji maximalni velikost je min(n, m), kde n
je pocet neurontl ve vrstvé X a m je pocet neuronti ve vrstveé Y. Snahou soucasného vyzkumu a vyvoje je
zdokonalit BAM tak, aby toto omezeni bylo redukovano na maximalni moZznou miru a aby bylo mozné pln¢
vyuzit tak moznosti modelu neuronové site.

Ukoly:
Pouczijte diskrétni sit BAM, kterd mapuje tri jednoduché znaky n8sleduj9c9m zpiisobem:
H #.# ###
#HHtH SH. #_#
CH #_# #HHH
(—-11-1111-11-1) (1-11-11-11-11) (1111-11111).

Korespondencni ukoly:

Vytvorte pocitacovy program pro realizaci adaptacniho algoritmu diskrétni site BAM.



POSTAVENI NEURONOVYCH SITI V INFORMATICE.

V této zadvérecné kapitole se postupné zamyslime nad tfemi tématy: (1) neuronové
sité a von neumanovska architektura pocitace; (2) aplikace neuronovych siti a
(3) implementace neuronovych siti a neuropocitace.

Klic¢ova slova této kapitoly:
NETtalk, neuropocitace, netware.

Neuronové sité a von neumanovska architektura pocitace

V jistém smyslu neuronové sit¢ predstavuji univerzalni vypocetni prostiedek, a tedy maji stejnou
vypocetni silu jako klasické pocitace napt. von neumannovské architektury (tj. pomoci neuronovych siti 1ze
principialné spocitat vSe, co umi napi. osobni pocita¢ a naopak). Tato jejich vlastnost by vzhledem k existenci
stovek rtiznych univerzalnich vypocetnich modelt nebyla tak vyjimecna. Navic je funkce popsana velkym
pocétem vahovych parametrt a viibec neni ziejmé, jak bychom pozadovanou funkci v tomto vypocetnim modelu
naprogramovali.

Hlavni vyhodou a zaroven odlisnosti neuronovych siti od klasické von neumannovské architektury je
jejich schopnost ucit se. Pozadovanou funkei sité€ neprogramujeme tak, ze bychom popsali piesny postup
vypoctu jeji funkeni hodnoty, ale sit’ sama abstrahuje a zobeciiuje charakter funkce v adaptivnim rezimu procesu
uceni ze vzorovych piikladl. V tomto smyslu neuronova sit’ pfipomina inteligenci ¢lovéka, ktery ziskava mnohé
své znalosti a dovednosti ze zkuSenosti, kterou ani neni ve vétSing ptipadd schopen formulovat analyticky podle
prislusnych pravidel ¢i algoritmu. V nasledujicim vykladu uvedu nékolik motivacnich (trochu nadnesenych)
prikladi, které ndm pomohou tento fenomén pochopit.

Predstavme si zednika, ktery by chtél svého uéné naucil omitat zed’. Pravdépodobné ti, kdo se nékdy
sami pokouseli omitnout sviij dim, vi Ze prvni pokusy nebyvaji moc zdvofilé (polovina malty vétsinou kon¢i no
zemi.),Jak groteskni by bylo teoretické skoleni zednika, ktery by na tabuli vylekanému u¢ni napsal diferencialni
rovnice popisujici trajektorii (drahu) a rychlost pohybujici se ruky, popt. zapésti, pti nahazovani malty na
omitanou zed. I kdyby zednicky ucent mél zaklady v diferencialnim poctu, omitat by se timto zpisobem
nenaucil. Tuto dovednost miize totiz ucen ziskat jen pozorovanim zednika pii omitani a vlastnimi pokusy
korigovanymi ucitelem.

