
O S T R A V S K Á U N I V E R Z I T A

OSTRAVA 2002

E V A V O L N Á

N E U R O N O V É S Í T Ě 1

P Ř Í R O D O V Ě D E C K Á F A K U L T A

Cíle předmětu

Seznámit studenta se základy teorie neuronových sítí a dát mu potřebnou motivaci pro
pochopení důležitosti teorie pro praxi. Důraz bude kladen nejen na základní teorii, ale i na
schopnost ji aplikovat při řešení konkrétních příkladů.

Po prostudování textu budete znát:
T Y T O U Č E B N Í T E X T Y J S O U U R Č E N Y S T U D E N T Ů M
I N F O R M A T I K Y P R O P Ř E D M Ě T N E U R O N O V É S Í T Ě I .
J S O U V N I C H V Y S V Ě T L E N Y V Š E C H N Y Z Á K L A D N Í
P O J M Y Z T E O R I E U M Ě L Ý C H N E U R O N O V Ý C H S Í T Í .
V J E D N O T L I V Ý C H K A P I T O L Á C H J S O U P O S T U P N Ě
P O D L E O B T Í Ž N O S T I U V E D E N Y Z Á K L A D N Í M O D E L Y
N E U R O N O V Ý C H S Í T Í (T J . P E R C E P T R O N , A D A L I N E ,
M A D A L I N E , D O P Ř E D N Á V Í C E V R S T V Á N E U R O N O V Á
S Í Ť S A D A P T A Č N Í M E T O D O U B A C K P R O P A G A T I O N ,
A S O C I A T I V N Í N E U R O N O V É S Í T Ě A N E U R O N O V É S Í T Ě
P R A C U J Í C Í N A P R I N C I P U S A M O O R G A N I Z A C E) , A T O
J E J I C H A R C H I T E K T U R A , A K T I V N Í D Y N A M I K A A
A D A P T I V N Í D Y N A M I K A .

Obsah předmětu

Čas potřebný k prostudování učiva předmětu:
jeden semestr

1. Úvod do problematiky neuronových sítí.
2. Hebbovo učení.
3. Neuronová síť.
4. Perceptron.
5. Adaline. Madaline.
6. Backpropagation.
7. Varianty backpropagation.
8. Samoorganizace.
9. Counterpropagation.
10. Asociativní neuronové sítě.
11. Hopfieldova síť.
12. Dvousměrná asociativní paměť.
13. Postavení neuronových sítí v informatice.

Historie neuronových sítí

Za počátek vzniku oboru neuronových sítí je považována práce Warrena McCullocha a Waltera Pittse z

roku 1943, kteří vytvořili velmi jednoduchý matematický model neuronu, což je základní buňka nervové
soustavy. Číselné hodnoty parametru v tomto modelu byly převážně bipolární, tj. z množiny {-1,0,1}. Ukázali,
že nejjednodušší typy neuronových sítí mohou v principu počítat libovolnou aritmetickou nebo logickou funkci.
Ačkoliv nepočítali s možností bezprostředního praktického využití svého modelu, jejich článek měl velký vliv na
ostatní badatele. Například zakladatel kybernetiky Norbert Wiener se jím inspiroval při studiu podobnosti
činnosti nervové soustavy a systémů výpočetní techniky. Nebo autor amerického projektu elektronických
počítačů John von Neumann napsal práce, ve kterých navrhoval výzkum počítačů, které by byly inspirovány
činností mozku. Tyto návrhy, přestože byly hojně citovány, nepřinesly zpočátku očekávané výsledky.

V roce 1949 napsal Donald Hebb knihu „The Organization of Behaviour“, ve které navrhl učící pravidlo
pro synapse neuronů (mezineuronové rozhraní). Toto pravidlo bylo inspirováno myšlenkou, že podmíněné
reflexy, které jsou pozorovatelné u všech živočichů, jsou vlastnostmi jednotlivých neuronů. Hebb se snažil
vysvětlit některé experimentální výsledky psychologie. Také jeho práce ovlivnila ostatní vědce, kteří se začali
zabývat podobnými otázkami. Avšak 40. a 50. léta zatím ještě nepřinesla zásadní pokroky v oblasti
neurovýpočtů. Typickým příkladem výzkumu v tomto období byla v roce 1951 konstrukce prvního
neuropočítače Snark, u jehož zrodu stál Marvin Minsky. Snark byl sice úspěšný z technického hlediska, dokonce
již automaticky adaptoval váhy (tj. míra synaptické propustnosti), ale ve skutečnosti nebyl nikdy využit k řešení
nějakého zajímavého praktického problému. Nicméně jeho architektura později inspirovala další konstruktéry
neuropočítačů.

V roce 1957 Frank Rosenblatt vynalezl tzv. perceptron, který je zobecněním McCullochova a Pittsova
modelu neuronu pro reálný číselný obor parametrů. Pro tento model navrhl učící algoritmus, o kterém
matematicky dokázal, že pro daná tréninková data nalezne po konečném počtu kroků odpovídající váhový vektor
parametrů (pokud existuje) nezávisle na jeho počátečním nastavení. Rosenblatt také napsal jednu z prvních knih
o neurovýpočtech „Principles of Neurodynamics“.

Na základě tohoto výzkumu Rosenblatt spolu s Charlesem Wightmanem a dalšími sestrojili během let
1957 a 1958 první úspěšný neuropočítač, který nesl jméno „Mark I Perceptron“. Protože původním odborným
zájmem Rosenblatta bylo rozpoznávání obrazců, „Mark I Perceptron“ byl navržen pro rozpoznávání znaků. Znak
byl promítán na světelnou tabuli, ze které byl snímán polem 20x20 fotovodičů. Intenzita 400 obrazových bodů
byla vstupem do neuronové sítě perceptronů, jejímž úkolem bylo klasifikovat, o jaký znak se jedná (např. „A“,
„B“ apod.). „Mark I Perceptron“ měl 512 adaptovatelných váhových parametrů, které byly realizovány polem
8x8x8 potenciometrů. Hodnota odporu u každého potenciometru, která právě odpovídala příslušné váze, byla
nastavována automaticky samostatným motorem. Ten byl řízen analogovým obvodem, který implementoval
perceptronový učící algoritmus. Jednotlivé perceptrony bylo možné spojit se vstupy libovolným způsobem.
Typicky bylo použito náhodné zapojení, aby se ilustrovala schopnost perceptronu učit se požadované vzory bez
přesného zapojení drátů v protikladu ke klasickým programovatelným počítačům. Díky úspěšné presentaci

Ú V O D D O P R O B L E M A T I K Y N E U R O N O V Ý C H S Í T Í .

Klíčová slova této kapitoly:
stav neuronu, bias neuronu, vnitřní potenciál neuronu, synaptické váhy,
aktivační(přenosová) funkce.

V této úvodní kapitole se stručně seznámíte s histori í neuronových sí t í a se
základním matematickým modelem biologického neuronu, t j . formálním neuronem .
Z tohoto modelu budeme dále vycházet , a proto je nutné, abyste jeho pochopení
věnovali zvýšenou pozornost .

uvedeného neuropočítače se neurovýpočty, které byly alternativou ke klasickým výpočtům realizovaným na von
neumannovské architektuře počítače, staly novým předmětem výzkumu. Frank Rossenblatt je proto dodnes
některými odborníky považován za zakladatele tohoto nového oboru.

Krátce po objevu perceptronu Bernard Widrow se svými studenty vyvinul další typ neuronového výpočetního
prvku, který nazval „ADALINE“ (ADAptive LInear NEuron). Tento model byl vybaven novým výkonným
učícím pravidlem, které se dodnes nezměnilo. Widrow se svými studenty demonstroval funkčnost „ADALINE“
na mnoha jednoduchých typových příkladech. Widrow také založil první firmu (Memistor Corporation)
orientovanou na hardware neuropočítačů, která v první polovině 60. let vyráběla a prodávala neuropočítače a
jejich komponenty.

Na přelomu 50. a 60. let dochází k úspěšnému rozvoji neurovýpočtů v oblasti návrhu nových modelů
neuronových sítí a jejich implementací. Například Karel Steinbuch vyvinul model binární asociativní sítě nebo
Roger Barron a Lewey Gilstrap založil v roce 1960 první firmu zaměřenou na aplikace neurovýpočtů. Výsledky
z uvedeného období jsou shrnuty v knize Nilse Nilssona „Learning Machines“ z roku 1965.

Přes nesporné úspěchy dosažené v tomto období se obor neuronových sítí potýkal se dvěma problémy.
Za prvé, většina badatelů přistupovala k neuronovým sítím z experimentálního hlediska a zanedbávala
analytický výzkum neuronových modelů. Za druhé, nadšení některých výzkumných pracovníků vedlo k velké
publicitě neopodstatněných prohlášení (např. za několik málo let bude vyvinut umělý mozek). Tyto skutečnosti
diskreditovaly neuronové sítě v očích odborníků z jiných oblastí a odradily vědce a inženýry, kteří se o
neurovýpočty zajímali. Navíc se samostatný obor neuronových sítí vyčerpal a další krok v této oblasti by býval
požadoval radikálně nové myšlenky a postupy. Nejlepší odborníci oblast neuronových sítí opouštěli a začali se
zabývat příbuznými obory umělé inteligence.

Poslední epizodou tohoto období byla kampaň vedená Marvinem Minským a Seymourem Papertem,
kteří využili svůj vliv na to, aby zdiskreditovali výzkum neuronových sítí, nacházející se v krizi, ve snaze přenést
finanční zdroje z této oblasti na jiný výzkum v oblasti umělé inteligence. V té době koloval rukopis jejich
výzkumné zprávy, která napomáhala tomuto záměru. Uvedený rukopis byl v upravené formě publikován roce
1969 pod názvem „Perceptrons“. V této knize Minsky a Papert využili pro svou argumentaci známého
triviálního faktu, že jeden perceptron nemůže počítat jednoduchou logickou funkci, tzv. vylučovací disjunkci
(XOR). Tento problém lze sice vyřešit vytvořením dvouvrstvé sítě se třemi neurony, ale pro vícevrstvý
perceptron nebyl v této době znám učící algoritmus. Autoři z toho nesprávně vyvodili, že takový algoritmus
vzhledem ke komplikovanosti funkce, kterou vícevrstvá síť počítá, snad ani není možný. Jejich tvrzení bylo
všeobecně přijato a považováno za matematicky dokázané. Kampaň Minského a Paperta byla úspěšná, výzkum
neuronových sítí nebyl již déle dotován a neurovýpočty byly považovány za neperspektivní.

V dalším období od roku 1967 do 1982 probíhal výzkum neuronových sítí ojediněle a izolovaně,
převážně mimo území Spojených států, kde kniha „Perceptrons“ měla velký vliv. Většina prací byla publikována
např. pod hlavičkou adaptivní zpracování signálů, rozpoznávání obrazců a biologické modelování. Avšak již v
počátcích tohoto tichého období se neurovýpočty začali zabývat talentovaní badatelé, mezi nimi byli např.
Shun-Ichi Amari, James Anderson, Kunihiko Fukushima, Stephen Grossberg, Harry Klopf, Teuvo Kohonen a
David Willshaw. Tito vědci přispěli svými objevy k renesanci neuronových sítí.

Počátkem 80. let se badatelé v oblasti neurovýpočtů osmělili a začali podávat vlastní grantové projekty
zaměřené na vývoj neuropočítačů a jejich aplikace. Zásluhou programového manažera Ira Skurnicka začala v
roce 1983 americká grantová agentura DARPA (Defense Advanced Research Projects Agency) finančně
podporovat výzkum neuronových sítí a jejího příkladu v krátké době následovaly i jiné organizace podporující
základní i aplikovaný výzkum.

Další zásluhu na renesanci oboru neuronových sítí měl světově uznávaný fyzik John Hopfield, který se
v této době zabýval neurovýpočty. Své výsledky publikoval v roce 1982 a 1984. Ukázal souvislost některých
modelů neuronových sítí s fyzikálními modely magnetických materiálů. Svými zvanými přednáškami, které měl
po celém světě, získal pro neuronové sítě stovky kvalifikovaných vědců, matematiků a technologů.

V roce 1986 publikovali své výsledky badatelé z tzv. „PDP skupiny“ (Parallel Distributed Processing
Group). Ve svých pracích popsali učící algoritmus zpětného šíření chyby (backpropagation) pro vícevrstvou
neuronovou síť a vyřešili tak problém, který se Minskému a Pappertovi v 60. letech jevil jako nepřekonatelná
překážka pro využití a další rozvoj neuronových sítí. Tento algoritmus je doposud nejpoužívanější učící metodou
neuronových sítí a jeho publikováním dosáhl zájem o neuronové sítě svého vrcholu.

V roce 1987 se v San Diegu konala první větší konference specializovaná na neuronové sítě (IEEE
International Conference on Neural Networks), na které byla založena mezinárodní společnost pro výzkum
neuronových sítí INNS (International Neural Network Society). O rok později INNS začala vydávat svůj časopis
„Neural Networks“. V následujících letech vznikly další specializované časopisy: Neural Computing (1989),
IEEE Transactions on Neural Networks (1990) a mnoho jiných (např. v Praze vychází od roku 1991 mezinárodní
časopis Neural Network World). Od roku 1987 mnoho renovovaných univerzit založilo nové výzkumné ústavy

zabývající se neuronovými sítěmi a vyhlásilo výukové programy zaměřené na neurovýpočty. Tento trend
pokračuje dodnes.

Biologický neuron

Původním cílem výzkumu neuronových sítí byla snaha pochopit a modelovat způsob, jakým myslíme a

způsob, jak funguje lidský mozek. Neurofyziologické poznatky umožnily vytvořit zjednodušené matematické
modely, které se dají využít pro neurovýpočty při řešení praktických úloh z oblasti umělé inteligence. To
znamená, že neurofyziologie zde slouží jen jako zdroj inspirací a navržené modely neuronových sítí jsou již dále
rozvíjeny bez ohledu na to, zda modelují lidský mozek. Při vytváření modelů neuronových sítí nám nejde o
vytvoření identických kopií lidského mozku, ale chceme napodobit pouze jeho základní funkce.

Základním stavebním funkčním prvkem nervové soustavy je nervová buňka, neuron. Neurony jsou
samostatné specializované buňky, určené k přenosu, zpracování a uchování informací, které jsou nutné pro
realizaci životních funkcí organismu. Struktura neuronu je schématicky znázorněna na obrázku 1.

. Tělo buňky Synapse

Axonové vlákno

Dendrity

O b r á z e k 1 : B i o l o g i c k ý n e u r o n .

Neuron je přizpůsoben pro přenos signálů tak, že kromě vlastního těla (somatu), má i vstupní a výstupní

přenosové kanály: dendrity a axon. Z axonu odbočuje řada větví (terminálů), zakončených blánou, která se
převážně stýká s výběžky (trny), dendritů jiných neuronů. K přenosu informace pak slouží unikátní
mezineuronové rozhraní, synapse. Míra synaptické propustnosti je nositelem všech význačných informací během
celého života organismu. Z funkčního hlediska lze synapse rozdělit na excitační, které umožňují rozšíření
vzruchu v nervové soustavě a na inhibiční, které způsobují jeho útlum. Paměťová stopa v nervové soustavě
vzniká pravděpodobně zakódováním synaptických vazeb na cestě mezi receptorem (čidlem orgánu) a efektorem
(výkonným orgánem). Šíření informace je umožněno tím, že soma i axon jsou obaleny membránou, která má
schopnost za jistých okolností generovat elektrické impulsy. Tyto impulsy jsou z axonu přenášeny na dendrity
jiných neuronů synaptickými branami, které svojí propustností určují intenzitu podráždění dalších neuronů.
Takto podrážděné neurony při dosažení určité hraniční meze, tzv. prahu, samy generují impuls a zajišťují tak
šíření příslušné informace. Po každém průchodu signálu se synaptická propustnost mění, což je předpokladem
paměťové schopnosti neuronů. Také propojení neuronů prodělává během života organismu svůj vývoj:
v průběhu učení se vytváří nové paměťové stopy nebo při zapomínání se synaptické spoje přerušují.

Nervová soustava člověka je velmi složitý systém, který je stále předmětem zkoumání. Uvedené velmi
zjednodušené neurofyziologické principy nám však v dostatečné míře stačí k formulaci matematického modelu
neuronové sítě.

V dalších kapitolách budeme používat následujícího značení:

xi, yj Stav neuronů Xi, Yj, tj.

pro vstupní neurony Xi je xi vstupní signál;
pro ostatní neurony Yj je yj = f(y_inj).

wij Váha přiřazena spojení z neuronu Xi do neuronu Yj.

bj Bias neuronu Yj.

y_inj Vnitřní potenciál neuronu Yj:

W Váhová matice: W = {wij}.

w.j Vektor vah: w.j = (w1j, w2j, ..., wnj)T..

Je to j.sloupec váhové matice.

x Norma nebo velikost vektoru x.

θj Práh pro aktivační funkci neuronu Yj.

s Tréninkový vstupní vektor: s = (s1, s2, ..., sn).

t Tréninkový výstupní vektor: t = (t1, t2, ..., tm).

x Vstupní vektor: x = (x1, x2, ..., xn).

Δ wij Změna váhy wij: Δ wij = [wij(new) - wij(old)].

α Koeficient učení.

Formální neuron

Základem matematického modelu neuronové sítě je formální neuron. Jeho struktura je schematicky

zobrazena na obrázku 2. Formální neuron Yj (dále jen neuron) má n obecně reálných vstupů x1,...,xn, které
modelují dendrity. Vstupy jsou ohodnoceny reálnými synaptickými váhami w1j, , wnj., které určují jejich
propustnost.Ve shodě s neurofyziologickou motivací mohou být synaptické váhy i záporné, čímž se vyjadřuje
jejich inhibiční charakter.

1
bj

wnjw2j
w1j

yj

Yj.

...
XnX2X1

O b r á z e k 2 : F o r m á l n í n e u r o n s b i a s e m .

Vážená suma vstupních hodnot představuje vnitřní potenciál j. neuronu:

y in w xj ij i
i

n

_ =
=
∑

1

.

Bias může být do vztahu včleněn přidáním komponent x0 = 1 k vektoru x, tj. x = (1, x1, x2, ..., xn). Bias je dále
zpracováván jako jakákoliv jiná váha, tj. w0j = bj. Vstup do neuronu Yj je dán následujícím vztahem

y in w xj ij i
i

n

_ =
=
∑

0

 = w0j + x wi ij
i

n

=
∑

1

 = bj + x wi ij
i

n

=
∑

1

.

Hodnota vnitřního potenciálu y_inj po dosažení prahové hodnoty bj indukuje výstup (stav) neuronu yj, který
modeluje elektrický impuls axonu. Nelineární nárůst výstupní hodnoty yj = f(y_inj) při dosažení prahové hodnoty
potenciálu bj je dán aktivační (přenosovou) funkcí f. Nejjednodušším typem přenosové funkce je ostrá
nelinearita, která má pro j. neuron (Yj) tvar:

()f y in
y in
y inj

j

j
_

_ ;
_ .=

≥
<

⎧
⎨
⎩

1 0
0

pokud
0 pokud

Někteří autoři nepoužívají váhový bias, ale místo toho pracují s fixním prahem θ pro aktivační funkci. V tomto
případě má přenosové funkce ostrá nelinearita pro j. neuron (Yj) tvar:

()f y in
y in
y inj

j

j
_

_ ;
_ ,=

≥
<

⎧
⎨
⎩

1 pokud
0 pokud

θ
θ

kde

y in w xj ij i
i

n

_ =
=
∑

1

.

K lepšímu pochopení funkce jednoho neuronu nám pomůže geometrická představa načrtnutá na obrázku 3.
Vstupy neuronu budeme chápat jako souřadnice bodu v n-rozměrném Euklidovském vstupním prostoru En.

[]x x E

w w x

y

n n

i ii

n

1

0 1
0

1

+ +

+
=

∈

+ >

→ =
∑

,...,

w w xi ii

n
0 1

0+ =
=∑

[]x x E

w w x

y

n n

i ii

n

1

0 1
0

0

− −

−
=

∈

+ <

→ =
∑

,...,

O b r á z e k 3 : G e o m e t r i c k á i n t e r p r e t a c e f u n k c e n e u r o n u .

V tomto prostoru má rovnice nadroviny (v E2 přímka, v E3 rovina) tvar:

w w xi i
i

n

0
1

0+ =
=
∑ .

Tato nadrovina dělí vstupní prostor na dva poloprostory. Souřadnice bodů [x1
+,...,xn

+], které leží v jednom
poloprostoru, splňují následující nerovnost:

w w xi i
i

n

0
1

0+ >+

=
∑ .

Body [x1

-,...,xn
-] z druhého poloprostoru pak vyhovují relaci s opačným relačním znaménkem:

w w xi i
i

n

0
1

0+ <−

=
∑ .

Synaptické váhy neuronu w0,..., wn (včetně biasu) lze chápat jako koeficienty této nadroviny. Je zřejmé,

že neuron klasifikuje, ve kterém z obou poloprostorů určených nadrovinou leží bod, jehož souřadnice jsou na
vstupu, tj. neuron realizuje dichotomii vstupního prostoru. Neuron je tedy aktivní, je-li jeho stav y = 1 a pasivní,
pokud je jeho stav y = 0.

Úkoly:

Vytvořte geometrickou interpretaci funkce jednoho neuronu ve 2-rozměrném Euklidovském prostoru.
Vstupy neuronu jsou souřadnice bodu v E2.

Hebbovo učení

Hebbovo učení je založeno na myšlence, že váhové hodnoty na spojení mezi dvěma neurony, které jsou
současně ve stavu „on“, budou narůstat a naopak: váhové hodnoty na spojení mezi dvěma neurony, které jsou
současně ve stavu „off“, se budou zmenšovat. Uvažujme jednovrstvou (dopřednou) neuronovou síť, ve které jsou
všechny vstupní neurony propojeny s jediným výstupní neuronem, ale ne již navzájem mezi sebou. Pokud jsou
data reprezentována v bipolární formě, lze váhové hodnoty aktualizovat následovně:

wi(new) = wi(old) + xiy.

Popis algoritmu

Krok 0. Inicializace všech vah:

wi = 0 (i = 1 až n)

Krok 1. Pro každý vzor - tréninkový pár, tj. vstupní vektor (s) a příslušný výstup (t), opakovat

následující kroky (2 až 4).

Krok 2. Aktivovat vstupní neurony:

xi = si (i = 1 až n).

Krok 3. Aktivovat výstupní neuron:

y = t.

Krok 4. Aktualizovat váhy podle

wi(new) = wi(old) + xiy (i = 1 až n).

Aktualizovat biasy podle

b(new) = b(old) + y.

Bias lze zapsat také jako váhovou hodnotu přiřazenou výstupu z neuronu, jehož aktivace má vždy hodnotu 1.
Aktualizace váhových hodnot může být také vyjádřena ve vektorové formě jako

w(new) = w(old) + xy.

H E B B O V O U Č E N Í .

Klíčová slova této kapitoly:
Hebbovo učení, tréninkový vzor, váhový přírustek.

Dř íve než se pust í te do studia této kapitoly, důkladně se seznamte
s problematikou formálního neuronu a s používaným značením
(viz kapitola „Úvod do problematiky neuronových sí t í“).

Váhový přírůstek lze zapsat ve tvaru

Δw = xy

a potom

w(new) = w(old) + Δw.

Výše uvedený algoritmus je pouze jedním z mnoha způsobu implementace Hebbova pravidla učení. Tento
algoritmus vyžaduje pouze jeden průchod tréninkovou množinou. Existují však i jiné ekvivalentní metody
nalezení vhodných váhových hodnot, které jsou popsány dále.

Příklad:
 Hebbovo pravidlo učení pro logickou funkci „AND“ v bipolární reprezentaci.