Dalsim demonstracnim piikladem popsanym v literatuie je balancovani tyce na kostéti. Byla sestrojena
neuronova sit’, ktera dokézala napodobit dovednost cirkusového klauna, ktery na svém nose drzi koste ve
vertikalni poloze. Pfi vlastnim experimentu byl pouzit specialni vozik, na kterém bylo kosté voln€ upevnéno (pro
jednoduchost v jedné roving) tak, ze by bez zachyceni spadlo. Neuronova sit’ se ucila nejprve na zakladé
odchylky (ihlu) kostéte od vertikalni polohy a pozdéji od filtrovaného obrazu nasady kostéte snimaného
kamerou urcit posuv voziku (v jedné ptimé draze) tak, aby kost€ nespadlo. Tréninkové vzory pro jeji adaptaci,
kde vstup odpovidal filtrovanému obrazu kostéte a vystup posuvu voziku, byly ziskany od demonstratora (pfi
zpomalené pocitacové simulaci), ktery néjaky ¢as pohyboval vozikem tak, aby kosté nespadlo. Po ¢ase
neuronova sit’ sama uspésné pievzala jeho ulohu fizeni (jiz skutecného) voziku. I zde by bylo mozné teoreticky
sestavit diferencialni rovnice pro pohyb voziku, ale nez by je klasicky pocita¢ von neumannovské architektury
vyfesil, kosté by pravdépodobné spadlo. Na druhou stranu v tomto jednoduchém demonstra¢nim priklade
(varianta se vstupnim uhlem) existuje Gspés$ny fidici systém zalozeny na klasické teorii fizeni.

Podobnym ptikladem popsanym v literatufe je fizeni pfitoku latek potiebnych ve slozitém vyrobnim
procesu, kde je prakticky nemozné sestavit analyticky model. V praxi byla tato ¢innost provadéna zkusenym
pracovnikem, ktery na zakladé informaci z riznych métidel reguloval pomoci pak pfitok jednotlivych latek.
Uvedeny pracovnik neni schopen vyjadfit prostfednictvim pfesnych pravidel pohyb s regula¢nimi pakami. I zde
byla zapojena neuronova sit, ktera se na zakladé prikladd stavii métidel a odpovidajicich reakei pracovnika
sama po né&jakém Case naucila regulovat pfitok latek.



Z uvedenych piikladi vyplyva, Ze neuronova sit’ modeluje schopnost ¢loveka ucit se z prikladi
dovednosti ¢i znalosti, které neni schopen fesit algoritmicky pomoci klasickych poéita¢i von neumannovské
architektury, protoze chybi analyticky popis nebo jejich analyza je pfilis§ slozitd. Tomu potom odpovidaji oblasti
aplikace neuronovych siti (viz dale), kde klasické pocitace selhavaji. Zfejmé si také nestaci pamatovat vSechny
vzorové priklady (tréninkovou mnozinu) nazpamét’ (napi. v tabulce ulozené v paméti klasického pocitace). navic
je potieba generalizovat (zobeciiovat)jejich zakonitosti, které by umoznily fesit podobné ptiklady, s nimiz se
neuronova sit’ pfi uceni jesté nesetkala. Napf. v piipadé rozpoznavani pismen si neni mozné pamatovat v§echny
mozné tvary obrazu jednotlivych pismen.

Dalsim ilustraénim pfikladem dtilezitosti generalizacni schopnosti lidské inteligence, je pfiprava
studenta na zkousku z matematiky. Je zfejmé, Ze nauceni vSech vzorovych piikladd ve sbirce nazpamét’ bez
nalezitého pochopeni postupti feseni nezarucuje Gspésné slozeni zkousky. Student pravdépodobné u zkousky
neuspéje, pokud nedostane identicky piiklad ze sbirky, ale bude mu zadana tloha jen s podobnym postupem
feSeni. Nestaci se totiz nazpamét’ naucit vzorové piiklady, ale je potieba umét zobecnit zakonitosti jejich feseni.

Schopnost ucit se zobecnovat je typickou vlastnosti lidské inteligence. Velkym problémem pro
hodnoceni generaliza¢ni schopnosti neuronové sité je, Ze neni jasné, jakym zptisobem definovat, co je spravna
generalizace. Uvazujme otazku z testu inteligence, kdy se ma doplnit dalsi ¢len posloupnosti 1, 2, 3, .... Vétsina
lidi by asi doplnila nasledujici ¢islo 4. Piedstavme si , ale matematika, ktery si v§imne, Ze ¢islo 3 je souctem
dvou piedchazejicich ¢isel 1 a 2, a dle této komplikovangjsi souvislosti doplni misto ¢isla 4 ¢islo 5, které je opét
souctem dvou predchazejicich ¢isel 2 a 3. Kromé toho, ze bude nékterymi ,,normalnimi“ lidmi povazovan za
podivina, neni vlibec ziejmé, které ze dvou uvedenych doplnéni je spravnou generalizaci zdkonitosti této
posloupnosti. A takovych doplnéni, které je mozné néjakym zptisobem zdtivodnit, existuje jist¢ nekone¢né
mnoho.