VSTUP POŽADOVANÝ
x1 x2 b VÝSTUP
1 1 1 1
1 -1 1 -1
-1 1 1 -1
-1 -1 1 -1

Po předložení prvního tréninkového vzoru, dostáváme následující:

VSTUP POŽADOVANÝ
VÝSTUP

PŘÍRUSTKY
VAH

VÁHOVÉ HODNOTY

x1 x2 b Δw1 Δw2 Δb w1 w2 b
 0 0 0

1 1 1 1 1 1 1 1 1 1

Separující nadrovina je dána rovnicí přímky

x2 = -x1 - 1.

--

+-

x2

x1

Obrázek 4: Hebbovo pravidlo učení pro logickou
funkci „AND“ v bipolární reprezentaci - první
tréninkový vzor.

Předložíme-li druhý tréninkový vzor, dostáváme následující:

VSTUP POŽADOVANÝ
VÝSTUP

PŘÍRUSTKY
VAH

VÁHOVÉ HODNOTY

x1 x2 b Δw1 Δw2 Δb w1 w2 b
 1 1 1

1 -1 1 -1 -1 1 -1 0 2 0

Separující nadrovina je pak dána rovnicí přímky

x2 = 0.

--

+-

x2

x1

Obrázek 5: Hebbovo pravidlo učení pro logickou
funkci „AND“ v bipolární reprezentaci - druhý
tréninkový vzor.

Po předložení třetího tréninkového vzoru, dostáváme:

VSTUP POŽADOVANÝ
VÝSTUP

PŘÍRUSTKY
VAH

VÁHOVÉ HODNOTY

x1 x2 b Δw1 Δw2 Δb w1 w2 b
 0 2 0

-1 1 1 -1 1 -1 -1 1 1 -1

Separující nadrovina je dána rovnicí přímky

x2 = -x1 + 1.

--

+-

x2

x1

Obrázek 6: Hebbovo pravidlo učení pro logickou
funkci „AND“ v bipolární reprezentaci - třetí a
čtvrtý tréninkový vzor.

A nakonec po předložení čtvrtého tréninkového vzoru, dostáváme:

VSTUP POŽADOVANÝ
VÝSTUP

PŘÍRUSTKY
VAH

VÁHOVÉ HODNOTY

x1 x2 b Δw1 Δw2 Δb w1 w2 b
 1 1 -1

-1 -1 1 -1 1 1 -1 2 2 -2

Tvar separující nadroviny (přímky) se nezměnil, tj.

x2 = -x1 + 1.

Úkoly:

Objasněte Hebbovo pravidlo učení pro logickou funkci „OR“ v bipolární reprezentaci.

Neuronová síť

Každá neuronová síť je složena z formálních neuronů, které jsou vzájemně propojeny tak, že výstup

jednoho neuronu je vstupem do (obecně i více) neuronů. Obdobně jsou terminály axonu biologického neuronu
přes synaptické vazby spojeny s dendrity jiných neuronů. Počet neuronů a jejich vzájemné propojení v síti určuje
architekturu (topologii) neuronové sítě. Z hlediska využití rozlišujeme v síti vstupní, pracovní (skryté, mezilehlé,
vnitřní) a výstupní neurony. Šíření a zpracování informace v síti je umožněno změnou stavů neuronů ležících na
cestě mezi vstupními a výstupními neurony. Stavy všech neuronů v síti určují stav neuronové sítě a synaptické
váhy všech spojů představují konfiguraci neuronové sítě.

Neuronová síť se v čase vyvíjí, mění se stav neuronů, adaptují se váhy. V souvislosti se změnou těchto
charakteristik v čase je účelné rozdělit celkovou dynamiku neuronové sítě do tří dynamik a uvažovat pak tři
režimy práce sítě: organizační (změna topologie), aktivní (změna stavu) a adaptivní (změna konfigurace).
Uvedené dynamiky neuronové sítě jsou obvykle zadány počátečním stavem a matematickou rovnicí, resp.
pravidlem, které určuje vývoj příslušné charakteristiky sítě (topologie, stav, konfigurace) v čase. Změny, které se
řídí těmito zákonitostmi probíhají v odpovídajících režimech práce neuronové sítě.

Konkretizací jednotlivých dynamik pak obdržíme různé modely neuronových sítí vhodné pro řešení
různých tříd úloh.

Organizační dynamika

Organizační dynamika specifikuje architekturu neuronové sítě a její případnou změnu. Změna topologie
se většinou uplatňuje v rámci adaptivního režimu tak, že síť je v případě potřeby rozšířena o další neurony a
příslušné spoje. Avšak organizační dynamika převážně předpokládá pevnou architekturu neuronové sítě (tj.
takovou architekturu, která se již v čase nemění). Rozlišujeme dva typy architektury: cyklická (rekurentní) a
acyklická (dopředná) síť. V případě cyklické topologie existuje v síti skupina neuronů, která je spojena v kruhu
(tzv. cyklus). To znamená, že v této skupině neuronů je výstup prvního neuronu vstupem druhého neuronu, jehož
výstup je opět vstupem třetího neuronu atd., až výstup posledního neuronu v této skupině je vstupem prvního
neuronu. Nejjednodušším příkladem cyklu je zpětná vazba neuronu, jehož výstup je zároveň jeho vstupem.
Nejvíce cyklů je v úplné topologii cyklické neuronové sítě, kde výstup libovolného neuronu je vstupem každého
neuronu. Příklad obecné cyklické neuronové sítě je uveden na obrázku 7, kde jsou vyznačeny všechny možné
cykly.

N E U R O N O V Á S Í Ť .

Klíčová slova této kapitoly:
architektura (topologie) neuronové sí tě , organizační dynamika neuronové
sí tě , akt ivní dynamika neuronové sí tě , adaptivní dynamika neuronové sí tě ,
homogenní neuronová síť , učení s uč i te lem, samoorganizace.

Tato kapitola je úvodní kapitolou zabývající se problematikou vzájemného
propojení neuronů , t j . architekturou neuronové sí tě . Dále si zde ozřejmíme i
způsob, jakým probíhá šíření a zpracování informace v neuronové sí t i .
Všechny zde uvedené pojmy doporučuji peč l ivě nastudovat , protože je budeme
dále velmi často používat .

O b r á z e k 7 : P ř í k l a d c y k l i c k é a r c h i t e k t u r y .

V acyklických sítích naopak cyklus neexistuje a všechny cesty vedou jedním směrem. Příklad acyklické

sítě je na obrázku 8, kde je vyznačena nejdelší cesta.

O b r á z e k 8 : P ř í k l a d a c y k l i c k é a r c h i t e k t u r y .

U acyklické neuronové sítě lze neurony vždy (disjunktně) rozdělit do vrstev, které jsou uspořádány (např. nad
sebou) tak, že spoje mezi neurony vedou jen z nižších vrstev do vrstev vyšších (obecně však mohou přeskočit
jednu nebo i více vrstev). Speciálním případem takové architektury je vícevrstvá neuronová síť.

skryté vrstvy

vstupní vrstva

výstupní vrstva

}

O b r á z e k 9 : P ř í k l a d a r c h i t e k t u r y v í c e v r s t v é n e u r o n o v é s í t ě

3 - 4 - 3 - 2 .

V této síti je první (dolní), tzv. vstupní vrstva tvořena vstupními neurony a poslední (horní), tzv. výstupní vrstva
je složena z výstupních neuronů. Ostatní, tzv. skryté (mezilehlé, vnitřní) vrstvy jsou složeny ze skrytých
(vnitřních) neuronů. V topologii vícevrstvé sítě jsou neurony jedné vrstvy spojeny se všemi neurony
bezprostředně následující vrstvy. Proto architekturu takové sítě lze zadat jen počty neuronů v jednotlivých
vrstvách (oddělených pomlčkou), v pořadí od vstupní k výstupní vrstvě. Také cesta v takové síti vede směrem od
vstupní vrstvy k výstupní, přičemž obsahuje po jednom neuronu z každé vrstvy. Příklad architektury třívrstvé
neuronové sítě 3-4-3-2 s jednou vyznačenou cestou je na obrázku 9, kde kromě vstupní a výstupní vrstvy jsou i
dvě skryté vrstvy.

Aktivní dynamika

Aktivní dynamika specifikuje počáteční stav sítě a způsob jeho změny v čase při pevné topologii a
konfiguraci. V aktivním režimu se na začátku nastaví stavy vstupních neuronů na tzv. vstup sítě a zbylé neurony
jsou v uvedeném počátečním stavu. Všechny možné vstupy, resp. stavy sítě, tvoří vstupní prostor, resp. stavový
prostor, neuronové sítě. Po inicializaci stavu sítě probíhá vlastní výpočet. Obecně se předpokládá spojitý vývoj
stavu neuronové sítě v čase a hovoří se o spojitém modelu, kdy stav sítě je spojitou funkcí času, která je obvykle
v aktivní dynamice zadána diferenciální rovnicí. Většinou se však předpokládá diskrétní čas, tj. na počátku se síť
nachází v čase 0 a stav sítě se mění jen v čase 1, 2, 3, V každém takové časové kroku je podle daného
pravidla aktivní dynamiky vybrán jeden neuron (tzv. sekvenční výpočet) nebo více neuronů (tzv. paralelní
výpočet), které aktualizují (mění) svůj stav na základě svých vstupů, tj. stavů sousedních neuronů, jejichž
výstupy jsou vstupy aktualizovaných neuronů. Podle toho, zda neurony mění svůj stav nezávisle na sobě nebo je
jejich aktualizace řízena centrálně, rozlišujeme synchronní a asynchronní modely neuronových sítí. Stav
výstupních neuronů, který se obecně mění v čase, je výstupem neuronové sítě (tj. výsledkem výpočtu). Obvykle
se však uvažuje taková aktivní dynamika, že výstup sítě je po nějakém čase konstantní a neuronová síť tak
v aktivním režimu realizuje nějakou funkci na vstupním prostoru, tj. ke každému vstupu sítě vypočítá právě
jeden výstup. Tato tzv. funkce neuronové sítě je dána aktivní dynamikou, jejíž rovnice parametricky závisí na
topologii a konfiguraci, které se v aktivním režimu, jak již bylo uvedeno, nemění. Je zřejmé, že v aktivním
režimu se neuronová síť využívá k vlastním výpočtům.

Aktivní dynamika neuronové sítě také určuje funkci jednoho neuronu, jejíž předpis (matematický
vzorec) je většinou pro všechny (nevstupní) neurony v síti stejný (tzv. homogenní neuronová síť). Můžeme se
setkat s následujícími sigmoidními aktivačními funkcemi:

()

()

()

()

f x
x

x

f x
x

x x
x

f x
e

f x
e
e

x

x

x

=
≥

<

⎧
⎨
⎪

⎩⎪

=
≥

≤ ≤
<

⎧

⎨
⎪

⎩
⎪

=
+

=
−
+

−

−

−

1 1

0

1 1
0 1

0 0

1
1

1
1

pokud

0 pokud
ostrá nelinearita

saturovaná lineární funkce

standardní (logistická) sigmoida

hyperbolický tangens

Grafy těchto funkcí jsou znázorněny na obrázku 10. Podle toho, zda je funkce neuronu diskrétní nebo spojitá
rozlišujeme diskrétní a analogové modely neuronových sítí.

x0

1

ostrá nelinearita

f(x)

x0

1

saturovaná lineární
funkce

f(x)

x

1

hyperbolický tangents

f(x)

0

x0

1

standardní logistická
funkce

f(x)

O b r á z e k 1 0 : G r a f y s i g m o i d n í c h a k t i v a č n í c h f u n k c í

Adaptivní dynamika

Adaptivní dynamika neuronové sítě specifikuje počáteční konfiguraci sítě a způsob, jakým se mění
váhové hodnoty na spojeních mezi jednotlivými neurony v čase. Všechny možné konfigurace sítě tvoří váhový

prostor neuronové sítě. V adaptivním režimu se tedy na začátku nastaví váhy všech spojů v síti na počáteční
konfiguraci (např. náhodně). Po inicializaci konfigurace sítě probíhá vlastní adaptace. Podobně jako v aktivní
dynamice se obecně uvažuje spojitý model se spojitým vývojem konfigurace neuronové sítě v čase, kdy váhy
sítě jsou (spojitou) funkcí času, která je obvykle v adaptivní dynamice zadána diferenciální rovnicí. Většinou se
však předpokládá diskrétní čas adaptace.

Víme, že funkce sítě v aktivním režimu závisí na konfiguraci. Cílem adaptace je nalézt takovou
konfiguraci sítě ve váhovém prostoru, která by v aktivním režimu realizovala předepsanou funkci. Jestliže
aktivní režim sítě se využívá k vlastnímu výpočtu funkce sítě pro daný vstup, pak adaptivní režim slouží k učení
(„programování“) této funkce.

Požadovaná funkce sítě je obvykle zadána tzv. tréninkovou množinou (posloupností) dvojic
vstup/výstup sítě (tzv. tréninkový vzor). Způsobu adaptace, kdy požadované chování sítě modeluje učitel, který
pro vzorové vstupy sítě informuje adaptivní mechanismus o správném výstupu sítě, se říká učení s učitelem
(supervised learning). Někdy učitel hodnotí kvalitu momentální skutečné odpovědi (výstupu) sítě pro daný
vzorový vstup pomocí známky, která je zadána místo požadované hodnoty výstupu sítě (tzv. klasifikované
učení). Jiným typem adaptace je tzv. samoorganizace. V tomto případě tréninková množina obsahuje jen vstupy
sítě. To modeluje situaci, kdy není k dispozici učitel, proto se tomuto způsobu adaptace také říká učení bez
učitele. Neuronová síť v adaptivním režimu sama organizuje tréninkové vzory (např. do shluků) a odhaluje jejich
souborné vlastnosti.

Úkoly:

Zopakujte si všechny základní pojmy této kapitoly (viz „KLÍČOVÁ SLOVA“ kapitoly)

Perceptron

Autorem této nejjednodušší neuronové sítě je Frank Rosenblatt (r. 1957). Za typický perceptron je
považována jednoduchá neuronová síť s n vstupy (x1, x2, ..., xn) a jedním pracovním neuronem spojeným se
všemi svými vstupy. Každému takovému spojení je přiřazena váhová hodnota (w1, w2, ..., wn). Signál přenášený
vstupními neurony je buď binární (tj. má hodnotu 0 nebo 1), nebo bipolární (tj. má hodnotu -1, 0 nebo 1).
Výstupem z perceptronu je pak y = f(y_in), kde aktivační funkce f má tvar (θ je libovolný, ale pevný práh
aktivační funkce f):

()f y in
pokud y in
pokud y in
pokud y in

_
_

_
_

=
>

− ≤ ≤
− < −

⎧

⎨
⎪

⎩
⎪

1
0

1

θ
θ θ

θ

Váhové hodnoty jsou adaptovány podle adaptačního pravidla perceptronu tak, aby diference mezi skutečným a
požadovaným výstupem byla co nejmenší. Adaptační pravidlo perceptronu je mnohem silnější než Hebbovo
adaptační pravidlo.

Popis algoritmu

Krok 0. Inicializace vah wi (i = 1 až n) a biasu b malými náhodnými čísly.

Přiřazení inicializační hodnoty koeficientu učení α (0 < α ≤ 1).

Krok 1. Dokud není splněna podmínka ukončení výpočtu, opakovat kroky (2 až 6).

Krok 2. Pro každý tréninkový pár s:t (tj. vstupní vektor s a příslušný výstup t),

provádět kroky (3 až 5).

Krok 3. Aktivuj vstupní neurony:

xi = si.

P E R C E P T R O N .

Klíčová slova této kapitoly:
perceptron, adaptační pravidlo perceptronu, koeficient učení , práh.

Př i popisu algori tmu adaptace perceptronu budeme používat značení , které je
uvedeno v kapitole „Úvod do problematiky neuronových sí t í“.
Perceptron je nej jednodušší neuronová síť s jedním pracovním neuronem a na jeho
adaptačním algori tmu si vysvě t l íme proces učení s uč i te lem.

Krok 4 Vypočítej skutečnou hodnotu na výstupu:

y in b x wi i
i

_ ;= + ∑ .

y
pokud y in
pokud y in
pokud y in

=
>

− ≤ ≤
− < −

⎧

⎨
⎪

⎩
⎪

1
0

1

_
_

_

θ
θ θ

θ

Krok 5 Aktualizuj váhové hodnoty a bias pro daný vzor

jestliže y ≠ t,

 wi(new) = wi(old) + α t xi (i = 1 až n).

 b(new) = b(old) + α t.

jinak

 wi(new) = wi(old)

 b(new) = b(old)

Krok 6. Podmínka ukončení:

jestliže ve 2. kroku již nenastává žádná změna váhových hodnot, stop; jinak,

pokračovat.

Aktualizaci podléhají pouze ty váhové hodnoty, které neprodukují požadovaný výstup y. To znamená, že čím
více tréninkových vzorů má korektní výstupy, tím méně je potřeba času k jejich tréninku. Práh aktivační funkce
je pevná nezáporná hodnota θ. Tvar aktivační funkce pracovního neuronu je takový, že umožňuje vznik pásu
pevné šířky (určené hodnotou θ) oddělujícího oblast pozitivní odezvy od oblasti negativní odezvy na vstupní
signál. Předcházející analýza o zaměnitelnosti prahu a biasu zde nemá uplatnění, protože změna θ mění šířku
oblasti, ne však její umístění. Místo jedné separující přímky tedy máme pás určený dvěma rovnoběžnými
přímkami:

1. Přímka separující oblast pozitivní odezvy od oblasti nulové odezvy na vstupní signál; tato hraniční přímka

má tvar:
w1 x1 + w2 x2 + b >θ.

2. Přímka separující oblast nulové odezvy od oblasti negativní odezvy na vstupní signál;. tato hraniční přímka

má tvar:
w1 x1 + w2 x2 + b < -θ.

Příklad:
 Adaptační algoritmus perceptronu pro logickou funkci „AND“: binární vstupní hodnoty, bipolární
výstupní hodnoty. Pro jednoduchost předpokládejme, že θ = 0,2 a α = 1.

VSTUP POŽADOVANÝ
x1 x2 b VÝSTUP
1 1 1 1
1 0 1 -1
0 1 1 -1
0 0 1 -1

Po předložení prvního tréninkového vzoru, dostáváme následující:

VSTUP VÝSTUP PŘÍRUSTKY
VAH

VÁHOVÉ HODNOTY

x1 x2 b y_in y t Δw1 Δw2 Δb w1 w2 b
 0 0 0

1 1 1 0 0 1 1 1 1 1 1 1

Separující přímky jsou dány rovnicemi

x1 + x2 + 1 = 0,2

x1 + x2 + 1 = - 0,2

--

+-

x2

x1

Obrázek 11: Hraniční pás pro logickou funkci
„AND“ - první tréninkový vzor.

Předložíme-li druhý tréninkový vzor, dostáváme následující:

VSTUP VÝSTUP PŘÍRUSTKY
VAH

VÁHOVÉ HODNOTY

x1 x2 b y_in y t Δw1 Δw2 Δb w1 w2 b
 1 1 1

1 0 1 2 1 -1 -1 0 -1 0 1 0

Separující přímky mají tvar

x2 = 0,2

x2 = - 0,2

--

- +

x2

x1

 Obrázek 12: Hraniční pás pro logickou funkci
„AND“ - druhý tréninkový vzor

Po předložení třetího tréninkového vzoru, dostáváme:

VSTUP VÝSTUP PŘÍRUSTKY
VAH

VÁHOVÉ HODNOTY

x1 x2 b y_in y t Δw1 Δw2 Δb w1 w2 b
 0 1 0

0 1 1 1 1 -1 0 -1 -1 0 0 -1

Pro úplnost prvního tréninkového cyklu předložíme i čtvrtý vzor a dostáváme následující:

VSTUP VÝSTUP PŘÍRUSTKY
VAH

VÁHOVÉ HODNOTY

x1 x2 b y_in y t Δw1 Δw2 Δb w1 w2 b
 0 0 -1

0 0 1 -1 -1 -1 0 0 0 0 0 -1

Výsledky po desátém tréninkovém cyklu jsou:

1 1 1 1 1 1 0 0 0 2 3 -4
1 0 1 -2 -1 -1 0 0 0 2 3 -4
0 1 1 -1 -1 -1 0 0 0 2 3 -4
0 0 1 -4 -1 -1 0 0 0 2 3 -4

-

- -

+

x2

x1

Obrázek 13: Hraniční pás pro logickou funkci „AND“ po
adaptaci algoritmem perceptronu.

Kladná odezva je dána všemi body, pro které platí

2x1 + 3x2 -4 > 0,2.

Hraniční přímka oblasti má tvar

x x2 1
2
3

7
5

= − + .

Záporná odezva je dána všemi body, pro které platí

2x1 + 3x2 -4 < - 0,2.

Hraniční přímka oblasti má pak tvar

x x2 1
2
3

19
15

= − + .

Úkoly:

1. Srovnejte Hebbovo adaptační pravidlo a adaptační pravidlo perceptronu.

2. Objasněte adaptační algoritmus perceptronu pro logickou funkci „OR“ v bipolární reprezentaci.

Korespondenční úkoly:

Vytvořte počítačový program pro realizaci adaptačního algoritmu perceptronu.

Adaline

Adaline, tj. Adaptive Linear Neuron. Pro své vstupy obvykle používá bipolární aktivaci (1 nebo -1),
výstupní hodnota je nejčastěji také bipolární. Adaline má rovněž bias chovající se jako regulovatelná váha (w0)
přiřazená spojení, které vychází z neuronu, jehož aktivace je vždy 1.

Adaptační algoritmus pro Adaline má následující tvar:

Krok 0. Inicializace vah malými náhodnými hodnotami.

Přiřazení inicializační hodnoty koeficientu učení α (viz poznámky za

 algoritmem).

Krok 1. Dokud není splněna podmínka ukončení výpočtu, opakovat kroky (2 až 6).

Krok 2. Pro každý bipolární tréninkový pár s:t (tj. vstupní vektor s a příslušný výstup

t), provádět kroky (3 až 5).

Krok 3. Aktivovat vstupní neurony:

xi = si.

Krok 4 Vypočítat skutečnou hodnotu na výstupu:

y in b x wi i
i

_ ;= + ∑ .

y = y_in.

Krok 5 Aktualizovat váhové hodnoty a i = 1, ..., n:

 wi(new) = wi(old) + α (t - y_in) xi.

 b(new) = b(old) + α (t - y_in).

Krok 6. Podmínka ukončení:

jestliže největší změna váhových hodnot, která se vyskytuje v kroku 2 je

menší než maximální povolená chyba, stop; jinak, pokračovat.

A D A L I N E .
M A D A L I N E .

Klíčová slova této kapitoly:
Adaline, Madaline, adaptační algori tmus pro Adaline, del ta pravidlo.

Př i popisu adaptačního algori tmu pro Adaline a Madaline budeme vycházet ze
značení , které je uvedeno v kapitole „Úvod do problematiky neuronových sí t í“ a
které bude v této kapitole rozší řeno.
Adaptační algori tmus neuronu Adaline bude srovnán s adaptačním algori tmem
percetronu.
V závěru pak budou uvedeny možnosti klasif ikace různých typů neuronových sí t í
(t j . 1-vrstvé, vrstvé a 3-vrstvé neuronové s í tě) .

Nastavení vhodné hodnoty koeficientu učení α se děje následovně:

Podle Hecht-Nielsena lze za jeho horní hraniční hodnotu považovat největší vlastní číslo korelační

matice R vstupu (řádku) vektoru x(p),

() ()R
P

p pT

p

P

=
=
∑1

1

x x ,

tedy
α < jedna polovina největší hodnoty vlastního čísla R.

Jelikož hodnota R není během výpočtu měněna, obvykle se volí i α jako 0.1 < nα <1.0, kde n je počet vstupů.
Pokud dosadíme za α příliš velkou hodnotu, adaptační algoritmus nebude konvergovat. Pokud dosadíme za α
příliš malou hodnotu, proces učení bude extrémně pomalý.

Důkaz konvergence adaptačního pravidla pro Adaline je obsažen v derivaci delta pravidla. Delta
pravidlo mění váhové hodnoty na spojeních mezi jednotlivými neurony tak, aby byl minimalizován rozdíl mezi
vstupním signálem y_in výstupního neuronu a požadovaným výstupem t. Cílem adaptace je minimalizovat tuto
chybu přes všechny tréninkové vzory. Příslušné váhové korekce jsou akumulovány a po každém tréninkovém
cyklu jsou všechny váhové hodnoty aktualizovány najednou.

Delta pravidlo příslušející I. váhové hodnotě je pro každý vzor zapsáno následovně:

()Δw t y in xI I= −α _

Dále budeme používat toto označení:

x Vektor aktivací vstupních neuronů, má n složek.
y_in Hodnota vstupního signálu výstupního neuronu Y je

y in x wi i
i

n

_ .=
=
∑

1

t Požadovaný výstup.

Derivace:
 Pro každý tréninkový vzor je dána chybová funkce E = E(w), tj. funkce všech váhových hodnot wi,
i = 1, ..., n vztahem

E =(t - y_in)2

Gradient E je vektor, jehož složky jsou parciální derivace E podle všech složek vektoru w. Gradient udává směr
největšího růstu (chyby E); pokud však má opačný směr způsobuje její nejrychlejší zmenšování. Chybová funkce

E je minimalizována prostřednictvím úprav váhových hodnot wI ve směru −
∂
∂

E
wI

.

 Protože y in x wi i
i

n

_ .=
=
∑

1

,

()

()

∂
∂

∂
∂

E
w

t y in y in
w

t y in x
I I

I

= − −

= − −

2

2

_ _

_ .

Chyba (E) bude tedy redukována rychleji, pokud budou příslušné váhové hodnoty upravovány podle delta
pravidla,

()Δw t y in xI I= −α _ .

Příklad:
 Adaptační algoritmus Adaline pro logickou funkci „OR“ (bipolární vstupní i výstupní hodnoty) je
zapsán následovně:

VSTUP POŽADOVANÝ
x1 x2 VÝSTUP
1 1 1
1 -1 1
-1 1 1
-1 -1 -1

Jak již bylo výše naznačeno, je adaptační algoritmus Adaline navržen k nalezení takových váhových hodnot wi,
aby minimalizovaly celkovou chybu

() () ()()E x p w x p w w t p
p

= + + −
=
∑ 1 1 2 2 0

2

1

4

,

kde
() ()x p w x p w w1 1 2 2 0+ +

je vstupní signál vedoucí do výstupního neuronu pro vzor p a t(p) je požadovaný výstup příslušející vzoru p.

Váhové hodnoty, které minimalizují chybovou funkci, mají v tomto příkladě tvar:

w

w

w

1

2

0

1
2
1
2

1
2

=

=

=

,

,

.bias

Separující přímka je tedy určená rovnicí

1
2

1
2

1
2

01 2x x+ + = .

Geometrický význam funkce Adaline se nepatrně liší od perceptronu. Uvažujme vstup x=(x1, ..., xn), tj. bod
[x1, ..., xn] v n-rozměrném vstupním prostoru. Nadrovina s koeficienty w pro daný neuron Adaline určená rovnicí

w w xi i
i

n

0
1

0+ =
=
∑

rozděluje tento prostor na dva poloprostory, ve kterých má hodnota výstupu y zapsaného rovnicí

y w xi i
i

n

=
=
∑

1

odlišné znaménko (tj. je buď kladná, nebo záporná). Pro body ležící na této nadrovině je hodnota výstupu
nulová. Vzdálenost ρ bodu [x1, ..., xn] od této nadroviny je dána rovnicí:

ρ =
+

=
=

= =

∑
∑ ∑

w w x

w

y

w

i ii

n

ii

n

j

ii

n

0 1

2
1

2
1

.

Tedy absolutní hodnota y výstupu z neuronu Adaline závisí lineárně na vzdálenosti bodu od nadroviny ve
vstupním prostoru:

y wj i
i

n

= ⋅
=
∑ 2

1
ρ.

Body ze vstupního prostoru, které mají stejný výstup, leží na jedné nadrovině rovnoběžné s nadrovinou

w w xi i
i

n

0
1

0+ =
=
∑ , která je od ní ve vzdálenosti ρ ve směru daném znaménkem y. Uvedená situace je

načrtnuta na obrázku 14, kde nadrovina určená stejným výstupem je znázorněna přerušovanou čarou.

y>0
y<0

ρ
 [x1, ...,xn]

y wii

n
= ⋅

=∑ 2
1

ρ

w w xi ii

n
0 1

0+ =
=∑

O b r á z e k 1 4 : G e o m e t r i c k á i n t e r p r e t a c e f u n k c e n e u r o n u
A d a l i n e .

Madaline

Madaline, tj. Many Adaptive Linear Neurons. Základním prvkem v tomto modelu je neuron Adaline,

který je velmi podobný perceptronu (viz předcházející kapitola). Jednoduchá architektura neuronové sítě
Madaline je zobrazena na obrázku 15. Výstupy (z1 a z2) z obou skrytých neuronů typu Adaline (Z1 a Z2), jsou
určeny stejnými signály (x1 a x2) vycházejícími z neuronů X1 a X2, které samozřejmě závisí na příslušné
prahové funkci. Pak i skutečný výstup y je nelineární funkcí vstupního vektoru (x1, x2) a příslušné prahové
funkce. Použití skrytých neuronů Z1 a Z2 sice dává síti větší výpočtové možnosti, ale naproti tomu komplikuje
adaptační proces.

Y
Z1

Z2

X2

X1

v2

v1

b3

b2

b1

w22

w21

w11

w12

1

1
1

O b r á z e k 1 5 : M a d a l i n e s e d v ě m a s k r y t ý m i n e u r o n y A d a l i n e

a j e d n í m v ý s t u p n í m n e u r o n e m A d a l i n e .

Původní adaptační algoritmus MRI (z roku 1960) adaptuje pouze váhové hodnoty příslušející oběma skrytým
neuronům, zatímco váhové hodnoty příslušející výstupnímu neuronu jsou fixní. Adaptační algoritmus MRII (z
roku 1987) upravuje všechny váhové hodnoty. Dále budeme pracovat pouze s adaptačním algoritmem MRI:
Váhové hodnoty v1 a v2 a bias b3 , příslušející výstupnímu neuronu Y, jsou určeny tak, že výstupní signál z Y je
roven 1, pokud je alespoň jedna hodnota signálu vycházejícího ze skrytých neuronů (tj. Z1 a Z2 nebo obou z
nich) rovna jedné. Pokud jsou oba signály vysílané ze Z1 i Z2 rovny -1, má výstupní signál z Y hodnotu -1.
Jinými slovy, výstupní neuron Y provádí logickou funkci „OR“ na signálech vysílaných z neuronů Z1 a Z2 .
Můžeme tedy přiřadit

v

v

b

1

2

3

1
2
1
2
1
2

=

=

=

,

,

.

Váhové hodnoty příslušející prvnímu skrytému neuronu Adaline (w11 a w21) a váhové hodnoty příslušející
druhému skrytému neuronu Adaline (w12 a w22) jsou adaptovány podle algoritmu MRI takto:

Aktivační funkce pro Z1, Z2 a Y je dána následovně:

 ()f x
x
x

=
≥

− <
⎧
⎨
⎩

1 0
1 0

pokud
pokud

;
.

Adaptační algoritmus MRI

Krok 0. Váhové hodnoty v1 a v2 a bias b3 jsou inicializovány výše uvedeným způsobem.

Inicializace zbývajících vah malými náhodnými hodnotami.

Přiřazení inicializační hodnoty koeficientu učení α. stejným způsobem jako v adaptačním

algoritmu pro neuron Adaline.

Krok 1. Dokud není splněna podmínka ukončení výpočtu, opakovat kroky (2 až 8).

Krok 2. Pro každý bipolární tréninkový pár s:t provádět kroky (3 až 7).

Krok 3. Aktivovat vstupní neurony:

xi = si.

Krok 4 Vypočítat vstupní hodnoty skrytých neuronů:

z in b x w x w
z in b x w x w
_ ,
_ .

1 1 1 11 2 21

2 2 1 12 2 22

= + +

= + +

Krok 5 Stanovení výstupních hodnot skrytých neuronů:

()
()

z f z in

z f z in
1 1

2 2

=

=

_ ,

_ .

Krok 6 Stanovení skutečné výstupní hodnoty signálu neuronové

sítě Madaline:

()
y in b z v z v

y f y in
_ ;

_ .
= + +

=
3 1 1 2 2

Krok 7 Aktualizovat váhové hodnoty:

Pokud je y = t , nenastávají žádné změny.

Jinak (pro y ≠ t):

Je-li t = 1, potom pro váhové hodnoty na spojeních

vedoucích k ZJ (J=1,2) platí:

 wiJ (new) = wiJ (old) + α (1 - z_inJ) xi.

 bJ (new) = bJ (old) + α (1 - z_inJ).

Je-li t = -1, potom pro váhové hodnoty na spojeních

vedoucích k ZK (K=1,2) platí:

 wiK (new) = wiK (old) + α (-1 - z_inK) xi.

 bK (new) = bK (old) + α (-1 - z_inK).

Krok 8. Podmínka ukončení:

pokud již nenastávají žádné změny váhových hodnot nebo pokud již bylo

vykonáno maximálně definované množství váhových změn, stop; jinak,

pokračovat.

Příklad:
 Adaptační algoritmus MRI pro logickou funkci „XOR“ (bipolární vstupní i výstupní hodnoty) je zapsán
následovně:

VSTUP POŽADOVANÝ
x1 x2 VÝSTUP
1 1 -1
1 -1 1
-1 1 1
-1 -1 -1

Krok 0. α. = 0.5;

Inicializace váhových hodnot:

váhy vedoucí do Z1 váhy vedoucí do Z2 váhy vedoucí do Y
w11 w21 b1 w12 w22 b2 v1 v2 b3
0.05 0.2 0.3 0.1 0.2 0.15 0.5 0.5 0.5

Krok 1. Adaptace:

Krok 2. Pro první tréninkový pár; (1,1):-1

Krok 3. x1 = 1,

x2 = 1.

Krok 4 z_in1 = 0.3 + 0.05 + 0.2 = 0.55,

z_in2 = 0.15 + 0.1 + 0.2 = 0.45

Krok 5 z1 = 1,

z2 = 1.

Krok 6 y_in = 0.5 + 0.5 + 0.5;

y = 1.

Krok 7 t - y = -1-1 = -2 ≠ 0 ,

Pokud je t = -1, potom aktualizovat váhové hodnoty na

spojeních vedoucích k Z1:

() () ()
()()

b new b old z in1 1 11

0 3 0 5 155
0 475

= + − −

= + −

= −

α _

. . .
.

() () ()
()()

w new w old z in x11 11 1 11

0 05 0 5 155
0 725

= + − −

= + −

= −

α _

. . .
.

() () ()
()()

w new w old z in x21 21 1 21

0 2 0 5 155
0 575

= + − −

= + −

= −

α _

. . .
.

a aktualizovat váhové hodnoty na spojeních vedoucích k Z2:

() () ()
()()

b new b old z in2 2 21

015 0 5 145
0 575

= + − −

= + −

= −

α _

. . .
.

() () ()
()()

w new w old z in x12 12 2 11

01 0 5 145
0 625

= + − −

= + −

= −

α _

. . .
.

() () ()
()()

w new w old z in x22 22 2 21

0 2 0 5 145
0 525

= + − −

= + −

= −

α _

. . .
.

Po čtyřech tréninkových cyklech, byly nalezeny tyto váhové hodnoty:
 w11 = - 0.73 w12 = 1.27
 w21 =1.53 w22 = - 1.33
 b1 = - 0.99 b2 = - 1.09

Geometrická interpretace nalezených váhových hodnot:

Oblast kladné odezvy vznikne sjednocením obou oblastí pozitivní odezvy skrytých neuronů Z1 a Z2.

Pro skrytý neuron Z1 má hraniční přímka tvar

x
w
w

x
b
w

x

x

2
11

21
1

1

21

1

1

0 73
153

0 99
153

0 48 0 65

= − −

= +

= +

.

.
.
.

. . .

Pro skrytý neuron Z2 má hraniční přímka tvar

x
w
w

x
b
w

x

x

2
12

221
1

2

22

1

1

127
133

109
133

0 96 082

= − −

= +

= −

.

.
.
.

. . .

Vypočítané oblasti kladné a záporné odezvy na vstupní signál jsou znázorněny na následujících obrázcích.

-+

+-

x2

x1

O b r á z e k 1 6 : O b l a s t k l a d n é o d e z v y p r o Z 1 .

-+

+-

x2

x1

O b r á z e k 1 7 : O b l a s t k l a d n é o d e z v y p r o Z 2 .

-+

+-

x2

x1

O b r á z e k 1 8 : O b l a s t k l a d n é o d e z v y p r o M a d a l i n e p r o

„ X O R “ f u n k c i .

Úkoly:

1. Srovnejte adaptační algoritmus neuronu Adaline a perceptronu.

2. Srovnejte geometrickou interpretaci funkce neuronu Adaline a perceptronu.

3. Objasněte adaptační algoritmus MRI pro vybranou logickou funkci v bipolární reprezentaci.

Korespondenční úkoly (vybraný úkol vykonejte):

1. Vytvořte počítačový program pro realizaci adaptačního algoritmu neuronu Adaline.

2. Vytvořte počítačový program pro realizaci adaptačního algoritmu MRI.

Shrnutí: Na následujících dvou obrázcích jsou souhrnně zobrazeny různé tyty neuronových sítí (tj. neuronové
sítě s různým počtem vnitřních vrstev) a jejich možnosti klasifikace.

STRUKTURA
NEURONOVÉ SÍTĚ

XOR PROBLÉM OBTÉKÁNÍ OBLASTÍ OBECNÉ OBLASTI

1vrstva (perceptron)

A B

B A

B

A

2 vrstvy (Madaline)

A B

B A

B

A

3 vrstvy

A B

B A

B

A

O b r á z e k 1 9 : N e u r o n o v é s í t ě s r ů z n ý m p o č t e m v n i t ř n í c h

v r s t e v a j e j i c h m o ž n o s t i k l a s i f i k a c e .

vstupy

vstupní
 neurony
 (přenášejí
vstupní signál)

pracovní
neurony

3-vrstvá
neuronová síť

2-vrstvá
neuronová síť

(Madaline)

1-vrstvá
neuronová síť
(perceptron)

lineární oblasti obecné
oblasti

konvexní oblasti

O b r á z e k 2 0 : M e z n í o b l a s t i r o z p o z n á v a n é n e u r o n o v o u s í t í

s r ů z n ý m p o č t e m v n i t ř n í c h v r s t e v .

V této kapitole budeme používat následující značení:

x Vstupní vektor: x = (x1, ..., xi, ..., xn).

t Výstupní tréninkový vektor: t = (t1, ..., tk, ..., tm).

δk Částečné váhové korekce pro wjk příslušející chybě na spojeních vedoucích k neuronu Yk

ve výstupní vrstvě.

δj Částečné váhové korekce pro vij příslušející chybě na spojeních vedoucích k neuronu Zj

ve skryté vrstvě.

α Koeficient učení.

Xi i. neuron ve vstupní vrstvě:

Pro neurony ve vstupní vrstvě je hodnota vstupního i výstupního signálu stejná, xi .

v0j Bias j. neuronu ve skryté vrstvě.

Zj j. neuron ve skryté vrstvě:

Hodnota vstupního signálu pro Zj je z_inj:
z in v x vj j i ij

i

_ .= + ∑0

Hodnota vstupního signálu pro Zj je zj:

()z f z inj j= _ .

w0k Bias k. neuronu ve výstupní vrstvě.

Yk k. neuron ve výstupní vrstvě:

Hodnota vstupního signálu pro Yk je y_ink:
y in w z wk k j jk

j

_ .= + ∑0

Hodnota vstupního signálu pro Zj je zj:
()y f y ink k= _ .

B A C K P R O P A G A T I O N .

Klíčová slova této kapitoly:
backpropagation (adaptační algoritmus zpětného šíření chyby),
generalizace, trénovací množina, dopředné (feedforward) šíření
signálu.

V této kapitole se podrobně seznámíte s adaptačním algori tmem zpě tného šíření
chyby (backpropagation) , jež je používán v př ibl ižně 80% všech aplikací
neuronových (t j . je nejrozší řeně jš ím adaptačním algori tmem vícevrstvých
neuronových sí t í) .
Zavedeme si zde i další značení , k teré budeme používat i v následných kapitolách.

Pravděpodobně nejrozšířenější způsob propojení neuronů se sigmoidní aktivační funkcí jsou vícevrstvé
sítě. Vícevrstvá neuronová síť s jednou vnitřní vrstvou neuronů (neurony jsou označeny Zi, j = 1,..., p) je
zobrazena na obrázku 21. Výstupní neurony (neurony jsou označeny Yk, k = 1,..., m). Neurony ve výstupní a
vnitřní vrstvě musí mít definovaný bias. Typické označení pro bias k. neuronu (Yk) ve výstupní vrstvě je w0k, a
typické označení pro bias j. neuronu (Zj) ve vnitřní vrstvě je v0j. Bias (např. j. neuronu) odpovídá, jak již bylo
dříve uvedeno, váhové hodnotě přiřazené spojení mezi daným neuronem a fiktivním neuronem, jehož aktivace je
vždy 1. Z uvedeného obrázku tedy vyplývá, že vícevrstvá neuronová síť je tvořena minimálně třemi vrstvami
neuronů: vstupní, výstupní a alespoň jednou vnitřní vrstvou. Vždy mezi dvěmi sousedními vrstvami se pak
nachází tzv. úplné propojení neuronů, tedy každý neuron nižší vrstvy je spojen se všemi neurony vrstvy vyšší.

1 X1 Xi Xn

1 Z1 Zj Zp

Y1 Yk Ym

vnp

vnj vn1vip
vij vi1v1p v1j

v11

w11

w1m

v01

wpmwpkwp1wjm

wjk
wj1w1k

w0m

w0k

w01

v0p

v0j

VSTUPNÍ VRSTVA

VÝSTUPNÍ VRSTVA

SKRYTÁ
(vnitřní)
 VRSTVA

O b r á z e k 2 1 : N e u r o n o v á s í ť s j e d n o u v n i t ř n í v r s t v o u
n e u r o n ů .

Adaptační algoritmus zpětného šíření chyby (backpropagation) je používán v přibližně 80% všech

aplikací neuronových sítí. Samotný algoritmus obsahuje tři etapy: dopředné (feedforward) šíření vstupního
signálu tréninkového vzoru, zpětné šíření chyby a aktualizace váhových hodnot na spojeních.

Během dopředného šíření signálu obdrží každý neuron ve vstupní vrstvě (Xi, i = 1,..., n) vstupní signál
(xi) a zprostředkuje jeho přenos ke všem neuronům vnitřní vrstvy (Z1, ..., Zp). Každý neuron ve vnitřní vrstvě
vypočítá svou aktivaci (zj) a pošle tento signál všem neuronům ve výstupní vrstvě. Každý neuron ve výstupní
vrstvě vypočítá svou aktivaci (yk), která odpovídá jeho skutečnému výstupu (k. neuronu) po předložení
vstupního vzoru.

V podstatě tímto způsobem získáme odezvu neuronové sítě na vstupní podnět daný excitací neuronů
vstupní vrstvy. Takovým způsobem probíhá šíření signálů i v biologickém systému, kde vstupní vrstva může být
tvořena např. zrakovými buňkami a ve výstupní vrstvě mozku jsou pak identifikovány jednotlivé objekty
sledování. Otázkou pak zůstává to nejdůležitější, jakým způsobem jsou stanoveny synaptické váhy vedoucí ke
korektní odezvě na vstupní signál. Proces stanovení synaptických vah je opět spjat s pojmem učení - adaptace -
neuronové sítě.

Další otázkou je schopnost generalizace (zobecnění) nad naučeným materiálem, jinými slovy jak je
neuronová síť schopna na základě naučeného usuzovat na jevy, které nebyly součástí učení, které však lze
nějakým způsobem z naučeného odvodit. I tady je cítit jakási analogie s lidským učením daná rozdílem mezi
bezduchým biflováním a učením spjatým se schopností porozumět problematice tak, aby mohlo být nové
odvozeno z předchozího.

Co je nutné k naučení neuronové sítě? Je to jednak tzv. trénovací množina obsahující prvky popisující
řešenou problematiku a dále pak metoda, která dokáže tyto vzorky zafixovat v neuronové síti formou hodnot

synaptických vah pokud možno včetně již uvedené schopnosti generalizovat. Zastavme se nejdříve u trénovací
množiny. Každý vzor trénovací množiny popisuje jakým způsobem jsou excitovány neurony vstupní a výstupní
vrstvy.

Formálně můžeme za trénovací množinu T považovat množinu prvků (vzorů), které jsou definovány
uspořádanými dvojicemi následujícím způsobem:

{ } { } { }{ }
[]
[]

T S T S T S T

S s s s s

T t t t t

q q

i n j

i m j

=

= ∈

= ∈

1 1 2 2

1 2

1 2

0 1

0 1

, , ,

. . . ,

. . . ,

K

kde q počet vzorů trénovací množiny
 Si vektor excitací vstupní vrstvy tvořené n neurony
 Ti vektor excitací výstupní vrstvy tvořené m neurony
 sj, tj excitace j-tého neuronu vstupní resp. výstupní vrstvy.

Metoda, která umožňuje adaptaci neuronové sítě nad danou trénovací množinou se nazývá
backpropagation, což v překladu znamená metodu zpětného šíření. Na rozdíl od už popsaného dopředného
chodu při šíření signálu neuronové sítě spočívá tato metoda adaptace v opačném šíření informace směrem od
vrstev vyšších k vrstvám nižším.

Během adaptace neuronové sítě metodou backpropagation jsou srovnávány vypočítané aktivace yk s
definovanými výstupními hodnotami tk pro každý neuron ve výstupní vrstvě a pro každý tréninkový vzor. Na
základě tohoto srovnání je definována chyba neuronové sítě, pro kterou je vypočítán faktor δk (k = 1, ..., m). δk
je, jak již bylo uvedeno, části chyby, která se šíří zpětně z neuronu Yk ke všem neuronům předcházející vrstvy,
jež mají s tímto neuronem definované spojení. Podobně lze definovat i faktor δj (j = 1, ..., p), který je části chyby
šířené zpětně z neuronu Zj ke všem neuronům vstupní vrstvy, jež mají s tímto neuronem definované spojení.

Úprava váhových hodnot wjk na spojeních mezi neurony vnitřní a výstupní vrstvy závisí na faktoru δk a
aktivacích zj neuronů Zj ve vnitřní vrstvě. Úprava váhových hodnot vij na spojeních mezi neurony vstupní a
vnitřní vrstvy závisí na faktoru δj a aktivacích xi neuronů Xi ve vstupní vrstvě.

Aktivační funkce pro neuronové sítě s adaptační metodou backpropagation musí mít následující
vlastnosti: musí být spojitá, diferencovatelná a monotónně neklesající. Nejčastěji používanou aktivační funkcí je
proto standardní (logická) sigmoida a hyperbolický tangens.

Chyba sítě E(w) je vzhledem k tréninkové množině definována jako součet parciálních chyb sítě El(w)
vzhledem k jednotlivým tréninkovým vzorům a závisí na konfiguraci sítě w:

() ()E El
l

q

w w=
=
∑

1
.

Parciální chyba El(w) sítě pro l. tréninkový vzor (l = 1, ...,q) je úměrná součtu mocnin odchylek skutečných
hodnot výstupu sítě pro vstup l-tréninkového vzoru od požadovaných hodnot výstupů u tohoto vzoru:

() ()E y tl k k
k Y

w = −
∈
∑1

2
2 .