Diky tomu, ze neumime definovat (formalizovat), a tedy ani méfit generalizacni schopnosti
neuronovych siti, chybi zakladni kritérium, které by rozhodlo, jaké modely neuronovych siti jsou v konkrétnim
ptipadé dobré, ¢i lepsi nez jiné apod. Generalizacni schopnosti navrzenych modell neuronovych siti se vétsinou
ilustruji na jednotlivych prikladech, které (mozné diky vhodnému vybéru) vykazuji dobré vlastnosti, ale tyto
vlastnosti nelze nijak formalné ovéfit (dokazat). Tento stav je také pri¢inou krize zakladniho vyzkumu
neuronovych siti.

Na druhou stranu uspésné aplikace neuronovych siti pfi feseni dulezitych praktickych tloh, kde klasické
pocitace neuspély, i to, ze simulace (velmi zjednodusenych model) biologickych neuronovych siti vykazuji
prvky podobné lidské inteligenci, naznacuji, Ze tyto modely vystihuji urcité rysy, dulezité pro napodobeni
inteligentnich ¢innosti ¢lovéka, které pocitace von neumannovské architektury postradaji. Zakladnim rysem
biologickych nervovych systémd je husté propojena sit’ velkého poctu vypocetnich prvkid (neuront), které¢ samy
pocitaji jen jednoduché funkce, coz v piipad€ matematickych modeld neuronovych siti pravdépodobné vytvari
vypocetni paradigma postacujici k napodobeni inteligentniho chovani.

Systematicka logika a piesnost klasickych pocitacl je u neuronovych siti nahrazena asociaci s
neurcitosti, kdy se k novému problému ,,vybavi“sdruzeny (podobny) vzorovy piiklad (tréninkovy vzor), ze
kterého je zobecnéno jeho feseni. Také misto explicitni reprezentace dat v paméti klasickych pocitact jsou
informace v neuronovych sitich zakédovany implicitné a jednotlivym ¢iselnym parametriim sit¢ (kromé vstupti a
vystupl) neni pfifazen piesny vyznam. Zatimco klasické pocitace jsou citlivé na chybu a zména jednoho bitu
muze znamenat celkovy vypadek systému, neuronové sité jsou robustni. Je naptiklad znamo, ze po
neurochirurgickych operacich kdy je pacientovi odebrana ¢ast tkdn¢ mozkové kiiry, pacient pfechodné zapomina
nékteré funkce (napft. schopnost mluvit) nebo u nich ztraci urcitou obratnost (napt. kokta), ale brzy se znovu tyto
schopnosti obnovi, ¢i zdokonali, protoZe jiné neurony pievezmou funkci téch ptivodnich. Tento jev lze pozorovat
i u modelt neuronovych siti, kdy odebranim nékolika malo neuronti nemusi sit’ nutné ztratit svou funk¢nost, ale
zpusobi to tfeba jen mensi nepiesnost vyslednych odpovédi. Dale u klasickych pocitacti von neumannovské
architektury je sekvencni béh programu lokalizovan napf. pomoci ¢itace instrukci. V neuronovych sitich je
naopak vypocet distribuovan po celé siti a je pfirozené paralelni.

Pfi srovnavani modelt neuronovych siti s klasickou von neumannovskou architekturou pocitace je
mozné vypozorovat stfet dvou inteligenci: biologické a kiemikové. Vychodiskem, které muize nalézt v dnesnim
pretechnizovaném svété Sirsi uplatnéni, je symbidza obou piistupti. Myslenka vytvorit pocitac ke svému obrazu
nabyva v posledni dob¢ konkrétné;jsi podoby.

Aplikace neuronovych siti

Porovnani modeld neuronovych siti s pocitaci von neumannovské architektury naznacuje mozné oblasti
jejich aplikace tam, kde klasické pocitace selhavaji. Jedna se predevsim o praktické problémy, u kterych neni
znam algoritmus nebo jejich analyticky popis je pro pocitacové zpracovani pfili§ komplikovany. Typicky se



neuronové sité daji pouzit tam, kde jsou k dispozici piikladova data, ktera dostate¢né pokryvaji problémovou
oblast. Vyhody neuronovych siti oproti klasickym pocitaélim samoziejmé neznamenaji, ze by neuronové sité
mohly nahradit soucasné pocitace, protoze v ptipadé mechanickych vypocta (napt. nasobeni), které Ize
jednoduse algoritmicky popsat, nemohou (stejné jako 1idé) v rychlosti a piesnosti klasickym pocitaciim
konkurovat. Neuronové sit¢ ve formé specifickych modulti pravdépodobné jen obohati von neumannovské
architektury. V nasledujicim vykladu uvedeme né€kolik moznych oblasti aplikace neuronovych siti.