Cílem adaptace je minimalizace chyby sítě ve váhovém prostoru. Vzhledem k tomu, že chyba sítě přímo závisí
na komplikované nelineární složené funkci vícevrstvé sítě, představuje tento cíl netriviální optimalizační
problém. Pro jeho řešení se v základním modelu používá nejjednodušší varianta gradientní metody, která
vyžaduje diferencovatelnost chybové funkce. K lepšímu pochopení nám pomůže geometrická představa.

Na obrázku 22 je schematicky znázorněna chybová funkce E(w) tak, že konfigurace, která představuje
mnohorozměrný vektor vah w , se promítá na osu x. Chybová funkce určuje chybu sítě vzhledem k pevné
tréninkové množině v závislosti na konfiguraci sítě. Při adaptaci sítě hledáme takovou konfiguraci, pro kterou je
chybová funkce minimální. Začneme s náhodně zvolenou konfigurací w(0) , kdy odpovídající chyba sítě od
požadované funkce bude pravděpodobně velká. V analogii s lidským učením to odpovídá počátečnímu nastavení

synaptických vah u novorozence, který místo požadovaného chování jako chůze, řeč apod. provádí náhodné
pohyby a vydává neurčité zvuky. Při adaptaci sestrojíme v tomto bodě w(0) ke grafu chybové funkce tečný vektor

(gradient) ()()∂
∂

E
w

w 0 a posuneme se ve směru tohoto vektoru dolů o ε. Pro dostatečně malé ε tak získáme

novou konfiguraci w(1) = w(0) + Δw(1) , pro kterou je chybová funkce menší než pro původní konfiguraci w(0) , tj.
E (w(0)) ≥ E (w(1)). Celý proces konstrukce tečného vektoru opakujeme pro w(1) a získáme tak w(2) takové, že
E (w(1)) ≥ E (w(2)) atd., až se limitně dostaneme do lokálního minima chybové funkce. Ve vícerozměrném
váhovém prostoru tento postup přesahuje naši představivost. I když při vhodné volbě koeficientu učení (α) tato
metoda vždy konverguje k nějakému lokálnímu minimu z libovolné počáteční konfigurace, není vůbec zaručeno,
že se tak stane v reálném čase. Obvykle je tento proces časově velmi náročný (několik dnů výpočtu PC) i pro
malé topologie vícevrstvé sítě (desítky neuronů).

w(0) w(1) w(2) . . . w

ε

E

O b r á z e k 2 2 : G r a d i e n t n í m e t o d a .

Hlavním problémem gradientní metody je, že pokud již nalezne lokální minimum, pak toto minimum

nemusí být globální (viz obr.22). Uvedený postup adaptace se v takovém minimu zastaví (nulový gradient) a
chyba sítě se již dále nesnižuje. To lze v naší analogii s učením člověka interpretovat tak, že počáteční nastavení
konfigurace v okolí nějakého minima chybové funkce určuje možnosti jedince učit se. Inteligentnější lidé
začínají svou adaptaci v blízkosti hlubších minim. I zde je však chybová funkce definovaná relativně vzhledem k
požadovanému „inteligentnímu“ chování (tréninková množina), které však nemusí být univerzálně platné.
Hodnotu člověka nelze měřit žádnou chybovou funkcí. Elektrické šoky aplikované v psychiatrických léčebnách
připomínají některé metody adaptace neuronových sítí, které v případě, že se učení zastavilo v mělkém lokálním
minimu chybové funkce, náhodně vnáší šum do konfigurace sítě, aby se síť dostala z oblastí abstrakce tohoto
lokálního minima a mohla popř. konvergovat k hlubšímu minimu.

Popis algoritmu backpropagation

Krok 0. Váhové hodnoty a bias jsou inicializovány malými náhodnými čísly.

Přiřazení inicializační hodnoty koeficientu učení α.

Krok 1. Dokud není splněna podmínka ukončení výpočtu, opakovat kroky (2 až 9).

Krok 2. Pro každý (bipolární) tréninkový pár s:t provádět kroky (3 až 8).

Feedforward:

Krok 3. Aktivovat vstupní neurony (Xi, i=1, ...n)
xi = si..

Krok 4 Vypočítat vstupní hodnoty vnitřních neuronů: (Zj, j=1,...,

p):

z in v x vj j i i j
i

n

_ .= +
=
∑0

1

Stanovení výstupních hodnot vnitřních neuronů

()z f z inj j= _ .

Krok 5 Stanovení skutečných výstupních hodnoty signálu

neuronové sítě (Yk, k=1, ..., m):

()

y in w z w
j

y f y in

k k j j k

p

k k

_ ,

_ .

= +
=

=

∑0
1

Backpropagation:

Krok 6 Ke každému neuronu ve výstupní vrstvě (Yk, k=1, ..., m) je

přiřazena hodnota očekávaného výstupu pro vstupní

tréninkový vzor. Dále je vypočteno

() ()δ k k k kt y f y in= − ′ _ , které je součástí váhové

korekce Δ w zj k k j= α δ i korekce biasu

Δ w k k0 = α δ .

Krok 7 Ke každému neuronu ve vnitřní vrstvě (Zj, j=1, ..., p) je

přiřazena sumace jeho delta vstupů (tj. z neuronů, které se

nacházejí v následující vrstvě), δ δ_ .in wj k j k
k

m

=
=
∑

1

Vynásobením získaných hodnot derivací jejich aktivační

funkce obdržíme ()δ δj j jin f z in= ′_ _ , které je

součástí váhové korekce Δ v xi j j i= α δ i korekce biasu

Δ v j j0 = α δ .

Aktualizace vah a prahů:

Krok 8 Každý neuron ve výstupní vrstvě (Yk, k=1, ..., m)

aktualizuje na svých spojeních váhové hodnoty včetně

svého biasu (j=0, ..., p):

() ()w new w old wj k j k j k= + Δ .

Každý neuron ve vnitřní vrstvě (Zj, j=1, ..., p) aktualizuje

na svých spojeních váhové hodnoty včetně svého biasu

(i=0, ..., n):

() ()v new v old vi j i j i j= + Δ .

Krok 9. Podmínka ukončení:

pokud již nenastávají žádné změny váhových hodnot nebo pokud již bylo

vykonáno maximálně definované množství váhových změn, stop; jinak,

pokračovat.

Ačkoliv vlastní popis učícího algoritmu backpropagation je formulován pro klasický von
neumannovský model počítače, přesto je zřejmé, že jej lze implementovat distribuovaně. Pro každý tréninkový
vzor probíhá nejprve aktivní režim pro jeho vstup tak, že informace se v neuronové síti šíří od vstupu k jejímu
výstupu. Potom na základě externí informace učitele o požadovaném výstupu, tj. o chybě u jednotlivých vstupů,
se počítají parciální derivace chybové funkce tak, že signál se šíří zpět od výstupu ke vstupu. Výpočet sítě při
zpětném chodu probíhá sekvenčně po vrstvách, přitom v rámci jedné vrstvy může probíhat paralelně.

Odvození adaptačního pravidla standardní backpropagation

Symbolem wJK označíme váhovou hodnotu na spojení mezi vnitřním neuronem ZJ a neuronem ve
výstupní vrstvě YK; indexy I J jsou použity analogicky pro váhové spojení mezi neuronem ve vstupní vrstvě XI
a vnitřním neuronem ZJ. Indexy uvedené malými písmeny se vyskytují pouze v sumacích. Symbolem f(x)
označujeme aktivační funkci libovolného typu. Derivace této aktivační funkce je pak označena symbolem f´.
Závislost aktivační funkce na váhových hodnotách je vyjádřena vztahem:

y in z wK j j K
j

_ =∑ ,

který musíme vyčíslit, abychom nalezli ()f y inK_ , tj. aktivační hodnotu YK (K. neuronu ve výstupní vrstvě).

Chybovou funkci (tj. funkci váhových hodnot), která má být minimalizována, lze zapsat takto:

[]E t yk k
k

= −∑05
2

. .

Dále následuje odvození váhového přírůstku nejprve pro spojení mezi neurony vnitřní a výstupní vrstvy, tj. ΔwJK
a potom mezi neurony ve vstupní a vnitřními vrstvě, tj. ΔvIJ .

... ...Y1 Yk Ym

y1 yk ym

... ...1 Zj Zn

wnkwjk
w0k

y ink

O b r á z e k 2 3 : A d a p t a c e v a h n e u r o n u v ý s t u p n í v r s t v y .

[]

()[]

[] ()

[] () ()

[] ()

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

E
w w

t y

w
t f y in

t y
w

f y in

t y f y in
w

f y in

t y f y in z

J K J K
k k

k

J K
k K

k

K K
J K

K

K K K
J K

K

K K K J

= −

= −

= − −

= − − ′

= − − ′

∑

∑

0 5

0 5

2

2

.

. _

_

_ _

_ .

Pro přehlednější zápis výsledných hodnot je výhodné definovat δK :

[] ()δK K K Kt y f y in= − ′ _ .

Pro váhové hodnoty na spojeních vedoucích od neuronů vstupní vrstvy k neuronům ve vnitřní vrstvě platí:

... ...Zj

zj

... ...1 Xi Xn

v0j vij
vnj

z_inj

... ...Y1 Yk Ym

wj1 wjk wjm

1 Zp

O b r á z e k 2 4 : A d a p t a c e v a h n e u r o n u v n i t ř n í v r s t v y .

[]

[] ()

()[]

∂
∂

∂
∂

∂
∂

δ
∂

∂

δ
∂

∂

δ

E
v

t y
v

y

t y f y in
v

y in

v
y in

w
v

z

w f z in x

I J
k k

k I J
k

k k
k

k
I J

k

k
k I J

k

k
k

J k
I J

J

k
k

J k J I

= − −

= − − ′

= −

= −

= − ′

∑

∑

∑

∑

∑

_ _

_

_ .

I zde pro přehlednost následujícího zápisu definujme

()δ δJ k J k J
k

w f z in= − ′∑ _ .

Vrátíme se opět k indexaci malými písmeny. Váhové přírůstky pak lze zapsat následujícími způsoby: pro váhové
hodnoty na spojeních mezi neurony ve vnitřní a výstupní vrstvě platí

[] ()

Δw
E

w

t y f y in z
z

j k
j k

k k k j

k j

= −

= − ′

=

α
∂
∂

α

αδ

_
;

a pro váhové hodnoty na spojeních mezi neurony ve vstupní a vnitřní vrstvě platí

()

Δv
E

v

f z in x w

x

i j
i j

j i k j k
k

j i

= −

= ′

=

∑

α
∂
∂

α δ

αδ

_ ,

.

Uvedené vztahy vyjadřují podstatu adaptace neuronové sítě metodou backpropagation . Pokusme se o

jejich bližší vysvětlení [7], tj. o přiblížení výrazu daného součinem koeficientu učení α a parciální derivace
chyby E podle příslušné synaptické váhy. Pokud je hodnota této derivace velká a kladná, znamená to, že i
minimální nárůst hodnoty synaptické váhy vede k velké chybě odezvy neuronové sítě. Je proto nutné "ubrat" z
aktuální hodnoty synaptické váhy, abychom chybu zmenšili. Pro velkou, ale zápornou hodnotu derivace
analogicky platí, že je naopak nutné hodnotu synaptické váhy zvětšit, pokud by měla být chyba odezvy v
následujícím kroku nižší. Velikosti úprav synaptických dat jsou logicky dány nejen hodnotami těchto derivací,
ale i koeficientem učení (α). Čím větší bude tento koeficient, tím razantnější budou změny v neuronové síti a
naopak, pokud se bude jeho hodnota blížit nule pak změny budou jen velmi nepatrné. Na tomto místě se opět
nabízí analogie s lidským chováním. V prvém případě se jedná o člověka, který s každou novou informací
výrazně přebuduje své názory či znalosti. V druhém případě se jedná o člověka, který s každou novou informací
vyžaduje dlouhé přesvědčování a působení, než akceptuje něco nového. Již z této analogie je patrné jak je tento
koeficient důležitý pro efektivní adaptaci neuronové sítě, nicméně jeho stanovení je věc experimentu a hledání.
Prakticky neexistuje exaktní pravidlo, které by tento problém mohlo vyřešit.

Úkoly:

Použijte adaptační algoritmus backpropagation pro logickou funkci „XOR“. Získané výsledky srovnejte
s řešením téhož problému při použití adaptačního algoritmu MRI.

Korespondenční úkoly:

Vytvořte počítačový program pro realizaci adaptačního algoritmu backpropagation.

Popsaná standardní metoda backpropagation se vzhledem ke své jednoduchosti často používá, i když není
příliš efektní. Její jednoduchá a celkem frekventovaná modifikace, která se snaží tento nedostatek částečně
odstranit, zohledňuje při výpočtu nejen změny vah ve směru gradientu chybové funkce, ale navíc i předešlou
změnu vah, tzv. moment (μ). Přírůstky váhových hodnot odvozené standardní metodou backpropagation pak
můžeme přepsat do následujících tvarů:

() () () ()[]w t w t z w t w tjk jk k j jk jk+ = + + − −1 1αδ μ ,

nebo-li
() ()Δ Δw t z w tjk k j jk+ = +1 αδ μ

a

() () () ()[]v t v t x v t v ti j i j j i i j i j+ = + + − −1 1αδ μ ,

nebo-li
() ()Δ Δv t x v ti j j i i j+ = +1 αδ μ ,

kde 0 < μ < 1 je parametr momentu, který určuje míru vlivu předchozí změny (obvykle se volí μ = 0.9). Pomocí
momentu gradientní metoda lépe opisuje tvar chybové funkce E(w), protože bere do úvahy předchozí gradient.

Doposud jsme se v našem výkladu zabývali pouze adaptací synaptických vah na spojeních mezi
neurony, protože jsme pracovali pouze s neurony, které mají stejnou aktivační funkcí, přesněji: aktivační funkci
se stejnou strmostí sigmoidu σ. Nicméně nic nebrání tomu, abychom adaptaci podrobili nejen synaptické váhy,
ale i výše zmíněné strmosti sigmoidů jednotlivých neuronů. Konfigurace sítě je pak dána vektorem všech vah w
a vektorem všech strmostí σ. Při učení adaptujeme tuto konfiguraci tak, že chybu sítě minimalizujeme gradientní
metodou v prostoru vah a strmostí. Tím zvyšujeme stupeň volnosti adaptace, kdy tvar aktivační funkce (tj. míra
rozhodnosti jednotlivých neuronů) se může přizpůsobit tréninkové množině a snáze nalezne globální minimum
chybové funkce sítě. Na druhou stranu při zvýšení počtu adaptovaných parametrů roste počet numerických
operací a učení se zpomaluje.

Sigmoidální aktivační funkce standardní (logická) sigmoida, je potom přepsána do následujícího tvaru:

()f x
e x=

+ −

1
1 σ .

V A R I A N T Y B A C K P R O P A G A T I O N .

Klíčová slova této kapitoly:
parametr momentu, parametr strmosti, heterogenní síť , overfitting
(přeučení).

V této kapitole se seznámíte s možnými variantami adaptačního pravidla
backpropagation, t j . do standardního algori tmu zavedeme parametr momentu a
modifikovatelný parametr strmosti .
V závěru rozebereme problematiku vhodné volby topologie vícevrstvé neuronové
sí tě , která by mě la odpovídat s loži tost i řešeného problému.
V celé kapitole budeme používat značení zavedené v kapi tole „Backpropagation“.

Derivace této funkce je pak zapsána takto

() () ()[]′ = −f x f x f xσ 1

a její graf je uveden na obrázku 25.

1

f(x)

x
O b r á z e k 2 5 : B i n á r n í s i g m o i d a s m o d i f i k o v a n o u s t r m o s t í :

σ = 1 a σ = 3 .

Tímto způsobem lze získat tzv. heterogenní síť, kde obecně každý neuron může mít svou aktivační dynamiku.
Tato vlastnost ve většině případů zvyšuje schopnost sítě konvergovat k naučenému stavu. Adaptační metoda
využívající této možnosti je popsána v následující kapitole.

Backpropagation s adaptivní strmostí sigmoidů

Odvození adaptačního pravidla backpropagation s adaptivní strmostí sigmoidu je velmi podobné
odvození adaptačního pravidla standardní backpropagation. Budeme používat i stejnou indexaci. Rovněž i volba
aktivační funkce f(x) je libovolná.
Uvažujme vstupní signál x pro neurony ve výstupní vrstvě, YK

x y inK K= σ _

a stejným způsobem označený vstupní signál pro neurony ve vnitřní vrstvě, ZJ

x z inJ J= σ _ .

Aktivační funkce potom závisí nejen na váhových hodnotách

y in z wK j j K
j

_ =∑ ,

ale i na hodnotě parametru σK , který je přiřazen každému neuronu. Stejné úvahy provedeme i pro neurony
vnitřní vrstvy. I když má každý neuron přiřazen svůj parametr σK , tvar aktivační funkce je pro všechny tyto
neurony identický. Za těchto předpokladů budeme odvozovat hodnoty váhových přírůstků parametrické
backpropagation, tj. budeme minimalizovat i v tomto případě chybovou funkci, kterou zapíšeme následujícím
způsobem:

[]E t yk k
k

= −∑05
2

. .

Odvození váhového přírůstku provedeme rovněž nejprve pro spojení mezi neurony vnitřní a výstupní vrstvy, tj.
ΔwJK a potom mezi neurony ve vstupní a vnitřními vrstvě, tj. ΔvIJ .

[]

()[]

[] ()

[] () ()

[] ()

∂
∂

∂
∂

∂
∂

σ

∂
∂

σ

σ
∂

∂
σ

σ σ

E
w w

t y

w
t f y in

t y
w

f y in

t y f y in
w

f y in

t y f y in z

J K J K
k k

k

J K
k K K

k

K K
J K

K K

K K K K
J K

K K

K K K K K J

= −

= −

= − −

= − − ′

= − − ′

∑

∑

0 5

0 5

2

2

.

. _

_

_ _

_ .

Stejně jako váhové hodnoty, musíme také pro každý neuron adaptovat hodnoty parametru σK. Toto odvození
rovněž provedeme nejprve neurony výstupní vrstvy, tj. Δσk a potom pro neurony ve vnitřními vrstvě, tj. Δσj.

[] () ()

[] ()

∂
∂σ

σ ∂
∂

σ

σ

E t y f y in y in

t y f y in y in
K

K K K K
K

K K

K K K K K

= − − ′

= − − ′

_ _

_ _ .

Pro přehlednost i zde použijeme následujícího zápisu:

[] ()δ σK K K K Kt y f y in= − ′ _ .

Pro váhové hodnoty na spojeních vedoucích od neuronů vstupní vrstvy k neuronům ve vnitřní vrstvě platí:

[]

[] ()

() []

∂
∂

∂
∂

σ
∂

∂
σ

δ σ
∂

∂

δ σ
∂

∂

δ σ σ σ

E
v

t y
v

y

t y f y in
v

y in

v
y in

w
v

z

w f z in x

I J
k k

k I J
k

k k
k

k k
I J

k k

k
k

k
I J

k

k
k

k J k
I J

J

k
k

k J k J J J I

= − −

= − − ′

= −

= −

= − ′

∑

∑

∑

∑

∑

_ _

_

_ .

a pro parametry σj vnitřních neuronů platí:

[]

[] ()

()

∂
∂σ

∂
∂σ

σ
∂

∂σ
σ

δ σ
∂

∂σ

δ σ
∂

∂σ

δ σ σ

E
t y y

t y f y in y in

y in

w z

w f z in z in

J
k k

k J
k

k k
k

k k
J

k k

k
k

k
J

k

k
k

k J k
J

J

k
k

k J k J J J

= − −

= − − ′

= −

= −

= − ′

∑

∑

∑

∑

∑

_ _

_

_ _ .

Také zde pro lepší přehlednost dalších zápisům definujme

()δ δ σ σJ k k J k J J
k

w f z in= − ′∑ _ .

Nyní se vrátíme opět k indexaci malými písmeny a váhové přírůstky resp. přírůstky parametru strmosti sigmoidu
pak zapíšeme následujícími způsoby:
pro váhové hodnoty na spojeních mezi neurony vnitřní a výstupní vrstvy platí

[] ()

Δw
E

w

t y f y in z
z

j k
j k

k k k k k j

k k j

= −

= − ′

=

α
∂
∂

α σ σ

αδ σ

_
;

pro váhové hodnoty na spojeních mezi neurony vstupní a vnitřní vrstvy platí

()

Δv E
v

f z in x w

x

i j
i j

j j j i k k j k
k

j j i

= −

= ′

=

∑

α
∂
∂

ασ σ δ σ

αδ σ

_ ,

;

resp. pro strmosti sigmoidu neuronů výstupní vrstvy platí

[] ()

Δσ α
∂
∂σ

α σ
αδ

k
k

k k k k k

k k

E

t y f y in y in
y in

= −

= − ′

=

_ _
_ ;

a pro strmosti sigmoidu neuronů vnitřní vrstvy platí

()

Δσ α
∂
∂σ

α δ σ σ

αδ

j
j

k k j k j j
k

j

j j

E

w f z in z in

z in

= −

= − ′

=

∑ _ _ ,

_ .

Volba topologie vícevrstvé neuronové sítě

Velkým problémem modelu vícevrstvé neuronové sítě s adaptačním algoritmem backpropagation je
(kromě minimalizace chybové funkce) volba vhodné topologie pro řešení konkrétního praktického problému.
Zřídkakdy jsou podrobněji známy vztahy mezi vstupy a výstupy, které by se daly využít při návrhu speciální
architektury. Většinou se používá vícevrstvá topologie s jednou nebo dvěmi vnitřními vrstvami a očekává se, že
učící algoritmus backpropagation zobecní příslušné vztahy z tréninkové množiny ve vahách jednotlivých spojů
mezi neurony. I v tomto případě je však potřeba vhodně volit počty neuronů ve vnitřních vrstvách. Je zřejmé, že
tento problém organizační dynamiky úzce souvisí s adaptací a generalizací neuronové sítě.

Architektura vícevrstvé neuronové sítě (tj. určení vhodného počtu vnitřních neuronů a jejich spojení),
by měla odpovídat složitosti řešeného problému, tj. počtu tréninkových vzorů, jejich vstupů a výstupů a struktuře
vztahů, které popisují. Je zřejmé, že malá síť nemůže řešit komplikovaný problém. Při učení pomocí algoritmu
backpropagation se příliš malá síť obvykle zastaví v nějakém mělkém lokálním minimu a je potřeba topologii
doplnit o další vnitřní neurony, aby adaptace měla větší stupeň volnosti. Na druhou stranu bohatá architektura
sice při učení mnohdy umožní nalézt globální minimum chybové funkce, i když s větším počtem vah roste
výpočetní náročnost adaptace. Avšak nalezená konfigurace sítě obvykle příliš zobecňuje tréninkové vzory včetně
jejich nepřesností a chyb a pro nenaučené vzory dává chybné výsledky, tj. špatně generalizuje. Tomuto
přesnému zapamatování tréninkové množiny bez zobecnění zákonitostí v ní obsažených se říká přeučení
(overfitting). Na obrázku 26 jsou graficky znázorněny dvě funkce sítě spolu s tréninkovými vzory (body), ze
kterých byly naučeny. Silná čára představuje přeučenou síť, jejíž funkce se přizpůsobila nepřesným tréninkovým
vzorům, zatímco tenká čára představuje funkci sítě, která „správně“ generalizovala zákonitosti v tréninkové
množině. Zdá se tedy, že existuje optimální topologie, která je na jednu stranu dostatečně bohatá, aby byla
schopna řešit daný problém, a na druhou stranu ne moc velká, aby správně zobecnila potřebné vztahy mezi
vstupy a výstupy.

y

x

O b r á z e k 2 6 : G r a f f u n k c e p ř e u č e n é s í t ě (t u č n ě) s e
„ s p r á v n o u “ g e n e r a l i z a c í .

Existují teoretické výsledky ohledně horního odhadu počtu vnitřních neuronů postačujících pro realizaci

libovolné funkce z určité třídy, avšak pro praktické potřeby jsou příliš nadhodnocené, a tedy nepoužitelné. V
praxi se obvykle topologie volí heuristicky, např. v první vnitřní vrstvě o něco více neuronů, než je vstupů a v
druhé vrstvě aritmetický průmět mezi počtem výstupů a neuronů v první vnitřní vrstvě. Po adaptaci se v případě
velké chyby sítě případně přidá, respektive při chudé generalizaci odebere několik neuronů a adaptivní režim se

celý opakuje pro novou architekturu. Pro test kvality generalizace neuronové sítě se počítá chyba sítě vzhledem k
tzv. testovací množině, což je část tréninkové množiny, která se záměrně nevyužila k adaptaci.

Úkoly:

1. Řešte logickou funkci „XOR“ standardním adaptačním algoritmem zpětného šíření chyby i algoritmem

backpropagation s adaptivní strmostí sigmoidů. Oba výsledky řešení porovnejte.

2. Řešte vybranou logickou funkci standardním adaptačním algoritmem zpětného šíření chyby při stanovení

různého počtu neuronů ve vnitřní vrstvě. Získané výsledky řešení srovnejte.

Kohonenovy samoorganizační mapy

Tato neuronová síť (angl. Self -Organizing Map) byla poprvé popsána v roce 1982. Je nejdůležitější
architekturou vycházející ze strategie soutěžního učení (tj. učení bez učitele). Základním principem učícího
procesu je vytvoření množiny reprezentantů mající stejné pravděpodobnosti výběru. Přesněji, hledáme takové
reprezentanty, pro které platí: vybereme-li náhodný vstupní vektor z rozdělení pravděpodobnosti odpovídající
rozdělení tréninkové množiny, bude mít každý takový reprezentant přiřazenu pravděpodobnost, která je mu
nejblíže. Algoritmus tedy nemá informace o požadovaných aktivitách výstupních neuronů v průběhu adaptace,
ale adaptace vah odráží statistické vlastnosti trénovací množiny. Jsou-li si tedy dva libovolné vzory blízké ve
vstupním prostoru způsobují v síti odezvu na neuronech, které jsou si fyzicky blízké ve výstupním prostoru.
Hlavní ideou těchto neuronových sítí je nalézt prostorovou reprezentaci složitých datových struktur.
Mnohodimenzionální data se tímto způsobem zobrazují v daleko jednodušším prostoru. Uvedená vlastnost je
typická i pro skutečný mozek, kde například jeden konec sluchové části mozkové kůry reaguje na nízké
frekvence, zatímco opačný konec reaguje na frekvence vysoké.

Organizační dynamika sítě:

Jedná se o dvouvrstvou síť s úplným propojením neuronů mezi vrstvami. Výstupní neurony jsou navíc

uspořádány do nějaké topologické struktury, nejčastěji to bývá dvojrozměrná mřížka nebo jednorozměrná řada
jednotek. Tato topologická struktura určuje, které neurony spolu v síti sousedí (pro adaptační proces je to
nezbytné). Pro adaptační proces je rovněž důležité zavést pojem okolí J výstupního neuronu (j*) o poloměru
(velikosti) R, což je množina všech neuronů (j∈ J), jejichž vzdálenost v síti je od daného neuronu (j*) menší
nebo rovna R:

J = {j; d(j,j*) ≤ R}.

To, jak měříme vzdálenost d(j,j*), je závislé na topologické struktuře výstupních neuronů. Např. pro lineární
oblast obsahující m neuronů ve výstupní vrstvě platí pro všechny j∈ J:

max(1, J - R) ≤ j ≤ min (J+R, m).

S A M O O R G A N I Z A C E .

Klíčová slova této kapitoly:
adaptace bez uč itele , samoorganizace, soutěžní strategie učení
(competitive learning), laterální inhibice, sousedství, proces
shlukování, kvantování vektorů učením (LVQ).

V této kapitole se budeme věnovat modelům neuronových sí t í , které využívají
soutěžní strategie učení (competi t ive learning) . Společným principem těchto
modelů je , že výstupní neurony sí tě spolu soutěží o to, který z nich bude aktivní .
Na rozdíl od j iných uč ících principů (např . Hebbovo učení) je tedy v urč i tém čase
aktivní vždy jen jeden neuron.

Obecná architektura Kohonenovy samoorganizační mapy obsahující m neuronů ve výstupní vrstvě (tj. Y1,..., Ym)
a n neuronů ve vstupní vrstvě (tj. X1,..., Xn) je zobrazena na obrázku 27.

.

. XnXiX1

YmYjY1

wij
wim

wnm
wnj

wn1

wi1

w1mw1j

w11

O b r á z e k 2 7 : K o h o n e n o v a s a m o o r g a n i z a č n í m a p a .

Sousedství neuronu označeného # je pro R =2 { }, R =1 (), R = 0 [] v jednorozměrné výstupní oblasti
zobrazeno na obrázku 28 (m = 10 je počet neuronů ve výstupní vrstvě)

 * * { * (* [#] * *) * } * *

O b r á z e k 2 8 : S o u s e d s t v í d e f i n o v a n á v l i n e á r n í v ý s t u p n í
o b l a s t i p r o r ů z n é h o d n o t y p a r a m e t r u R .

Sousedství neuronu označeného # je pro R =2, 1, 0 ve dvourozměrné pravoúhlé výstupní oblasti zobrazeno na
obrázku 29.

* * * * * * *
* * * * * * *
* * * * * * *
* * * # * * *
* * * * * * *
* * * * * * *
* * * * * * *

R = 2
R = 1
R = 0

O b r á z e k 2 9 : S o u s e d s t v í v p r a v o ú h l é d v o j r o z m ě r n é o b l a s t i .

Sousedství neuronu označeného # je pro R =2, 1, 0 ve dvourozměrné hexagonální výstupní oblasti zobrazeno
na obrázku 30.

* * * * * * *
 * * * * * * *

* * * * * * *
 * * * # * * *

* * * * * * *
 * * * * * * *

* * * * * * *
R = 2
R = 1
R = 0

O b r á z e k 3 0 : S o u s e d s t v í v h e x a g o n á l n í d v o j r o z m ě r n é
o b l a s t i .

Princip adaptivní dynamiky je jednoduchý: Procházíme celou tréninkovou množinu a po předložení

jednoho tréninkového vzoru proběhne mezi neurony sítě kompetice. Její vítěz pak spolu s neurony, které jsou v
jeho okolí, změní své váhové hodnoty. Reálný parametr učení 0 < α ≤ 1 určuje míru změny vah. Na počátku
učení je obvykle blízký jedné a postupně se zmenšuje až na nulovou hodnotu, což zabezpečuje ukončení procesu
adaptace. Rovněž i velikost okolí R není konstantní: na začátku adaptace je okolí obvykle velké (např. polovina
velikosti sítě) a na konci učení potom zahrnuje jen jeden samotný vítězný neuron (tj. R = 0).

Popis algoritmu

Krok 0. Inicializace všech váhových hodnot wij:

Inicializace poloměru sousedství; tj okolí (R).

Inicializace parametru učení (α).

Krok 1. Pokud není splněna podmínka ukončení, provádět kroky (2 až 8).

Krok 2. Pro každý vstupní vektor x = (x1,...,xn) opakovat kroky 3 až 5.

Krok 3. Pro každé j (j = 1,..., m) vypočítat:

() ()D j w xi j i
i

= −∑
2

.

Krok 4. Najít index J takový, že D(J) je minimum.

Krok 5. Aktualizace váhových hodnot všech neuronů (j∈J)

tvořících topologické sousedství charakterizované indexem

J, tj. pro všechna i (i = 1,..., n) platí:

() () ()[]w new w old x w oldi j i j i i j= + −α .

Krok 6. Aktualizace parametru učení.

Krok 7. Zmenšení poloměru R topologického sousedství.

Krok 8. Test podmínky ukončení.

Geometrický význam popsaného algoritmu je takový, že vítězný neuron i všichni jeho sousedé v síti,
kteří by od něj neměli být příliš vzdáleni ani ve vstupním prostoru, posunou svůj váhový vektor o určitou

poměrnou vzdálenost směrem k aktuálnímu vstupu. Motivací tohoto přístupu je snaha, aby vítězný neuron, který
nejlépe reprezentuje předložený vstup (je mu nejblíže), ještě více zlepšil svou relativní pozici vůči němu.

Problémem vzniklým při adaptaci může být nevhodná náhodná inicializace vah, která vede k blízkým
počátečním neuronům ve výstupní vrstvě a tudíž pouze jeden z nich vyhrává kompetici zatímco ostatní zůstávají
nevyužity. Jedna z možností jak je možné tuto situaci vyřešit, je princip založený na "svědomí" každého z
neuronů tak, že v případě příliš častých vítězství jednoho z nich, je tento neuron z procesu soutěže na chvíli
vyjmut, aby dostali šanci i ostatní neurony výstupní vrstvy.

V aktivním režimu se pak sousedství neuronů neprojevuje: předložíme-li síti vstupní vektor, soutěží
výstupní neurony o to, kdo je mu nejblíže, a tento neuron se pak excituje na hodnotu rovnu jedné, zatímco
výstupy ostatních neuronů jsou rovny nule. Každý neuron tak reprezentuje nějaký objekt, či třídu objektů ze
vstupního prostoru: tj. pouze jeden neuron horní vrstvy, jehož potenciál (Σw.x) je maximální odpovídá
vstupnímu vektoru x. Tento neuron je navíc schopen rozpoznat celou třídu takových, podobných si vektorů

Princip „vítěz bere vše“ se realizuje tzv. laterální inhibicí; všechny výstupní neurony jsou navzájem
propojeny laterálními vazbami, které mezi nimi přenášejí inhibiční signály. Každý výstupní neuron se pak snaží
v kompetici zeslabit ostatní neurony silou úměrnou jeho potenciálu, který je tím větší, čím je neuron blíže
vstupu. Výsledkem tedy je, že výstupní neuron s největším potenciálem utlumí ostatní výstupní neurony a sám
zůstane aktivním.

Příklad:

Mějme 4 vektory: (1, 1, 0, 0); (0, 0, 0, 1); (1, 0, 0, ,0); (0, 0, 1, 1).
 Maximální počet shluků je: m = 2.
 Předpokládejme, že parametr učení je definován vztahy: α(0) = 0,6;
 α(t+1) = 0,5 α(t).
Protože jsou k dispozici pouze dva shluky, okolí bodu J (krok 4) je nastaveno tak, že v každém kroku
aktualizuje své váhové hodnoty pouze jeden neuron výstupní vrstvy, tj. R = 0.

Krok 0. Inicializace váhové matice:

0 2 0 8
0 6 0 4
0 5 0 7
0 9 0 3

. .

. .
. .
. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

Inicializace poloměru sousedství:

R = 0.

Inicializace parametru učení:

α(0) = 0.6.

Krok 1. Adaptace:

Krok 2. Pro první vektor (1, 1, 0, 0) opakovat kroky 3-5.

Krok 3. () () () () ()D 1 0 2 1 0 6 1 0 5 0 0 9 0 1862 2 2 2
= − + − + − + − =. ;

() () () () ()D 2 0 8 1 0 4 1 0 7 0 0 3 0 0 982 2 2 2
= − + − + − + − =.

Krok 4. Vstupní vektor je blíže uzlu 2, tak J = 2.

Krok 5. Aktualizace váhových hodnot vítězného neuronu:

() () ()[]
()

w new w old x w old

w old x
i i i i

i i

2 2 2

2

0 6

0 4 0 6

= + −

= +

.

. . .

Aktualizace druhého sloupce váhové matice

0 2 0 92
0 6 0 76
0 5 0 28
0 9 012

. .

. .

. .

. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

Krok 2. Pro druhý vektor (0, 0, 0, 1) opakovat kroky 3-5.

Krok 3. () () () () ()D 1 0 2 0 0 6 0 0 5 0 0 9 1 0 662 2 2 2
= − + − + − + − =. ;

() () () () ()D 2 0 92 0 0 76 0 0 28 0 012 1 2 27682 2 2 2
= − + − + − + − =.

Krok 4. Vstupní vektor je blíže uzlu 1, tak J = 1.

Krok 5. Aktualizace prvního sloupce váhové matice

0 08 0 92
0 24 0 76
0 20 0 28
0 96 012

. .

. .

. .

. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

Krok 2. Pro třetí vektor (1, 0, 0, 0) opakovat kroky 3-5.

Krok 3. () () () () ()D 1 0 08 1 0 24 0 0 2 0 0 96 0 186562 2 2 2
= − + − + − + − =. ;

() () () () ()D 2 0 92 1 0 76 0 0 28 0 012 0 0 67682 2 2 2
= − + − + − + − =.

Krok 4. Vstupní vektor je blíže uzlu 2, tak J = 2.

Krok 5. Aktualizace druhého sloupce váhové matice

0 08 0 968
0 24 0 304
0 20 0112
0 96 0 048

. .

. .

. .

. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

Krok 2. Pro čtvrtý vektor (0, 0, 1, 1) opakovat kroky 3-5.

Krok 3. () () () () ()D 1 0 08 0 0 24 0 0 2 1 0 96 1 0 70562 2 2 2
= − + − + − + − =. ;

() () () () ()D 2 0 968 0 0 304 0 0112 1 0 048 1 2 7242 2 2 2
= − + − + − + − =.

Krok 4. Vstupní vektor je blíže uzlu 1, tak J = 1.

Krok 5. Aktualizace prvního sloupce váhové matice

0 032 0 968
0 096 0 304
0 680 0112
0 984 0 048

. .

. .

. .

. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

Krok 6. Zmenšení parametru učení:

α = 0.5 (0.6) = 0.3.

Aktualizace váhových hodnot vítězného neuronu j (j = 1, 2) ve druhém cyklu bude prováděna podle

vztahu:

() () ()[]
()

w new w old x w old

w old x
i j i j i i j

i j i

= + −

= +

0 3

0 7 0 3

.

. . .

Váhová matice má po druhém tréninkovém cyklu tvar:

0 016 0 980
0 047 0 360
0 630 0 055
0 999 0 024

. .

. .

. .

. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

Parametr učení zmenšil svou hodnotu během 100 iterací (cyklů) z 0.6 na 0.01 a váhová matice

nabývala během adaptací následujících hodnot:

 Iterace 0: Váhová matice:

0 2 0 8
0 6 0 4
0 5 0 7
0 9 0 3

. .

. .
. .
. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

 Iterace 1: Váhová matice:

0 032 0 970
0 096 0 300
0 680 0110
0 980 0 048

. .

. .

. .

. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

 Iterace 2: Váhová matice:

0 0053 0 9900
01700 0 3000
0 7000 0 0200
10000 0 0086

. .
. .
. .
. .

−
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

 Iterace 10: Váhová matice:

15 7 10000
4 6 7 0 3700
0 6300 5 4 7
10000 2 3 7

. .
. .
. .
. .

e
e

e
e

−
−

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

 Iterace 50: Váhová matice:

19 19 10000
5 7 15 0 4700

0 5300 6 6 15
10000 2 8 15

. .

. .
. .
. .

e
e

e
e

−
−

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

 Iterace 100: Váhová matice:

6 7 17 10000
2 0 16 0 4900

0 5100 2 3 16
10000 10 16

. .

. .
. .
. .

e
e

e
e

−
−

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

Tato matice konverguje k matici:

0 0 1 0
0 0 0 5
0 5 0 0
1 0 0 0

. .

. .
. .
. .

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.

Její první sloupec nabývá hodnot, které odpovídají průměrným hodnotám složek obou vektorů

přiřazeným prvnímu neuronu výstupní vrstvy (tj. vektoru 2: (0, 0, 0, 1) a vektoru 4: (0, 0, 1, 1)).

Její druhý sloupec nabývá hodnot, které odpovídají průměrným hodnotám složek obou vektorů

přiřazeným druhému neuronu výstupní vrstvy (tj. vektoru 1: (1, 1, 0, 0) a vektoru 3: (1, 0, 0, ,0)).

Proces shlukování ještě jednou vysvětlíme prostřednictvím funkce hustoty pravděpodobnosti. Tato
funkce reprezentuje statistický nástroj popisující rozložení dat v prostoru. Pro daný bod prostoru lze tedy
stanovit pravděpodobnost, že vektor bude v daném bodu nalezen. Je-li dán vstupní prostor a funkce hustoty
pravděpodobnosti, pak je možné dosáhnout takové organizace mapy, která se této funkci přibližuje (za
předpokladu, že je k dispozici reprezentativní vzorek dat). Jinými slovy řečeno, pokud jsou vzory ve vstupním
prostoru rozloženy podle nějaké distribuční funkce, budou váhové vektory rozloženy analogicky.

Pokusme se výše uvedené demonstrovat na příkladu, kdy vstupní data jsou rovnoměrně rozložena v
dvojdimenzionálním prostoru, konkrétně ve čtvercové oblasti. Váhové vektory budou tedy také
dvojdimenzionální a budou zobrazovány formou bodu v prostoru vah. Dále budou v témže prostoru
vykreslovány přímky spojující body (váhy) sousedících neuronů. Toto zobrazení pak vyjadřuje prostorové
vztahy mezi neurony v prostoru vah. Vývoj prostorového uspořádání váhových vektorů lze demonstrovat na
následujících diagramech.

t=0 t=25

t=500 t=10 000

O b r á z e k 3 1 : P r o c e s a d a p t a c e m a p y .

Z obrázku 31 je patrné, že neurony byly optimálně rozloženy tak, aby pokryly vstupní datový prostor.

DP verze Kohonenova algoritmu

(DP angl. Dot Product); V základní verzi Kohonenova algoritmu (někdy označované ED angl.
Euclidean Distance) hledáme neuron ve výstupní vrstvě, jehož váhový vektor je nejbližší aktuálnímu vstupu ve
smyslu Euklidovské vzdálenosti. Vítězný neuron však můžeme hledat i na základě skalárního součinu vektorů
vah jednotlivých neuronů a vstupního vektoru. Vítězem soutěže se v důsledku laterální inhibice stává ten neuron,
jehož vstupní potenciál je největší a tedy předložený vstup spadá do kategorie vstupních vektorů
reprezentovaných vítězným neuronem. Pokud se pokusíme vyjádřit tuto situaci prostřednictvím vektorového
počtu, pak jednotlivé potenciály neuronů vyjadřují skalární součiny vektorů vah jednotlivých neuronů

(wj, j=1,..., m; m je počet neuronů ve výstupní vrstvě) a vstupního vektoru (x) a tudíž tyto součiny můžeme
chápat jako projekce vektorů vah na vstupní vektor:

w x w xj
T

j= ⋅ ⋅ cosϕ

kde

w xj = = 1.

Čím menší je sevřený úhel mezi oběma vektory (ϕ), tím delší je i projekce váhy na vstupní vektor
(viz. obrázek 32). Adaptační pravidlo je založeno na částečné rotaci váhového vektoru vítězného neuronu a jeho
topologických sousedů směrem ke vstupnímu vektoru x. Jedná se v podstatě o učení Hebbova typu s následným
normováním vektorů vah. Normování vah je nutné proto, aby se zamezilo jejich nekontrolovatelnému růstu
během procesu adaptace. Současně s tím dosáhneme i efektu nalezení vítěze kompetice na základě jediného
parametru, kterým je úhel mezi váhovým vektorem a aktuálním vstupním vektorem.

wj

w1

w2

x

ϕj

ϕ1
ϕ2

O b r á z e k 3 2 : S k a l á r n í s o u č i n y v e k t o r ů v a h a v s t u p u

Maximální potenciál neuronu rovný 1 je zřejmě dosažitelný v případě že wj = x. Zda-li tento j. neuron bude
zastupovat i ostatní vstupní vektory závisí na tom, jak jsou tyto vektory podobné vektoru x. Z obrázku je patrné,
že vektory blízké původnímu vstupu téměř zachovávají i normalitu nových vah. V případě, že nový vektor je
příliš vzdálen původnímu tak dochází k porušení této podmínky. Tento jev by ale měl vést ke stavu, že tento
vstup bude excitovat jiný neuron výstupní vrstvy, kolem kterého by se měla vytvořit další třída, či populace
vstupních vektorů. Postupně se tak vytvoří shluky vstupních neuronů odpovídajících svému neuronu výstupní
vrstvy. Velmi podstatný je i fakt, že k vytvoření těchto shluků došlo (jak již bylo dříve uvedeno) prostřednictvím
adaptace bez učitele: síť je tak schopna samoorganizace.

Shrnutí:
Obě popsané verze Kohonenova adaptačního algoritmu spolu navzájem souvisí: tj. hledání ()max w xj

T

odpovídá hledání min x w− j za předpokladu, že v prvním případě jsou váhové vektory wj normované (leží

na povrchu hyperkoule). Je to patrné z rovnosti

x w x w x wT− = − +j j j

2 2 2
2 .

Pokud je aktuální vstup nezávislý na j a pokud je w j

2
 konstantní díky normování, tak neuron, jehož váhový

vektor je nejbližší vstupu x, je současně neuronem, jehož skalární součin w xj
T je největší.

Kvantování vektorů učením

(LVG angl. Learning Vector Quantization); Prozatím jsme využívali neuronovou síť Kohonenovy mapy
pro učení bez učitele. Nyní se budeme zabývat tím, jak lze tuto síť použít pro řešení problému klasifikace dat do
několika kategorií. Ukážeme si způsob, kterým označíme výstupní neurony sítě kategoriemi a uvedeme
algoritmy, které se používají pro doučení sítě, jež chceme použít k těmto účelům. Kvantování vektorů učením
vychází z uvedených principů Kohonenova učení s jediným rozdílem, že místo již výše zmíněné samoorganizace
chceme zajistit aby pro každou kategorii si podobných vektorů existoval jí odpovídající a námi definovaný
neuron ve výstupní vrstvě sítě. Nejprve tedy musíme určit kolik takových kategorií či tříd budeme požadovat.
Každé této třídě pak přiřadíme jeden neuron výstupní vrstvy. Následuje proces postupného předkládání vektorů
vstupního prostoru a adaptace sítě, tentokráte s učitelem, který rozhoduje o správnosti odezvy. Vlastní odezva je
realizována stejným způsobem jako v případě Kohonenových map, tj. postavená na základě kompetice. Klíčový
rozdíl spočívá ve způsobu úpravy vah neuronové sítě.

Obecná architektura LVQ sítě je totožná s architekturou Kohonenovy mapy zobrazené na obrázku 27
(bez topologické struktury neuronů ve výstupní vrstvě). Navíc však má, jak už bylo uvedeno, každý výstupní
neuron přiřazenou známou třídu vstupů, které reprezentuje.

Cílem adaptačního algoritmu LVQ sítě je nalezení takového neuronu ve výstupní vrstvě
(charakterizovaného váhovými hodnotami wc), který je nejbližší pro zadaný vstupní vektor (x). Algoritmus
končí, pokud x i wc patří do téže třídy klasifikace. Pokud x i wc náleží do různých třídy klasifikace, hodnoty
váhového vektoru wc adaptujeme tak dlouho, aby byl tento nedostatek odstraněn.

Dále budeme používat následující označení:

x Vstupní tréninkový vektor: x = (x1, ..., xi, ..., xn).

T Korektní třída přiřazená tréninkovému vektoru.

w.j Vektor vah pro j. neuron ve výstupní vrstvě: w.j = (w1j, w2j, ..., wnj)T.

Cj Třída reprezentující j. neuron ve výstupní vrstvě.

x w j− Euklidovská vzdálenost mezi vstupním vektorem x a váhovým vektorem. j. neuronu ve

výstupní vrstvě wj.