Neuronové sité 1ze pfirozenym zplisobem pouzit k rozpoznavani obrazcii, napt. rozpoznavani
nascanovanych, psanych resp. tiSténych znaki (Cislic, pismen apod.). Obraz jednoho znaku nejprve
odseparujeme od okolniho textu (napf. se ur¢i krajni body obrazu) a potom se znormuje, tj. zobrazi do
standardizované matice (napt. 15 x 10 =150) bodut. Jednotlivé body pak odpovidaji vstuptim neuronové sité,
které jsou napft. aktivni. praveé kdyz ¢ara v obrazu prave zasahuje piislusné body. Kazdy vystupni neuron v siti
predstavuje mozny znak, ktery je rozpoznan, pravé kdyz je tento neuron aktivni. Tréninkovou mnozinu lze napf.
vytvorit pfepsanim néjakého textu, ktery je jiz k dispozici v pocitaci (odpovida pozadovanym vystupum
tréninkovych vzoru, tj. identifikovanym znakim), takovym zptisobem (napf. rukou), pro ktery budeme
neuronovou sit’ k rozpoznavani potfebovat (piedstavuje odpovidajici priklady obrazovych vstupi tréninkovych
vzoru). Neuronovou sit’ pak 1ze pomoci této mnoziny ucit tak dlouho, dokud neni sama schopna rozpoznavat
pfislusné znaky. Timto postupem muzeme v relativné kratké dobé¢ docilit spolehlivosti napt. 95% spravné
rozpoznanych znakd. Podobny postup lze vyuZit napt. v robotice pro zpracovani vizualnich informaci ¢i pfi
vyhodnocovani druzicovych snimkti apod.

Dalsi moznou oblasti aplikace neuronovych siti je 7izeni slozitych zatizeni v dynamicky se ménicich
podminkéch. V minulé kapitole jsme uvedli dva motivacni priklady z této oblasti: balancovani kostéte a regulace
pritoku latek ve slozitém vyrobnim procesu. Dalsim demonstracnim ptikladem fidiciho systému popsaného v
literatufe je autopilot automobilu, ktery se v pocitacové simulaci pohybuje na dvouproudé délnici spolu s auty
jedoucimi stejnym smérem. Auto fizené neuronovou siti uréovalo na zaklade€ vzdalenosti a rychlosti nejblizsich
aut v obou pruzich svou vlastni rychlost a zménu pruhu. Dale neuronova sit’ ovladala volant podle zakfiveni
dalnice, polohy auta v pruhu a aktualniho tihlu volantu. Je zajimavé, Ze neuronova sit’ se kromé uspésného fizeni
vozidla (bez kolizi) v¢etné piedjizdéni naucila i riizné zvyky a styl jizdy (napf. riskantni rychla jizda a Casté
predjizdéni nebo naopak opatrna pomala jizda) podle fidicl - trenért, od kterych byly ziskany tréninkové vzory.

Jinou dulezitou aplikaéni oblasti neuronovych siti je predikce a ptip. nasledné rozhodovani. Typickymi
priklady z této oblasti jsou pfedpoveéd’ pocasi, vyvoj cen akcii na burze, spotfeba elektrické energie apod. Napf.
pfi meteorologické predpovédi jsou vstupem neuronové sité odecty zékladnich parametrt (napf. teplota, tlak
apod.) v ¢ase a ucitelem je skutecny vyvoj pocasi v nasledujicim obdobi. Uvadi se, ze u predpovédi pocasi v

Jinym ptikladem uplatnéni neuronovych siti je analyza signalii jako napt. EKG, EEG apod. Spojity
signal je vzorkovan ve stejnych casovych intervalech a nékolik poslednich diskrétnich hodnot Girovné signalu
slouzi jako vstup do napf. dvouvrstvé neuronové sité. Naucena neuronova sit’ je schopna identifikovat specificky
tvar signalu, ktery je dilezity pro diagnostiku. Napf. neuronova sit’ s topologii 40 - 17 - 1 byla pouzita pro
klasifikaci EEG signalt se specifickymi o-rytmy.