Popis algoritmu

Krok 0. Přiřazení tříd vstupním tréninkovým vektorům.

Inicializace referenčních vektorů (viz příklady).

Inicializace parametru učení (α).

Krok 1. Pokud není splněna podmínka ukončení, provádět kroky (2 až 6).

Krok 2. Pro každý vstupní vektor x = (x1,...,xn) opakovat kroky 3 až 4.

Krok 3. Nalezení takového J, že x w− J je minimum.

Krok 4. Aktualizace váhových hodnot wJ:

pokud T = CJ ,pak

() () ()[]w new w old x w oldJ J iJ= + −α

pokud T ≠ CJ , pak

() () ()[]w new w old x w oldJ J iJ= − −α

Krok 6. Aktualizace parametru učení (zmenšení jeho hodnoty).

Krok 7. Test podmínky ukončení.

V případě, že se jedná o správnou odezvu, adaptace probíhá podle známého vztahu:

() () ()[]w new w old x w oldJ J iJ= + −α .

Tímto dochází k přiblížení vah neuronu směrem ke vstupnímu vektoru.

V případě chybné odezvy bude našim cílem váhy chybného vítěze spíše oddálit od vstupu, což vede k
následujícímu předpisu pro adaptaci jeho vah

() () ()[]w new w old x w oldJ J iJ= − −α .

Celá situace je znázorněna na následujícím obrázku 33.

Vstupní vektor

Váhový
vektor vítěze

Posun vah pro správnou
odezvu

Posun vah pro chybnou
odezvu

O b r á z e k 3 3 : A d a p t a c e v a h p r o n e u r o n o v o u s í ť L V Q .

Tento přístup však lze ještě dále zdokonalit. Předpokládejme, že pro předložený vstup se stal vítězem

opět j-tý neuron namísto k-tého. Až doposud jsme uvažovali pouze o adaptaci vah u tohoto vítěze. V případě
chybné odezvy by tedy došlo k jeho odsunutí od vstupu, zatímco váhy požadovaného k-tého neuronu zůstaly
nezměněny. Proč tedy v rámci této adaptace neadaptovat váhy požadovaného vítěze tak, aby se přiblížil
vstupnímu vektoru? Znamená to, že budeme pro všechny vstupní vektory adaptovat váhy požadovaných neuronů
nezávisle na tom, zda jsou či nejsou vítězi soutěže. V případě, že vítězem se stal nežádoucí neuron, bude
následovat jeho odsun od vstupu.

Úkoly:

Mějme pět vektorů: (1,1,0,0), (0,0,0,1), (0,0,1,1), (1,0,0,0), (0,1,1,0). Maximální počet shluků je: m=2.
Řešte příklad a) algoritmem adaptace Kohonenovy samoorganizační mapy (vhodně si definujte vztah
proparametr učení); b) adaptačním algoritmem LVQ (vhodně si rozdělte vstupní vektory do dvou kategorií).
Obě řešení porovnejte.

Korespondenční úkoly:

Vytvořte počítačový program pro realizaci adaptačního algoritmu pracujícího na principu soutěžní strategie
učení.

Dopředná síť typu counterpropagation

Dopředná síť typu counterpropagation (angl. Forward-Only Counterpropagation) je tvořena třemi
vrstvami neuronů (viz obrázek 34). Vstupní vrstvu tvoří n vstupních neuronů distribuujících do další vrstvy
vstupní signály x1,..., xn. Druhá vrstva je tvořena p samoorganizačními jednotkami (viz Kohonenovy
samoorganizační mapy), které jsou vzájemně propojeny, což není z obrázku patrné. Třetí vrstvu tvoří m
Grossbergových jednotek instar. Jejich výstupy pak tvoří výstupy celé neuronové sítě.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ym

Yk

Y1

Zp

Zj

Z1

Xn

VSTUPNÍ
VRSTVA

VÝSTUPNÍ
VRSTVA

KOHONENOVA
VRSTVA

Xi

X1

wp m

w1 m

vn j

vn 1

vi j

vi1

v1j

v11

wp 1

wp k

wj m

wj k

w11

wj 1

w1 k

vn p

vi p

v1 p

O b r á z e k 3 4 : D o p ř e d n á s í ť t y p u c o u n t e r p r o p a g a t i o n

Adaptivní dynamika této sítě probíhá ve dvou fázích. Nejprve se Kohonenovým učením bez učitele
nastaví váhy vij (i = 1,..., n; j = 1,..., p) samoorganizačních jednotek mezi vstupní a vnitřní vrstvou. Po skončení
první fáze učení, ve které se používá jen vstupní části tréninkových vzorů, se váhy v fixují a dochází ke druhé
fázi učení, která nastaví váhy wjk (j = 1,..., p; k = 1,..., m) mezi vnitřní a výstupní vrstvou. V této části
adaptačního algoritmu je vypočten aktuální výstup sítě pro všechny neurony výstupní vrstvy a porovnán

C O U N T E R P R O P A G A T I O N .

Klíčová slova této kapitoly:
Grossbergovy jednotky „instar“, Grossbergovo adaptační pravidlo.

Counterpropagation je model umě lé neuronové sí tě (navržené Hecht-Nielsenem v r .
1986), která se snaží využít samoorganizační síť v kombinaci s dalším př ídavným
mechanismem k řešení problémů učení s uč i te lem. Síť , kterou dále popíšeme je
pouze jednou z možných variant této neuronové sí tě . Síť counterpropagation
pracuje jako vyhledávací tabulka (lookup table) , která k danému vstupu najde
nejbl ižšího reprezentanta a odpoví výstupní hodnotou, která je s t ímto
reprezentantem spojena.

s požadovaným výstupem sítě. Pokud není splněna podmínka ukončení, jsou váhové hodnoty w upravovány
tzv. Grossbergovým adaptačním pravidlem (viz dále).

Pravidlo pro adaptaci váhových hodnot mezi vstupní a vnitřní vrstvou

() ()
() ()

v new v x v

v old x
i J i J i i J

i J i

= + −

= − +

α

α α1 ,

kde J je index vítězného neuronu v kompetici po předložení vstupu x,;
 xi je inicializační hodnota i. neuronu ve vstupní vrstvě;
 α je parametr učení; snižuje svou velikost v čase (0<α<1);

doporučená inicializační hodnota je 0.6.

Pravidlo pro adaptaci váhových hodnot mezi vnitřní a výstupní vrstvou

() ()
() ()

w new w a y w

a w old ay
J k J k k J k

J k k

= + −

= − +1 ,

kde wJk je skutečná aktivace k. neuronu ve výstupní vrstvě;
 a je parametr učení; snižuje svou velikost v čase (0.5 < a < 0.8);
 yk je očekávaná aktivace k. neuronu ve výstupní vrstvě.

Aktivace neuronů vnitřní vrstvy definujeme následovně:

z j J
j =

=⎧
⎨
⎩
1 pokud
0 jinak.

Adaptační pravidlo pro váhové hodnoty na spojeních mezi vnitřní a výstupní vrstvou přepíšeme do tvaru delta
pravidla (Grossbergovo adaptační pravidlo):

() ()w new w a z y wj k j k j k J k= + − .

Popis algoritmu

Krok 0. Inicializace všech váhových hodnot, parametrů učení, atd.

Krok 1. Pokud není splněna podmínka ukončení 1. fáze adaptace, provádět kroky 2 až 7.

Krok 2. Pro každý vstupní vektor x = (x1,...,xn) opakovat kroky 3 až 5.

Krok 3. Aktivovat vstupní vrstvu vektorem x.

Krok 4. Najít vítěze kompetice ve vnitřní vrstvě, označit jeho index

J.

Krok 5. Aktualizace váhových hodnot na spojeních vedoucích k neuronu

ZJ , tj. pro všechna i (i = 1,..., n) platí:

() () ()v new v old xi J i J i= − +1 α α

Krok 6. Snížit hodnotu parametru učení α.

Krok 7. Test podmínky ukončení 1. fáze.

Krok 8. Pokud není splněna podmínka ukončení 2. fáze adaptace, provádět kroky 9 - 15.

(Poznámka: α má během celé 2. fáze adaptace velmi malou konstantní hodnotu.)

Krok 9. Pro každý tréninkový vstupní pár vektorů x:y; (x = (x1,...,xn), y = (y1,...,ym)),

opakovat kroky 10 až 13.

Krok 10. Aktivovat vstupní vrstvu vektorem x;

Aktivovat výstupní vrstvu vektorem y.

Krok 11. Najít vítěze kompetice ve vnitřní vrstvě, označit jeho index

J.

Krok 12. Aktualizace váhových hodnot na spojeních ze vstupní

vrstvy do neuronu ZJ (α je velmi malé), tj. pro všechna i

(i = 1,..., n) platí:

() () ()v new v old xi J i J i= − +1 α α

Krok 13. Aktualizace váhových hodnot na spojeních vedoucích z

neuronu ZJ do výstupní vrstvy,

tj. pro všechna k (k = 1,..., m) platí:

() () ()w new a w old ayJ k J k k= − +1 ,

Krok 14. Snížit hodnotu parametru učení a.

Krok 15. Test podmínky ukončení 2. fáze.

Shrňme nyní statistické vlastnosti naučené sítě: Díky samoorganizačnímu učení s využitím lokální
paměti aproximují vektory v hustotu pravděpodobnosti vzorů. Víme, že neurony ve druhé vrstvě mají stejnou
pravděpodobnost vítězství v kompetici, za předpokladu, že vybíráme vstupy náhodně s rozložením
odpovídajícím tréninkové množině. Dále váhy výstupních neuronů jsou adaptovány tak, aby aproximovaly
průměrnou výstupní hodnotu patřící těm vstupům, které aktivovaly odpovídající neurony ve druhé vrstvě.

Aktivní fáze counterpropagation

Krok 0. Inicializace všech váhových hodnot - viz adaptivní fáze counterpropagation.
Krok 1. Aktivovat vstupní vrstvu vektorem x.
Krok 2. Najít vítěze kompetice ve vnitřní vrstvě, označit jeho index J.
Krok 3. Vypočítat aktivace neuronů výstupní vrstvy: yk = wJk, (k = 1,..., m).

Používáme-li síť typu counterpropagation k aproximování nějakého zobrazení, f: Rn → Rm , chová se
optimálně v tom smyslu, že reprezentanti vstupů jsou zvoleni tak, aby měli stejnou pravděpodobnost výběru a
výstupní hodnoty představují průměr funkčních hodnot v okolí těchto reprezentantů.

Nespornou výhodou neuronové sítě typu counterpropagation je rychlost její adaptace, nevýhodou pak
je menší přesnost odezvy ve srovnáním s metodou backpropagation.

Úkoly:

Srovnejte řešení logické funkce „XOR“ standardním adaptačním algoritmem vícevrstvé neuronové sítě

(backpropagation) a adaptačním algoritmem modelu counterpropagation.

Organizační i aktivní dynamika asocialitivní sítě je téměř identická jako u modelu Madaline. Jediný
rozdíl spočívá v tom, že lineární asociativní síť v aktivním režimu místo afinních kombinací počítá jen lineární
kombinace vstupů, tj. chybí formální jednotkový vstup rovněž i odpovídající biasy jsou nulové. V geometrické
interpretaci to znamená, že příslušné nadroviny odpovídající výstupním neuronům sítě prochází počátkem.

Asociativní paměti neuronových sítí jsou sítě, ve kterých jsou váhové hodnoty determinovány takovým
způsobem, aby si sítě byly schopny zapamatovat množinu P asociovaných vzorů. Každou asociaci tvoří pár
vektorů (s(p), t(p)), kde p = 1, 2,..., P). Každý vektor s(p) obsahuje n komponent a každý vektor t(p)
obsahuje m komponent. Váhové hodnoty na příslušných spojích mohou být nalezeny např. Hebbovým
adaptačním pravidlem pro asociované neuronové sítě. (viz dále). Slovně jej lze vyjádřit takto: změna synaptické
váhy spoje mezi dvěma neurony je úměrná jejich souhlasné aktivitě, tj. součinu jejich stavů (opačná aktivita tuto
vazbu zeslabuje). Lineární asociativní síť má schopnost reprodukce, tj. předložíme-li síti vstup (vstupní vektor x
), pak na něj odpoví požadovaným výstupem (výstupní vektor y). Vstupní vektor x může být buď vektorem
z tréninkové množiny, nebo jiným vektorem (tj. vektorem z tréninkové množiny obsahující šum).

Heteroasociativní paměť neuronové sítě

Architektura heteroasociativní paměti neuronové sítě je zobrazena na obrázku 35. Její adaptace probíhá podle
Hebbova adaptačního pravidla pro asociované neuronové sítě.

.

.

.

.

.

.

.

.

.

.

.

.

Ym

Yj

Y1

Xn

Xi

X1

wi1 wn1

wnj

wnm

wim

wij

w1m

w1j

w11

výstupní neuronyvstupní neurony

O b r á z e k 3 5 : A r c h i t e k t u r a h e t e r o a s o c i a t i v n í p a m ě t i
n e u r o n o v é s í t ě .

A S O C I A T I V N Í N E U R O N O V É S Í T Ě .

Klíčová slova této kapitoly:
autoasociativní paměť , heteroasociativní paměť

Na rozdíl od klasických poč í tačů , kdy klíčem k vyhledání položky v pamě t i je
adresa, u asociat ivní pamě t i probíhá vybavení př íslušné informace na základě je j í
částečné znalosti (asociace). Např . v databázových aplikacích je znalost některých
položek záznamu postačující k vyhledání celého záznamu. V zásadě budeme
rozlišovat dva typy asociat ivní pamě t i , a to paměť autoasociativní a paměť
heteroasociat ivní . U autoasociat ivní pamě t i pů jde o up řesnění, č i zúplnění vstupní
informace na základě j iž naučeného. Naproti tomu u heteroasociat ivní pamě t i
dochází k vybavení urč i té sdružené informace na základě vstupní asociace.

Hebbovo adaptační pravidlo pro asociované neuronové sítě

je nejběžnější metodou pro stanovení váhových hodnot na spojích mezi jednotlivými neurony. Pracuje
s vektory, které jsou zapsány v binární i bipolární reprezentaci. Jeho algoritmus probíhá v následujících krocích.
Algoritmus není vhodný pro dopředné neuronové sítě, které adaptujeme metodou backpropagation.

Popis algoritmu

Krok 0. Inicializace všech váhových hodnot wij = 0, (i = 1,...,n; j = 1,...m).

Krok 1. Pro každý testovací vzor, tj. tréninkový pár s:t, opakovat kroky (2 až 4).

Krok 2. Inicializovat vrstvu X vnějším vstupním vektorem.

xi = si , (i = 1,...,n).

Krok 3. Inicializovat vrstvu Y vnějším vstupním vektorem..

yj = tj , (j = 1,...m).

Krok 4. Nastavit váhové hodnoty (i = 1,...,n; j = 1,...m);

() ()w new w old x yij ij i j= + .

Celý algoritmus přepíšeme ještě názornějším způsobem:
Nejprve inicializujeme všechny váhové hodnoty číslem 0, tj. wij = 0, (i = 1,...,n; j = 1,...m).

Vstupní vektor

s = (s1, ..., si, ..., sn)

tvoří sloupcovou matici S typu n × 1, tj S = sT.

Asociovaný výstupní vektor

t= (t1, ..., tj, ..., tm)

tvoří řádkovou matici T typu 1 × m, tj T = t..

Součin obou matic S a T

[]ST =

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

s

s

s

t t t

s t s t s t

s t s t s t

s t s t s t

i

n

j m

j m

i i j i m

n n j n m

1

1

1 1 1 1

1

1

M

M

L L

L L

M M M

L L

M M M

L L

. .

. .

pak tvoří váhovou matici, ve které jsou uloženy informace o asociovaném páru vektorů s:t.

Jelikož budeme dále pracovat s P vzory, musí být i ve váhové matici uložené informace o P asociovaných
vektorech s(p):t(p), p = 1, 2,..., P, kde

s(p) = (s1(p), ..., si(p), ..., sn(p))
a

t(p) = (t1(p), ..., tj(p), ..., tm(p)).

Tyto vektory tvoří váhovou matici W = {wi j}, tj.

() ()w s p t pi j i
p

P

j=
=
∑

1
,

která má ve vektorové reprezentaci tvar:

() ()W s t=
=
∑ T

p

P

p p
1

.

Nyní můžeme přistoupit k popisu algoritmu heteroasociativní paměti, který nalezne pro každý vstupní vektor x
vhodný výstupní vektor y. Vstupní vektor x může být, jak již bylo uvedeno, buď jedním z naučených vzorů,
nebo novým vzorem (např. tréninkovým vzorem obsahujícím šum).

Popis algoritmu heteroasociativní paměti

Krok 0. Inicializace všech váhových hodnot wij, (i = 1,...,n; j = 1,...m) podle Hebbova pravidla

adaptace pro asociativní sítě.

Krok 1. Pro vstupní vektor x = (x1, ..., xi, ..., xn) opakovat kroky (2 až 4).

Krok 2. Inicializovat vrstvu X daným vstupním vektorem.

Krok 3. Vypočítat potenciál výstupních neuronů

y in x wj i
i

i j_ = ∑ , (j = 1,..., m).

Krok 4a. Vypočítat aktivaci výstupních neuronů;

y
y in
y in
y in

j

j

j

j

=
>
=

− <

⎧

⎨
⎪

⎩
⎪

1 0
0 0

1 0

pokud
pokud
pokud

_
_
_ ,

pro bipolární reprezentaci (práh θ = 0).

Krok 4b. Vypočítat aktivaci výstupních neuronů;

y
y in
y inj

j

j
=

>
≤

⎧
⎨
⎩

1 0
0 0

pokud
pokud

_
_ ,

pro binární reprezentaci(práh θ = 0).

Poznámka:
Heteroasociativní paměť není iterační.

Autoasociativní neuronové sítě

Dopředné autoasociativní neuronové sítě jsou speciálním případem heteroasociativních sítí popsaných
v předcházející kapitole. Pro autoasociativní sítě jsou oba tréninkové vektory (tj. vstupní vektor s a výstupní
vektor t) identické. Každou asociaci proto tvoří pár vektorů s(p):s(p), kde p = 1, 2,..., P. Každý vektor s(p)
obsahuje n komponent. Váhové hodnoty na příslušných spojích jsou rovněž nastaveny Hebbovým adaptačním
pravidlem pro asociované neuronové sítě (při řešení úloh jsou dosahovány lepší výsledky s vektory pracující
s bipolární reprezentací než s vektory pracující v binární reprezentaci).

Příklad:
 Popíšeme proces uložení jednoho vzoru reprezentovaného vektorem s =(1, 1, 1, -1) v autoasociativní
paměti a pak jeho následné vybavení.
Jak již bylo uvedeno, autoasociativní paměť je speciálním případem heteroasociativní paměti (kde t(p) = s(p)).
Při řešení příkladu proto využijeme algoritmus uvedených v předcházející kapitole.

Krok 0. Vektor s =(1, 1, 1, -1) je uložen ve váhové matici

W =

−
−
−

− − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

.

Krok 1. Pro vstupní vektor s =(1, 1, 1, -1).

Krok 2. x = (1, 1, 1, -1).

Krok 3. y_in = (4, 4, 4, -4).

Krok 4a. y = f(4, 4, 4, -4) = (1, 1, 1, -1).

Vidíme, že vektor y je totožný s vektorem s. Lze tedy říci, že na vstup byl dodán vektor z tréninkové množiny.

Speciálním případem autoasociativní neuronové sítě je iterativní autoasociativní síť. Z následujícího
příkladu uvidíme, že síť v určitém případě nereaguje přímo na vstupní signál naučeným výstupem. Pokud
vstupní signál není totožný s naučeným vzorem, ale liší se od něj pouze v tom smyslu, že místo +1 nebo --1
obsahuje 0, potom lze výstupní hodnoty ze sítě opět považovat za její vstupní signál, atd. Požadovaný výstupní
signál pak dostaneme po určitém počtu iterací.

Příklad.
 Mějme v autoasociativní paměti uložen jeden vzor reprezentovaný vektorem s =(1, 1, 1, -1). Váhová
matice má tvar (v autoasociativních sítích nejsou neurony spojeny samy se sebou, je tedy běžnější zapisovat
váhovou matici s nulami na hlavní diagonále, aniž by to mělo vliv na další řešení úlohy):

W =

−
−
−

− − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

.

Vstupní vektor s =(1, 0, 0, 0) je případ vektoru, ve kterém jsou na rozdíl od naučeného vzoru nahrazeny tři jeho
komponenty nulami. Iterační proces pak s tímto vektorem probíhá následovně:

Vstupní vektor s =(1, 0, 0, 0):

(1, 0, 0, 0) ⋅ W = (0, 1, 1, -1) → iterace
(0, 1, 1, -1) ⋅ W = (3, 2, 2, -2) → (1, 1, 1, -1),

což je uložený vzor. Pokud je tedy na vstupu vektor (1, 0, 0, 0), tak po dvou iteracích bude na výstupu vektor
(1, 1, 1, -1).

Úkoly:

Důkladně si ještě jednou prostudujte Hebbovo adaptační pravidlo pro asociované neuronové sítě (včetně
obou řešených příkladů). V další kapitole na něj budeme navazovat!

Diskrétní Hopfieldova síť

Diskrétní Hopfieldova síť se používá jako iterační autoasociativní paměť. Autorem této neuronové sítě
je John Hopfield, který se zabýval studiem neuronů podobných perceptronům. Model Hopfieldovy neuronové
sítě je založen na využití energetické funkce svázané s neuronovou sítí tak, jak je to běžné u fyzikálních systémů.
Organizační dynamika diskrétní Hopfieldovy sítě specifikuje úplnou topologii cyklické neuronové sítě s n
neurony, kde každý neuron v síti je spojen se všemi ostatními neurony sítě, tj. má všechny neurony za své
vstupy. Obecně platí, že může být spojen i sám se sebou. Všechny neurony v síti jsou tedy zároveň vstupní i
výstupní. Architektura Hopfieldovy sítě je znázorněna na obrázku 36. Každý spoj v síti mezi neuronem
i (i = 1, ..., n) a neuronem j (j = 1, ..., n) je ohodnocen celočíselnými synaptickými vahami wij a wji, které jsou
symetrické, tj. wij = wji. V základním modelu platí, že žádný neuron není spojen sám se sebou, tj. odpovídající
váhy wj j = 0 (j = 1, ..., n) jsou nulové.

wni

wn2

wn1

win

wi2

wi1

w1n

w1i
w21

w2i

w2n

. YnYiY2Y1

O b r á z e k 3 6 : M o d e l d i s k r é t n í H o p f i e l d o v y s í t ě .

H O P F I E L D O V A S Í Ť .

Klíčová slova této kapitoly:
diskrétní Hopfieldova síť , spojitá Hopfieldova síť , proces relaxace,
energetická funkce sítě , problém obchodního cestujícího (angl.
Travelling Salesman Problem - TSP).

Model Hopfieldovy sí tě vychází z i terační autoasociat ivní pamě t i . Proto dř íve než
se pust í te do studia této kapitoly vám doporučuji , abyste se důkladně seznámili
s obsahem kapitoly „Asociativní neuronové sí tě“.
V této kapitole se seznámíte s modelem diskrétní i spoji té Hopfieldovy sí tě .
V závěru je pak uveden algori tmus řešení „problému obchodního cestuj ícího“
spoji tou Hopfieldovou sí t i .

Hlavní myšlenka adaptace Hopfieldova modelu spočívá v tom, že jsou nejprve inicializovány všechny

neurony sítě buď binárními hodnotami {0, 1} nebo bipolárními hodnotami {-1,+1}. Vzhledem k tomu, že jsou
všechny neurony navzájem propojeny, začnou se ovlivňovat. To znamená, že jeden neuron se snaží ostatní
neurony excitovat na rozdíl od jiného, který se snaží o opačné. Probíhá cyklus postupných změn excitací
neuronů až do okamžiku nalezení kompromisu - síť relaxovala do stabilního stavu. Jinými slovy výstupy
předchozího kroku se staly novými vstupy současného kroku. Tento proces je vysvětlitelný následujícím
algoritmem: tréninkové vzory nejsou v Hopfieldově síti uloženy přímo, ale jsou reprezentovány pomocí vztahů
mezi stavy neuronů.

První popis adaptačního algoritmu Hopfieldovy sítě pochází z roku 1982 a používá binární hodnoty pro
excitace neuronů.

Požadovaná funkce sítě je specifikována tréninkovou množinou P vzorů s(p), p = 1, ..., P, z nichž
každý je zadán vektorem n binárních stavů vstupních resp. výstupních neuronů, které v případě autoasociativní
paměti splývají:

() () () ()()s p s p s p s pi n= 1 , ... , , ... , ,

potom je váhová matice W = {wij} dána následujícím vztahem:

()[] ()[]w s p s p i jij i
p

j= − − ≠∑ 2 1 2 1 pro

a
wi i = 0.

Jiný popis adaptačního algoritmu Hopfieldovy sítě pochází z roku 1984 a pracuje s bipolárními
hodnotami pro excitace neuronů.

Požadovaná funkce sítě je rovněž specifikována tréninkovou množinou P vzorů s(p), p = 1, ..., P,
z nichž každý je zadán vektorem n bipolárních stavů vstupních resp. výstupních neuronů, které v případě
autoasociativní paměti splývají:

() () () ()()s p s p s p s pi n= 1 , ... , , ... , ,

potom je váhová matice W = {wij} dána následujícím vztahem:

() ()w s p s p i jij i
p

j= ≠∑ pro

a
wi i = 0.

Smysl této adaptace vah si ozřejmíme na následujícím obrázku:

-1

+1

a)

+1

+1

b)

w ij

i

j

w ij

i

j

+1

-1

c)

-1

-1

d)

w ij

i

j

w ij

i

j

O b r á z e k 3 7 : A d a p t a c e v a h H o p f i e l d o v y s í t ě

V případě varianty b) a d) je stav excitace obou neuronů totožný. Dle výše uvedeného to znamená, že
nová hodnota váhy na spojení mezi oběma neurony bude dána vztahem:

() () ()w new w old x x w oldij ij i j ij= + ⋅ = + 1.

Znamená to "posílení" propojení mezi těmito neurony a v případě relaxace sítě pak oba neurony budou mít snahu
dosáhnout stejného stavu. Čím více bude vzorů s tímto stavem obou neuronů, tím větší bude snaha o dosažení
totožného stavu obou těchto neuronů při relaxaci.

V případech a) a c) pak bude postup obrácený. Nová váha propojení bude mít následující hodnotu:
() () ()w new w old x x w oldij ij i j ij= + ⋅ = − 1

a vazba bude směřovat k takovému stavu, aby při relaxaci sítě byly stavy obou neuronů různé.

Popis algoritmu

Dále budeme pracovat s binárním vzorem, protože vyjádření aktivační funkce v bipolární reprezentaci
je mnohem jednodušší než kdybychom postupovali opačně.

Krok 0. Inicializace vah, tj. zapamatování vzorů.

(Použitím Hebbova adaptačního pravidla pro asociované sítě.)

Dokud síť nezrelaxovala do stabilního stavu, opakovat kroky (1 až 7).

Krok 1. Pro každý vstupní vektor x, opakovat kroky (2 až 6).

Krok 2. Inicializace sítě vnějším vstupním vektorem x:

()y x i ni i= =, , ... ,1

Krok 3. Pro každý neuron Yi opakovat kroky (4 až 6).

(Neurony jsou uspořádány náhodně)

Krok 4 Vypočítat vnitřní potenciál neuronu:

y in x y wi i j ji
j

_ .= + ∑

Krok 5 Stanovení výstupu neuronu lze chápat jako

aplikaci aktivační funkce:

y
y in

y y in
y in

i

i i

i i i

i i

=
>
=
<

⎧

⎨
⎪

⎩
⎪

1

0

pokud
pokud
pokud

_
_
_ .

θ
θ
θ

Krok 6 Transport hodnoty yi ostatním neuronům.

(Takto budeme aktualizovat hodnoty

aktivačního vektoru.)

Krok 7. Test konvergence.

Prahová hodnota θi je obvykle nulová. Aktualizace neuronů probíhají sice v náhodném pořadí, ale musí být
prováděny stejnou průměrnou rychlostí.

Příklad:
 Pomocí diskrétního Hopfieldova modelu určit, jestli je vstupní vektor „naučeným“ vzorem (tj. byl
součástí trénovací množiny) nebo „nenaučeným“ vzorem.

Krok 0. Váhová matice pro zapamatování vektoru (1, 1, 1, 0) (přepis vektoru do bipolární reprezentace

(1, 1, 1, -1)) má tvar:

W =

−
−
−

− − −

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Krok 1. Vstupní vektor je x = (0, 0, 1, 0). Pro tento vektor opakovat kroky (2 až 6).

Krok 2. y = (0, 0, 1, 0).

Krok 3. Vybrat Y1 a aktualizovat jeho aktivaci:

Krok 4 y in x y wj j
j

_ .1 1 1 0 1= + = +∑

Krok 5 y_in1 > 0 → y1 =1.

Krok 6 y = (1, 0, 1, 0).

Krok 3. Vybrat Y4 a aktualizovat jeho aktivaci:

Krok 4 ()y in x y wj j
j

_ .4 4 4 0 2= + = + −∑

Krok 5 y_in1 < 0 → y4 =0.

Krok 6 y = (1, 0, 1, 0).

Krok 3. Vybrat Y3 a aktualizovat jeho aktivaci:

Krok 4 y in x y wj j
j

_ .3 3 3 1 1= + = +∑

Krok 5 y_in3 > 0 → y3 =1.

Krok 6 y = (1, 0, 1, 0).

Krok 3. Vybrat Y2 a aktualizovat jeho aktivaci:

Krok 4 y in x y wj j
j

_ .2 2 2 0 2= + = +∑

Krok 5 y_in2 > 0 → y2 =1.

Krok 6 y = (1, 1, 1, 0).

Krok 7. Test konvergence.

Aktivace každého neuronu byla aktualizována alespoň jednou během celého výpočtu. Vstupní vektor konverguje
k uloženému vzoru.

Funkce energie

K lepšímu pochopení aktivní dynamiky Hopfieldovy sítě byla Hopfieldem, v analogii s fyzikálními ději
definována tzv. energetická funkce E sítě, která každému stavu sítě přiřazuje jeho potenciální energii.
Energetická funkce je tedy funkce, která je zdola ohraničená a pro daný stav systému je nerostoucí. V teorii
neuronových sítí se stavem systému rozumí množina aktivací všech neuronů. Pokud je již tato energetická funkce

nalezena, bude síť konvergovat ke stabilní množině aktivací neuronů v daném časovém okamžiku. Energetická
funkce pro diskrétní Hopfieldovu síť je dána následovně:

E y y w x y yi j i j i i i i
iiji j

= − − + ∑∑∑∑
≠

0 5, .θ

Z definice energetické funkce vyplývá, že stavy sítě s nízkou energií mají největší stabilitu. Pokud se

aktivace sítě změní o Δyi , změna energie je pak dána následovně:

Δ ΔE y w x yj i j i i
j

i= − + −
⎡

⎣
⎢

⎤

⎦
⎥∑ θ .

(Vztah závisí na skutečnosti, že v daném časovém okamžiku může svou aktivaci aktualizovat vždy pouze jeden
neuron sítě.)

Nyní uvažujme dva případy, které mohou nastat při změně Δyi v aktivaci neuronu Yi.; Δyi je kladné,

pokud je i výraz y w xj i j i i
j

+ −
⎡

⎣
⎢

⎤

⎦
⎥∑ θ kladný a Δyi je záporné, pokud je tentýž výraz záporný. V obou

případech je ΔE<0, tj. energie nemůže růst. Protože je energetická funkce ohraničená, síť musí dosáhnout
stabilního stavu (tj. energie se v následujících iteracích již nemění).

Hopfieldova síť má ve srovnání s vícevrstvou sítí adaptovanou učícím algoritmem backpropagation
opačný charakter aktivní a adaptivní dynamiky. Zatímco adaptace Hopfieldovy sítě podle Hebbova zákona je
jednorázovou záležitostí, jejíž trvání závisí jen na počtu tréninkových vzorů, učící algoritmus backpropagation
realizuje iterativní proces minimalizující chybu sítě gradientní metodou bez záruky konvergence. Na druhou
stranu délka trvání aktivní fáze vícevrstvé sítě je dána pouze počtem vrstev, zatímco aktivní režim Hopfieldovy
sítě představuje iterativní proces minimalizující energii sítě diskrétní variantou gradientní metody s nejistou
konvergencí.

Cílem adaptace Hopfieldovy sítě podle Hebbova zákona je nalezení takové konfigurace, aby funkce sítě
v aktivním režimu realizovala autoasociativní paměť. To znamená: bude-li vstup sítě blízký nějakému
tréninkovému vzoru, výstup sítě by měl potom odpovídat tomuto vzoru. Z hlediska energie by každý tréninkový
vzor měl být lokálním minimem energetické funkce, tj. stabilním stavem sítě. V jeho blízkém okolí, v tzv.
oblasti atrakce, se nachází všechny vstupy blízké tomuto vzoru. Ty představují počáteční stavy sítě, ze kterých
se při minimalizaci energetické funkce v aktivním režimu síť dostane do příslušného minima, tj. stabilního stavu
odpovídajícího uvažovanému tréninkovému vzoru. Geometricky se tedy energetická plocha rozpadá na oblasti
atrakce lokálních minim a příslušná funkce Hopfieldovy sítě přiřadí v aktivním režimu ke každému vstupu
náležejícímu do oblasti atrakce nějakého lokálního minima právě toto minimum.

Při učení Hopfieldovy sítě podle Hebbova zákona pro asociativní sítě samovolně vznikají na
energetické ploše lokální minima, tzv. nepravé vzory (fantomy), které neodpovídají žádným tréninkovým
vzorům. Výstup sítě pro vstup dostatečně blízký takovému fantomu neodpovídá žádnému vzoru, a tudíž nedává
žádný smysl. Existují varianty adaptivní dynamiky Hopfieldovy sítě, při nichž se takto vzniklé fantomy mohou
dodatečně odučit.

Kapacita Hopfieldovy paměti

Hopfield experimentálně nalezl, že počet binárních vzorů, který může být zapamatován a opětovně
vyvolán s požadovanou přesností, je dán přibližně

P n≈ 0 15, ,
kde n je počet neuronů v síti.

Pro sítě pracující s bipolárními vzory byl odvozen obdobný vztah:

P n
n

≈
2 2log

.

I když se v praxi ukazuje, že uvedené teoretické odhady jsou poněkud nadhodnocené, přesto základní

model Hopfieldovy autoasociativní paměti má díky své malé kapacitě spíše teoretický význam. V literatuře
přesto existuje mnoho modifikací tohoto modelu, které se snaží uvedený nedostatek odstranit.

Spojitá Hopfieldova síť

Spojitá Hopfieldova síť je příkladem modelu, u kterého je vývoj reálného stavu v aktivním režimu nejen
spojitou funkcí vnitřního potenciálu, ale navíc i spojitou funkcí času. Aktivní dynamika je v takových případech
obvykle zadána diferenciální rovnicí, jejíž řešení nelze explicitně vyjádřit, proto tyto modely (pokud
nepracujeme s jejich diskrétní verzí) nejsou vhodné pro analogovou hardwarovou implementaci pomocí
elektrických obvodů.

Protože spojitá Hopfieldova síť je modifikací diskrétní Hopfieldovy sítě, jsou také spojení mezi
libovolnými dvěma neurony obousměrné a rovněž i váhové hodnoty na těchto spojeních jsou symetrické.

V tomto modelu budeme používat následující značení:

Ui i. neuron.

wij Váhová hodnota přiřazena spojení mezi Ui a Uj; wij = wji.
ui Vnitřní potenciál neuronu Ui.
vi=g(ui) Aktivace neuronu Ui.

Pokud budeme definovat funkci energie vztahem

E w v v vi j i j i i
i

n

j

n

i

n

= +
===
∑∑∑0 5

111

, ,θ

potom bude síť konvergovat ke stabilní konfiguraci, tj. funkce energie dosáhne svého minima, když

d
dt

E ≤ 0.

Podle tohoto tvaru energetické funkce bude síť konvergovat, budou-li se aktivity všech neuronů měnit (v čase)
podle následující diferenciální rovnice

d
dt

u E
v

w vi
i

i j j i
j

n

= − = − −
=
∑∂

∂
θ ,

1

jak je ukázáno dále.

Spojitá Hopfieldova síť může být použita buď jako autoasociativní paměť(stejně jako diskrétní
Hopfieldova síť), nebo k řešení optimalizačních problémů zadaných formou omezujících podmínek. Mezi takto
zadané úlohy patří např. Problém obchodního cestujícího. Princip hledání lokálního minima energetické funkce
Hopfieldovy sítě je v této úloze využitelný zcela jiným způsobem než bylo zatím uvedeno: Dokážeme-li
formulovat omezení nějaké optimalizační úlohy ve formě energetické funkce neuronové sítě, pak proces její
relaxace povede k nalezení některého z optimálních, či alespoň suboptimálních řešení. Ve srovnání z předchozím
tedy nebudeme síť adaptovat na základě prvků trénovací množiny, ale pokusíme se stanovit váhy mezi
jednotlivými neurony na základě porovnání obecně definované funkce energie Hopfieldovy sítě a energetické
funkce vyjadřující naše omezující podmínky. Tento proces probíhá v adaptivním režim sítě. V aktivním režimu
potom hledá síť přípustné řešení daného problému.

Spojitá Hopfieldova síť a problém obchodního cestujícího

Problém obchodního cestujícího (angl. Travelling Salesman Problem - TSP) je klasickou úlohou, kterou
lze výše uvedeným postupem úspěšně řešit. Cílem úlohy je navštívit všechna města oblasti tak, aby žádné z nich
nebylo navštíveno dvakrát a přitom, aby délka trasy byla co nejmenší. Nejlepší řešení pro TSP je velmi složité
najít, neboť čas potřebný pro jeho nalezení roste exponenciálně s počtem měst. Proto každé "dostatečně dobré"
řešení bude pro nás zajímavé.

Omezení úlohy TSP lze formulovat následovně: každé město může být navštíveno pouze jednou a trasa
musí být co nejkratší. Pokud se nám podaří sestavit energetickou funkci sítě tak, že bude tato omezení odrážet,
pak její minimalizace povede k řešení optimalizující zmíněná omezení. Poněvadž výsledkem je seznam měst
navštívených v určitém pořadí, budeme potřebovat nějakým způsobem tento fakt vyjádřit. Jestliže budeme chtít
navštívit n měst, pak každé z nich se bude nacházet v seznamu na některé z n pozic. Pro potřeby řešení úlohy
TSP tedy použijeme čtvercovou matici obsahující n x n neuronů (všechny jsou vzájemně propojené), kde města
jsou reprezentována řádky matice a pořadí jejími sloupci.

Město/Pořadí 1 2 3 ... n
A UA,1 UA,2 UA,3 ... UA,n
B UB,1 UB,2 UB,3 ... UB,n
C UC,1 UC,2 UC,3 ... UC,n
...
N UN,1 UN,2 UN,3 ... UN,n

Aktivitu neuronu v i-tém sloupci a j-tém řádku interpretujeme jako skutečnost, že obchodní cestující

navštíví j-té město jako i-té v pořadí na své trase.

Pokusme se nyní formulovat jednotlivá omezení. Je celkem zřejmé, že ne všechny stavy neuronové sítě
odpovídají přípustnému řešení problému. Přípustnost řešení je zapotřebí zohlednit v příslušné minimalizované
účelové funkci. Prvním indexem - x, y, atd. budeme označovat „město“, zatímco druhým indexem - i, j, atd.
budeme označovat jeho „pořadí“ na trase.

Prvním požadavkem je, aby obchodní cestující navštívil každé město nejvýše jednou, tzn. aby na konci adaptace

sítě byl v každém řádku aktivní nejvýše jeden neuron. Tomu odpovídá minimalizace následujícího
výrazu:

E A v vA x i x j
j iix

=
≠
∑∑∑2 , , .

Parametr A>0 je míra vlivu EA při minimalizaci celkové energetické funkce.

Druhým požadavkem je, aby obchodní cestující byl při každé ze svých zastávek pouze v jednom městě, tzn. aby

byl na konci adaptace sítě v každém sloupci aktivní nejvýše jeden neuron. Tomu odpovídá
minimalizace následujícího výrazu:

E B v vB x i y i
x yxi

=
≠
∑∑∑2 , , .

Parametr B>0 je míra vlivu EB při minimalizaci celkové energetické funkce.

Třetím požadavkem je, aby obchodní cestující projel všemi n městy, čemuž odpovídá aktivita právě n neuronů

v síti. Toho dosáhneme minimalizací následujícího výrazu:

E C n vC x i
ix

= −
⎡

⎣
⎢

⎤

⎦
⎥∑∑2

2

, .

Parametr C>0 je opět míra vlivu EC při minimalizaci celkové energetické funkce, n je celkový počet
měst na trase.

Současnou minimalizací EA , EB , EC ve stavovém prostoru sice máme zajištěno, že neuronová síť skončí svou
činnost ve stavu odpovídajícím přípustnému řešení problému obchodního cestujícího, tzn. že bude nalezena
okružní trasa, ale její délka nemusí být zrovna nejkratší. Proto ještě musíme uvedenou podmínku zohlednit
v účelové funkci, a to následovně:

Čtvrtým požadavkem je, aby nalezená trasa byla co nejkratší. Toho dosáhneme, budeme-li minimalizovat

následující výraz:

()E D d v v vD x y x i y i y i
iy xx

= ++ −
≠
∑∑∑2 1 1, , , ,

kde dx,y určuje vzdálenost mezi x-tým a y-tým městem. Parametr D>0 je opět míra vlivu ED při
minimalizaci celkové energetické funkce.

Výslednou účelovou funkci E, pomocí které získáme přípustné optimální řešení problému obchodního
cestujícího získáme součtem všech dílčích energetických funkcí, tj.

E E E E EA B C D= + + + .

Dále musíme uvést diferenciální rovnici pro nalezení aktivace neuronu UX :

()d
dt

u
u

A v B v C n v D d v vX I
X I

X j y I x i
ixy Xj I

X y y I y I
y X

,
,

, , , , , ,= − − − − −
⎡

⎣
⎢

⎤

⎦
⎥ − +∑∑∑∑ ∑

≠≠
+ −

≠τ 1 1 .

Řešením rovnice dostaneme výstupní signál vi, jehož hodnota je určena aplikací sigmoidní aktivační funkce (v
intervalu mezi 0 a 1)

() ()[]v g u ui i i= = +0 5 1. tanh .α

Porovnáním účelové funkce obchodního cestujícího s energetickou funkcí spojité Hopfieldovy sítě získáme
synaptické váhy, které během aktivního režimu neuronové sítě zajistí minimalizaci E. Váhovou hodnotu na
spojení mezi neurony Ux i a Uy j dostaneme následovně:

() () () ()w x i y j A B C D dx y i j i j x y x y i j i j, ; , ,, ,= − − − − − − ++ −δ δ δ δ δ δ1 1 1 1

kde δi j je Kroneckerovo delta, tzn. δi j = 1, jestliže i = j a δi j = 0, jestliže i≠ j. Každý neuron dále obdrží externí
vstupní signál

I C Nx i = + ,

kde N je parametr, jehož hodnota je větší než n (tj. počet měst na trase).

Popis algoritmu

Krok 0. Inicializovat aktivace všech neuronů sítě.

Inicializovat Δt malou hodnotou.

Krok 1. Pokud není splněna podmínka ukončení, opakovat kroky (2 až 6).

Krok 2. Provádět kroky (3 až 5) n2-krát (n je počet měst).

Krok 3. Vybrat náhodně neuron.

Krok 4. Změnit hodnotu jeho vnitřní energie:

() ()
()

()

ux i new ux i old

t u old
A v

B v

C n v

D d v v

x i

x j
j i

y i
y x

x j
jx

x y y i y i
y x

, ,
[

].

,

,

,

,

, , ,

=

+ −

− ∑

− ∑

− − ∑∑
⎛
⎝⎜

⎞
⎠⎟

− +∑

≠

≠

+ −
≠

Δ

1 1

Krok 5. Vypočítat hodnotu na jeho výstupu :

()[]v ux i x i, ,. tanh .= +0 5 1 α

Krok 6. Test podmínky ukončení.

Vzhledem k tomu, že nalezené minimum energetické funkce nemusí odpovídat minimu globálnímu,

nemusí být nalezené řešení problému obchodního cestujícího (v aktivním režimu spojité Hopfieldovy sítě)
optimální a dokonce nemusí být v některých případech ani přípustné. Velice důležité je správné nastavení
parametrů A, B, C, D, N a α. Vhodným nastavením těchto parametrů a více pokusy s různým počátečním
nastavením sítě lze dosáhnout lepší aproximace optimálního řešení. Obecně však neexistuje návod na efektivní
nastavení uvedených parametrů tak, aby neuronová síť konvergovala co nejlépe ke globálnímu minimu.

Korespondenční úkoly:

Vytvořte počítačový program pro řešení „problému obchodního cestujícího“ spojitou Hopfieldovou sítí.
Optimalizujte s jeho použitím trasu mezi pěti městy (stanovte si sami vzdálenosti mezi jednotlivými městy).

Dvousměrná asociativní paměť si v adaptivním režimu zapamatuje množinu asociovaných vzorů jako
sumaci bipolárních korelačních matic (typu m, n pro každý zapamatovaný vzor). Struktura BAM je dána dvěmi
vrstvami neuronů (vrstva X obsahuje n neuronů a vrstva Y obsahuje m neuronů), které jsou vzájemně úplně
propojeny obousměrnými vazbami (viz obrázek 38). Jestliže váhová matice pro signál transportovaný vrstvou X
do vrstvy Y je W, pak váhová matice pro signál transportovaný vrstvou Y do vrstvy X je WT.

Aktivní režim BAM probíhá tak, že si neurony obou vrstev neustále posílají mezi sebou signál (tj. oběma
směry), až všechny neurony dosáhnou rovnovážný stav (tj. aktivace se nemění během několika kroků). Existují
tři základní varianty BAM - binární, bipolární a spojitá.

.

.

YmYjY1

XnXiX1

wn mwi m

w1mwn j

wi j

w1jwi1

wi1w11

O b r á z e k 3 8 : D v o u s m ě r n á a s o c i a t i v n í p a m ě ť .

Diskrétní BAM

Obě formy BAM (tj. binární i bipolární) jsou velmi příbuzné. V každé z nich lze váhové hodnoty nalézt
ze sumace aktivačních hodnot neuronů odpovídajících si tréninkových párů. Aktivační funkce je skoková s
možností nenulového prahu.

Vytvoření váhové matice:

váhová matice pro zapamatování množiny vstupních a odpovídajících výstupních vektorů s(t) : t(p),
p = 1, ..., P, kde

() () () ()()s p s p s p s pi n= 1 , ... , , ... ,

a

() () () ()()t p t p t p t pj m= 1 , ... , , ... , ,

D V O U S M Ě R N Á A S O C I A T I V N Í P A M Ě Ť .

Klíčová slova této kapitoly:
Dvousměrná asociativní paměť (BAM angl. Bidirectional Associative Memory).

Dvousmě rná asociat ivní paměť (BAM angl. Bidirect ional Associat ive Memory) je
var iantou heteroasociat ivní rekurentní neuronové s í tě . Autorem řady publikací to to
téma je především B.Kosko a C.Guest .

může být determinována Hebbovým pravidlem pro asociované sítě. Zápis výsledných hodnot pro váhovou
matici W závisí na tom, jestli je tréninkový vektor binární nebo bipolární. Pro binární vstupní vektory je váhová
matice W = {wij} tvořená prvky, které jsou definovány následujícím vztahem:

()() ()()w s p t pij i
p

j= − −∑ 2 1 2 1 .