Dalsi oblasti aplikace neuronovych siti je transformace signahi, jehoz ptikladem je systém NETtalk,
urceny pro prevod anglicky psaného textu na mluveny signal. Tento systém je zaloZen na neuronové siti
s topologii 203 - 80 - 26 s 7x29 vstupnimi neurony pro zakdédovani kontextu 7 pismen psaného textu kazdému z
26 pismen anglické abecedy a ¢arce, teCce a mezefe odpovida jeden neuron, ktery je pfi jejich vyskytu aktivni),
80 skrytymi neurony v mezilehlé vrstvé 26 vystupnimi neurony reprezentuji fonény odpovidajiciho mluveného
signalu. Funkece sité je nasledujici: vstupni text se postupné presouva u vstupnich neuronti po jednom pismenu
zprava doleva a pfitom je aktivni pravé ten vystupni neuron, ktery reprezentuje fonén odpovidajici prostiednimu
ze 7 pismen vstupniho textu. V nasem prikladé se ¢te prostiedni pismeno ,,C* v anglickém slové ,, CONCEPT*

s vyslovnosti [ 'konsept], kterému odpovida fonén [s]. Stejné pismeno ,,C* na zacatku tohoto slova vSak v daném
kontextu odpovida fonénu [k]. Usp&ina implementace systému NETtalk vedla ke snaze vytvofit systém zalozeny
na neuronové siti s obracenou funkci, ktera by prevadéla mluveny jazyk do psané formy (tzv. foneticky psaci
stroj).

Dalsi moznosti vyuziti neuronovych siti je komprese dat napt. pro ptenos televizniho signalu,
telekomunikaci apod. Pro tento Gcel byla vyvinuta technika pouZiti neuronové sité se dvéma vnitinimi vrstvami a
s topologii n - n/4 - n/4 - n (tj. n neuront ve vstupni vrstvé, n/4 neurond ve vnitinich vrstvach a n neuronti ve
vystupni vrstvé). Pocet neuronti ve vnitinich vrstvach je vyrazné mensi nez je pocet neuronl ve vstupni a
vystupni vrstvé. Pocet neurond ve vstupni i vystupni vrstvé je stejny, protoze ob¢ vrstvy reprezentuji stejny
obrazovy signal. Tato neuronova sit’ se uci rizné obrazové vzory tak, ze vstup i vystup tréninkovych vzora
predstavuji totozny obraz. Sit’ tak pro dany obrazovy vstup odpovida pfiblizné stejnym vystupem. Pfi vlastnim
prenosu je pro dany obrazovy signal x; ..., X, u vysilace nejprve vypocten stav skrytych neuronti z; , ..., Zy4 a
takto kompresovany obraz je pfenasen informacnim kanalem k pfijemci, ktery jej dekdduje vypoctem stavi
vystupnich neuronti X'y ,..., X", . Timto zptisobem je ziskan téméf pivodni obraz. Pii vlastnim experimentu se



ukazalo, Ze kvalita pfenosu (srovnatelna s jinymi zpisoby komprese dat) zavisi na tom, zda jsou pfenasené
obrazy podobné tréninkovym vzoriim, na které€ se sit’ adaptovala.

X X2 X n

| T T
Q Q ¢t Q pfijimac

prenos

vysila¢

X1 X2 Xn

Obrazek 39: Komprese pfi prenosu signalu pomoci
neuronové sité s topologii n - n/4 - n/4 - n.

Poslednim oborem aplikace neuronovych siti, ktery zde uvedeme, jsou expertni systémy. Velkym
problémem klasickych expertnich systémi zalozenych na pravidlech je vytvoteni baze znalosti, ktera byva
Casové velmi naro¢nou zalezitosti s nejistym vysledkem. Neuronové sit€ predstavuji alternativni feSeni, kde
reprezentace znalosti v bazi vznika ucenim z ptikladovych inferenci. V tomto pfipadé aktivni rezim neuronové
sit€ zastupuje funkci inferencniho stroje. Na druhou stranu implicitni reprezentace znalosti neumozinuje pracovat
s netplnou informaci a neposkytuje zdivodnéni zaveért, coz jsou vlastnosti, bez kterych se prakticky pouzitelny
expertni systém neobejde. Tento problém castecné fesi univerzalni neuronovy expertni systém EXPSYS, ktery
obohacuje vicevrstvou neuronovou sit’ o intervalovou aritmetiku pro praci s neptesnou informaci a o heuristiku
analyzujici sit,, kterd umoznuje jednoduché vysvétleni zavért. Systém EXPSY'S byl uspésné aplikovan
v energetice a medicing€. Napf. v 1ékarské aplikaci jsou zakddované ptiznaky onemocnéni a vysledky raznych
vySetieni vstupem do neuronové sit€ a diagnozy, popt. doporuéena 1écba jsou jejim vystupem. Tréninkovou
mnozinu lze ziskat z kartotéky pacientt.

Implementace neuronovych siti a neuropocitace

Odlisna architektura neuronovych siti vyZaduje specialni hardwarovou realizaci. V této souvislosti
hovotime o tzv. neuropocitacich. Avsak vzhledem k rozsifenosti klasickych pocitacu a kvuli problémim
spojenym s hardwarovou realizaci neuronovych siti zatim nejjednodussi implementaci neuronovych siti, se
kterou se nejéastéji (zvlasté v Ceské republice) setkdvame, je tzv. netware, coz je software pro klasické poéitace
(napt. PC), ktery modeluje praci neuronové sité. Jedna se vétSinou o demonstracni programy s efektnim
uzivatelskym interfacem, které simuluji praci nejznaméjSich modeld neuronovych siti na jednoduchych
prikladech. V nékterych jiz dokonalejsich programech je mozné zadat vlastni aktivni i adaptivni dynamiku, coz
umoziuje relativné rychle prizptisobit model neuronové sité¢ danému praktickému problému nebo ovéfit
pouzitelnost navrzeného nového modelu. Existuji i programovaci jazyky (a jejich pekladace) pro klasické
pocitace, které podporuji programovou implementaci neuronovych algoritmi. Piikladem takového
programovaciho jazyka je AXON, ktery je podobny jazyku C. Dokonalejsi netware vétSinou podporuje vyuziti
specializovanych koprocesort (které je mozno napt. pripojit k PC), které efektivné implementuji neuronové
funkce a urychluji ¢asové naro¢né uceni.



Vlastni neuropocitace vétsinou nepracuji samostatné, ale jsou napojeny na klasické pocitace, které
mohou realizovat napt. uzivatelsky interface. To je dano pfedevsim tim, ze neuropoéitace nejsou pouzivany jako
univerzalni pocitace, ale prevazné funguji jako specializovana zatizeni pro feseni specifickych uloh, Malé
neuropocitace jsou spojeny piimo se sbérnici klasického pocitace a vétsi se mohou uplatnit jako servery na
lokalni siti.Podle zptisobu aktualizace parametrti neuronové sité rozdélujeme neuropocitace na spojité a diskrétni
a podle typu reprezentace téchto ¢iselnych parametrli mame analogové, digitalni, resp. hybridni (kombinace
analogovych a digitalnich) neuropocitace. Ztidkakdy jeden neuron v implementované siti odpovida jednomu
procesoru neuropocitace (tzv. plné implementované neuropocitace), coz se vyuziva pro velmi rychlé vypocty
v redlném case. VétSinou se konstruuji tzv. virtualni neuropocitace, kde jeden procesor vykonava praci stovek i
tisicli neuronti ¢asti implementované neuronove sité.

Z hlediska technologie je vétSina neuropocitacl zalozena na klasické mikroelektronice (napi. VLSI
technologie), kde neurony odpovidaji hradlim (napf. specialnim tranzistorim) a vahy synaptickych spoji jsou
reprezentovany rezistorovymi vazbami. Tento pfistup vSak s sebou pfinasi technické problémy jako je velka
hustota propojeni neuroni (roste fadoveé kvadraticky vzhledem k poctu neuronti) nebo adaptovatelnost vah u
vSech téchto spoju. Proto adaptivni rezim neuronové sité je nékdy pfedem realizovan oddélené pomoci
dostupného netwaru na klasickém pocitaci a vysledna konfigurace sit¢ je napevno zapojena do pfislusného
obvodu neuropocitace. Také se stale vice uplatiiuje optoelektronika a dlouhodobé;jsi vyhledy pocitaji s tiplné
odlisnymi technologiemi, jako napf. molekularni elektronika, hybridni bio¢ipy apod.

Korespondencni ukoly:

Vypracujte semindrni prdci na téma ,, PouzZiti neuronovych siti v ... “ (oblast pouZiti si zvolte sami).
Informace hledejte predevsim na www-strankdch.
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