Pro bipolární vstupní vektor je váhová matice W = {wij} tvořená prvky, které jsou definovány

následujícím vztahem:

() ()w s p t pij i
p

j= ∑ .

Aktivační funkce:

Aktivační funkcí pro diskrétní BAM je odpovídající skoková funkce, která závisí na kódování
tréninkových vektorů.

Pro binární vstupní vektory má aktivační funkce pro vrstvu Y tvar:

y
y in

y y in
y in

j

j

j j

j

=
>
=
<

⎧

⎨
⎪

⎩
⎪

1 0
0

0 0

pokud
pokud
pokud

_
_
_ ,

a aktivační funkce pro vrstvu X má tvar:

x
x in

x x in
x in

i

i

i i

i

=
>
=
<

⎧

⎨
⎪

⎩
⎪

1 0
0

0 0

pokud
pokud
pokud

_
_
_ .

Pro bipolární vstupní vektory má aktivační funkce pro vrstvu Y tvar:

y
y in

y y in
y in

j

j j

j j j

j j

=
>
=

− <

⎧

⎨
⎪

⎩
⎪

1

1

pokud
pokud
pokud

_
_
_ ,

θ
θ
θ

a aktivační funkce pro vrstvu X má tvar:

x
x in

x x in
x in

i

i i

i i i

i i

=
>
=

− <

⎧

⎨
⎪

⎩
⎪

1

1

pokud
pokud
pokud

_
_
_ .

θ
θ
θ

Popis algoritmu

Krok 0. Inicializace vah, tj. zapamatování P vzorů.

Krok 1. Pro každý testovací vzor opakovat kroky (2 až 6).

Krok 2a. Inicializovat vrstvu X vnějším vstupním vektorem x.

(tj. nastavit aktivace neuronů ve vrstvě X hodnotami vektoru x)

Krok 2b. Inicializovat vrstvu Y vnějším vstupním vektorem y.

(Jeden ze dvou vstupních vektorů musí být nulový vektor.)

Krok 3. Pokud aktivace neuronů nekonvergují, opakovat kroky (4 až 6).

Krok 4. Aktualizovat aktivace neuronů ve vrstvě Y.

Vypočítat vnitřní potenciál neuronu:

y in w xj i j i
i

_ .= ∑

Vypočítat aktivace neuronů

()y f y inj j= _ .

Transportovat signál vrstvě X.

Krok 5. Aktualizovat aktivace neuronů ve vrstvě X.

Vypočítat vnitřní potenciál neuronu:

x in w yi i j j
j

_ .= ∑

Vypočítat aktivace neuronů

()x f x ini i= _ .

Transportovat signál vrstvě Y.

Krok 6. Test konvergence.

Pokud aktivace vektorů x a y dosáhly rovnovážného stavu,

pak stop; jinak pokračovat.

Příklad:

Načrtněme nyní možnosti použití diskrétní sítě BAM s bipolárním kódováním vektorů, která mapuje
dva jednoduché znaky následujícím způsobem:

. # .
.
#
.
.

. # #
. .
. .
. .
. # #

 (-1. 1) (1, 1)

Váhové matice jsou potom vyjádřeny takto:

 (A → -1, 1) (C → 1, 1) (W, zapamatování obou vzorů)
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

0 2
0 2
2 0
0 2
0 2
2 0
0 2
2 0
2 0
0 2
0

−
−

−
−

−
−
−
−
−
−

−
−
−

−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

− −

− −
− −

− −
− −

− −
− −
− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−

−
−

−
−

−
−
−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

2
2 0
2 0
1 0
0 2

Nyní ověříme správnost zapamatování obou vstupních vzorů:

VSTUPNÍ VZOR A
(-1 1 -1 1 -1 1 1 1 1 1 -1 1 1 -1 1) W = (-14, 16) → (-1, 1).

VSTUPNÍ VZOR C
(-1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 -1 1 1) W = (14, 18) → (1, 1).

Dále ukážeme, že i vrstva Y může být použitá jako vstupní vrstva. Váhovou matici W musíme pro tento účel
transponovat, tj.

W T = − − − − −
− − −
⎡
⎣⎢

⎤
⎦⎥

0 0 2 0 0 2 0 2 2 0 0 2 2 2 0
2 2 0 2 2 0 2 0 0 2 2 0 0 0 2 .

Pro vstupní vektor asociovaný se vzorem A, tj. (-1, 1) dostaneme:
(-1, 1) WT =

()

()
()

− − − − − −
− − −
⎡
⎣⎢

⎤
⎦⎥

= − − − − −

→ − − − − −

1 1 0 0 2 0 0 2 0 2 2 0 0 2 2 2 0
2 2 0 2 2 0 2 0 0 2 2 0 0 0 2

1

,

,

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

což je vzor A.

Pro vstupní vektor asociovaný se vzorem C, tj. (1, 1) dostaneme:
(1, 1) WT =

()

()
()

1 1 0 0 2 0 0 2 0 2 2 0 0 2 2 2 0
2 2 0 2 2 0 2 0 0 2 2 0 0 0 2,

,

− − − − −
− − −
⎡
⎣⎢

⎤
⎦⎥

= − − −

→ − − −

2 2 2 2 2 -2 2 -2 -2 2 2 -2 -2 2 2

1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1

což je vzor C.

Informace o obou vzorech jsou uloženy ve váhové matici W. Síť je tedy ukončila fázi adaptace a je připravena k
aktivní fázi.

Spojitá BAM

Spojitá dvousměrná asociativní paměť transformuje použitím sigmoidní aktivační funkce hladký a
spojitý vstupní signál z intervalu [0,1] na signál výstupní.

Pro binární vstupní vektory s(t) : t(p), p = 1, ..., P, jsou váhové hodnoty determinovány již dříve
uvedeným vztahem

()() ()()w s p t pij i
p

j= − −∑ 2 1 2 1 .

Aktivační funkce je logistická sigmoida

() ()
f x

y in j

=
+ −

1
1 exp _

,

kde
y in b x wj j i i j

i

_ = + ∑ .

Analogické vztahy lze odvodit i pro neurony ve vrstvě X.

Kapacita paměti BAM

Kapacita paměti BAM je velmi omezená. Kosko odhadl, že její maximální velikost je min(n, m), kde n
je počet neuronů ve vrstvě X a m je počet neuronů ve vrstvě Y. Snahou současného výzkumu a vývoje je
zdokonalit BAM tak, aby toto omezení bylo redukováno na maximální možnou míru a aby bylo možné plně
využít tak možnosti modelu neuronové sítě.

Úkoly:

Použijte diskrétní síť BAM, která mapuje tři jednoduché znaky n8sleduj9c9m způsobem:

. # . # . # # # #
. # . # . #
. # . # . # # # #

(--1 1 –1 1 1 1 –1 1 –1) (1 –1 1 –1 1 –1 1 –1 1) (1 1 1 1 –1 1 1 1 1).

Korespondenční úkoly:

Vytvořte počítačový program pro realizaci adaptačního algoritmu diskrétní sítě BAM.

Neuronové sítě a von neumanovská architektura počítače

V jistém smyslu neuronové sítě představují univerzální výpočetní prostředek, a tedy mají stejnou
výpočetní sílu jako klasické počítače např. von neumannovské architektury (tj. pomocí neuronových sítí lze
principiálně spočítat vše, co umí např. osobní počítač a naopak). Tato jejich vlastnost by vzhledem k existenci
stovek různých univerzálních výpočetních modelů nebyla tak výjimečná. Navíc je funkce popsána velkým
počtem váhových parametrů a vůbec není zřejmé, jak bychom požadovanou funkci v tomto výpočetním modelu
naprogramovali.

Hlavní výhodou a zároveň odlišností neuronových sítí od klasické von neumannovské architektury je
jejich schopnost učit se. Požadovanou funkci sítě neprogramujeme tak, že bychom popsali přesný postup
výpočtu její funkční hodnoty, ale síť sama abstrahuje a zobecňuje charakter funkce v adaptivním režimu procesu
učení ze vzorových příkladů. V tomto smyslu neuronová síť připomíná inteligenci člověka, který získává mnohé
své znalosti a dovednosti ze zkušenosti, kterou ani není ve většině případů schopen formulovat analyticky podle
příslušných pravidel či algoritmu. V následujícím výkladu uvedu několik motivačních (trochu nadnesených)
příkladů, které nám pomohou tento fenomén pochopit.

Představme si zedníka, který by chtěl svého učně naučil omítat zeď. Pravděpodobně ti, kdo se někdy
sami pokoušeli omítnout svůj dům, ví že první pokusy nebývají moc zdvořilé (polovina malty většinou končí no
zemi.),Jak groteskní by bylo teoretické školení zedníka, který by na tabuli vylekanému učni napsal diferenciální
rovnice popisující trajektorii (dráhu) a rychlost pohybující se ruky, popř. zápěstí, při nahazování malty na
omítanou zeď. I kdyby zednický učeň měl základy v diferenciálním počtu, omítat by se tímto způsobem
nenaučil. Tuto dovednost může totiž učeň získat jen pozorováním zedníka při omítání a vlastními pokusy
korigovanými učitelem.

Dalším demonstračním příkladem popsaným v literatuře je balancování tyče na koštěti. Byla sestrojena
neuronová síť, která dokázala napodobit dovednost cirkusového klauna, který na svém nose drží koště ve
vertikální poloze. Při vlastním experimentu byl použit speciální vozík, na kterém bylo koště volně upevněno (pro
jednoduchost v jedné rovině) tak, že by bez zachycení spadlo. Neuronová síť se učila nejprve na základě
odchylky (úhlu) koštěte od vertikální polohy a později od filtrovaného obrazu násady koštěte snímaného
kamerou určit posuv vozíku (v jedné přímé dráze) tak, aby koště nespadlo. Tréninkové vzory pro její adaptaci,
kde vstup odpovídal filtrovanému obrazu koštěte a výstup posuvu vozíku, byly získány od demonstrátora (při
zpomalené počítačové simulaci), který nějaký čas pohyboval vozíkem tak, aby koště nespadlo. Po čase
neuronová síť sama úspěšně převzala jeho úlohu řízení (již skutečného) vozíku. I zde by bylo možné teoreticky
sestavit diferenciální rovnice pro pohyb vozíku, ale než by je klasický počítač von neumannovské architektury
vyřešil, koště by pravděpodobně spadlo. Na druhou stranu v tomto jednoduchém demonstračním příkladě
(varianta se vstupním úhlem) existuje úspěšný řídící systém založený na klasické teorii řízení.

Podobným příkladem popsaným v literatuře je řízení přítoku látek potřebných ve složitém výrobním
procesu, kde je prakticky nemožné sestavit analytický model. V praxi byla tato činnost prováděna zkušeným
pracovníkem, který na základě informací z různých měřidel reguloval pomocí pák přítok jednotlivých látek.
Uvedený pracovník není schopen vyjádřit prostřednictvím přesných pravidel pohyb s regulačními pákami. I zde
byla zapojena neuronová síť, která se na základě příkladů stavů měřidel a odpovídajících reakcí pracovníka
sama po nějakém čase naučila regulovat přítok látek.

P O S T A V E N Í N E U R O N O V Ý C H S Í T Í V I N F O R M A T I C E .

Klíčová slova této kapitoly:
NETtalk , neuropočí tače , netware.

V této závěrečné kapitole se postupně zamysl íme nad třemi tématy: (1) neuronové
sí tě a von neumanovská architektura poč í tače ; (2) aplikace neuronových sí t í a
(3) implementace neuronových sí t í a neuropoč í tače .

Z uvedených příkladů vyplývá, že neuronová síť modeluje schopnost člověka učit se z příkladů
dovednosti či znalosti, které není schopen řešit algoritmicky pomocí klasických počítačů von neumannovské
architektury, protože chybí analytický popis nebo jejich analýza je příliš složitá. Tomu potom odpovídají oblasti
aplikace neuronových sítí (viz dále), kde klasické počítače selhávají. Zřejmě si také nestačí pamatovat všechny
vzorové příklady (tréninkovou množinu) nazpaměť (např. v tabulce uložené v paměti klasického počítače). navíc
je potřeba generalizovat (zobecňovat)jejich zákonitosti, které by umožnily řešit podobné příklady, s nimiž se
neuronová síť při učení ještě nesetkala. Např. v případě rozpoznávání písmen si není možné pamatovat všechny
možné tvary obrazu jednotlivých písmen.

Dalším ilustračním příkladem důležitosti generalizační schopnosti lidské inteligence, je příprava
studenta na zkoušku z matematiky. Je zřejmé, že naučení všech vzorových příkladů ve sbírce nazpaměť bez
náležitého pochopení postupů řešení nezaručuje úspěšné složení zkoušky. Student pravděpodobně u zkoušky
neuspěje, pokud nedostane identický příklad ze sbírky, ale bude mu zadána úloha jen s podobným postupem
řešení. Nestačí se totiž nazpaměť naučit vzorové příklady, ale je potřeba umět zobecnit zákonitosti jejich řešení.

Schopnost učit se zobecňovat je typickou vlastností lidské inteligence. Velkým problémem pro
hodnocení generalizační schopnosti neuronové sítě je, že není jasné, jakým způsobem definovat, co je správná
generalizace. Uvažujme otázku z testu inteligence, kdy se má doplnit další člen posloupnosti 1, 2, 3, Většina
lidí by asi doplnila následující číslo 4. Představme si , ale matematika, který si všimne, že číslo 3 je součtem
dvou předcházejících čísel 1 a 2, a dle této komplikovanější souvislosti doplní místo čísla 4 číslo 5, které je opět
součtem dvou předcházejících čísel 2 a 3. Kromě toho, že bude některými „normálními“ lidmi považován za
podivína, není vůbec zřejmé, které ze dvou uvedených doplnění je správnou generalizací zákonitosti této
posloupnosti. A takových doplnění, které je možné nějakým způsobem zdůvodnit, existuje jistě nekonečně
mnoho.

Díky tomu, že neumíme definovat (formalizovat), a tedy ani měřit generalizační schopnosti
neuronových sítí, chybí základní kritérium, které by rozhodlo, jaké modely neuronových sítí jsou v konkrétním
případě dobré, či lepší než jiné apod. Generalizační schopnosti navržených modelů neuronových sítí se většinou
ilustrují na jednotlivých příkladech, které (možná díky vhodnému výběru) vykazují dobré vlastnosti, ale tyto
vlastnosti nelze nijak formálně ověřit (dokázat). Tento stav je také příčinou krize základního výzkumu
neuronových sítí.

Na druhou stranu úspěšné aplikace neuronových sítí při řešení důležitých praktických úloh, kde klasické
počítače neuspěly, i to, že simulace (velmi zjednodušených modelů) biologických neuronových sítí vykazují
prvky podobné lidské inteligenci, naznačují, že tyto modely vystihují určité rysy, důležité pro napodobení
inteligentních činností člověka, které počítače von neumannovské architektury postrádají. Základním rysem
biologických nervových systémů je hustě propojená síť velkého počtu výpočetních prvků (neuronů), které samy
počítají jen jednoduché funkce, což v případě matematických modelů neuronových sítí pravděpodobně vytváří
výpočetní paradigma postačující k napodobení inteligentního chování.

Systematická logika a přesnost klasických počítačů je u neuronových sítí nahrazena asociací s
neurčitostí, kdy se k novému problému „vybaví“sdružený (podobný) vzorový příklad (tréninkový vzor), ze
kterého je zobecněno jeho řešení. Také místo explicitní reprezentace dat v paměti klasických počítačů jsou
informace v neuronových sítích zakódovány implicitně a jednotlivým číselným parametrům sítě (kromě vstupů a
výstupů) není přiřazen přesný význam. Zatímco klasické počítače jsou citlivé na chybu a změna jednoho bitu
může znamenat celkový výpadek systému, neuronové sítě jsou robustní. Je například známo, že po
neurochirurgických operacích kdy je pacientovi odebrána část tkáně mozkové kůry, pacient přechodně zapomíná
některé funkce (např. schopnost mluvit) nebo u nich ztrácí určitou obratnost (např. koktá), ale brzy se znovu tyto
schopnosti obnoví, či zdokonalí, protože jiné neurony převezmou funkci těch původních. Tento jev lze pozorovat
i u modelů neuronových sítí, kdy odebráním několika málo neuronů nemusí síť nutně ztratit svou funkčnost, ale
způsobí to třeba jen menší nepřesnost výsledných odpovědí. Dále u klasických počítačů von neumannovské
architektury je sekvenční běh programu lokalizován např. pomocí čítače instrukcí. V neuronových sítích je
naopak výpočet distribuován po celé síti a je přirozeně paralelní.

Při srovnávání modelů neuronových sítí s klasickou von neumannovskou architekturou počítače je
možné vypozorovat střet dvou inteligencí: biologické a křemíkové. Východiskem, které může nalézt v dnešním
přetechnizovaném světě širší uplatnění, je symbióza obou přístupů. Myšlenka vytvořit počítač ke svému obrazu
nabývá v poslední době konkrétnější podoby.

Aplikace neuronových sítí

Porovnání modelů neuronových sítí s počítači von neumannovské architektury naznačuje možné oblasti
jejich aplikace tam, kde klasické počítače selhávají. Jedná se především o praktické problémy, u kterých není
znám algoritmus nebo jejich analytický popis je pro počítačové zpracování příliš komplikovaný. Typicky se

neuronové sítě dají použít tam, kde jsou k dispozici příkladová data, která dostatečně pokrývají problémovou
oblast. Výhody neuronových sítí oproti klasickým počítačům samozřejmě neznamenají, že by neuronové sítě
mohly nahradit současné počítače, protože v případě mechanických výpočtů (např. násobení), které lze
jednoduše algoritmicky popsat, nemohou (stejně jako lidé) v rychlosti a přesnosti klasickým počítačům
konkurovat. Neuronové sítě ve formě specifických modulů pravděpodobně jen obohatí von neumannovské
architektury. V následujícím výkladu uvedeme několik možných oblastí aplikace neuronových sítí.

Neuronové sítě lze přirozeným způsobem použít k rozpoznávání obrazců, např. rozpoznávání
nascanovaných, psaných resp. tištěných znaků (číslic, písmen apod.). Obraz jednoho znaku nejprve
odseparujeme od okolního textu (např. se určí krajní body obrazu) a potom se znormuje, tj. zobrazí do
standardizované matice (např. 15 × 10 =150) bodů. Jednotlivé body pak odpovídají vstupům neuronové sítě,
které jsou např. aktivní. právě když čára v obrazu právě zasahuje příslušné body. Každý výstupní neuron v síti
představuje možný znak, který je rozpoznán, právě když je tento neuron aktivní. Tréninkovou množinu lze např.
vytvořit přepsáním nějakého textu, který je již k dispozici v počítači (odpovídá požadovaným výstupům
tréninkových vzorů, tj. identifikovaným znakům), takovým způsobem (např. rukou), pro který budeme
neuronovou síť k rozpoznávání potřebovat (představuje odpovídající příklady obrazových vstupů tréninkových
vzorů). Neuronovou síť pak lze pomocí této množiny učit tak dlouho, dokud není sama schopna rozpoznávat
příslušné znaky. Tímto postupem můžeme v relativně krátké době docílit spolehlivosti např. 95% správně
rozpoznaných znaků. Podobný postup lze využít např. v robotice pro zpracování vizuálních informací či při
vyhodnocování družicových snímků apod.

Další možnou oblastí aplikace neuronových sítí je řízení složitých zařízení v dynamicky se měnících
podmínkách. V minulé kapitole jsme uvedli dva motivační příklady z této oblasti: balancování koštěte a regulace
přítoku látek ve složitém výrobním procesu. Dalším demonstračním příkladem řídícího systému popsaného v
literatuře je autopilot automobilu, který se v počítačové simulaci pohybuje na dvouproudé dálnici spolu s auty
jedoucími stejným směrem. Auto řízené neuronovou sítí určovalo na základě vzdálenosti a rychlosti nejbližších
aut v obou pruzích svou vlastní rychlost a změnu pruhu. Dále neuronová síť ovládala volant podle zakřivení
dálnice, polohy auta v pruhu a aktuálního úhlu volantu. Je zajímavé, že neuronová síť se kromě úspěšného řízení
vozidla (bez kolizí) včetně předjíždění naučila i různé zvyky a styl jízdy (např. riskantní rychlá jízda a časté
předjíždění nebo naopak opatrná pomalá jízda) podle řidičů - trenérů, od kterých byly získány tréninkové vzory.

Jinou důležitou aplikační oblastí neuronových sítí je predikce a příp. následné rozhodování. Typickými
příklady z této oblasti jsou předpověď počasí, vývoj cen akcií na burze, spotřeba elektrické energie apod. Např.
při meteorologické předpovědi jsou vstupem neuronové sítě odečty základních parametrů (např. teplota, tlak
apod.) v čase a učitelem je skutečný vývoj počasí v následujícím období. Uvádí se, že u předpovědi počasí v
rozpěti několika dnů byla síť úspěšnější než meteorologové.

Jiným příkladem uplatnění neuronových sítí je analýza signálů jako např. EKG, EEG apod. Spojitý
signál je vzorkován ve stejných časových intervalech a několik posledních diskrétních hodnot úrovně signálu
slouží jako vstup do např. dvouvrstvé neuronové sítě. Naučená neuronová síť je schopna identifikovat specifický
tvar signálu, který je důležitý pro diagnostiku. Např. neuronová síť s topologií 40 - 17 - 1 byla použita pro
klasifikaci EEG signálů se specifickými α-rytmy.

Další oblastí aplikace neuronových sítí je transformace signálů, jehož příkladem je systém NETtalk,
určený pro převod anglicky psaného textu na mluvený signál. Tento systém je založen na neuronové síti
s topologií 203 - 80 - 26 s 7×29 vstupními neurony pro zakódování kontextu 7 písmen psaného textu každému z
26 písmen anglické abecedy a čárce, tečce a mezeře odpovídá jeden neuron, který je při jejich výskytu aktivní),
80 skrytými neurony v mezilehlé vrstvě 26 výstupními neurony reprezentují fonény odpovídajícího mluveného
signálu. Funkce sítě je následující: vstupní text se postupně přesouvá u vstupních neuronů po jednom písmenu
zprava doleva a přitom je aktivní právě ten výstupní neuron, který reprezentuje fonén odpovídající prostřednímu
ze 7 písmen vstupního textu. V našem příkladě se čte prostřední písmeno „C“ v anglickém slově „CONCEPT“
s výslovností [´konsept], kterému odpovídá fonén [s]. Stejné písmeno „C“ na začátku tohoto slova však v daném
kontextu odpovídá fonénu [k]. Úspěšná implementace systému NETtalk vedla ke snaze vytvořit systém založený
na neuronové síti s obrácenou funkcí, která by převáděla mluvený jazyk do psané formy (tzv. fonetický psací
stroj).

Další možností využití neuronových sítí je komprese dat např. pro přenos televizního signálu,
telekomunikaci apod. Pro tento účel byla vyvinuta technika použití neuronové sítě se dvěma vnitřními vrstvami a
s topologií n - n/4 - n/4 - n (tj. n neuronů ve vstupní vrstvě, n/4 neuronů ve vnitřních vrstvách a n neuronů ve
výstupní vrstvě). Počet neuronů ve vnitřních vrstvách je výrazně menší než je počet neuronů ve vstupní a
výstupní vrstvě. Počet neuronů ve vstupní i výstupní vrstvě je stejný, protože obě vrstvy reprezentují stejný
obrazový signál. Tato neuronová síť se učí různé obrazové vzory tak, že vstup i výstup tréninkových vzorů
představují totožný obraz. Síť tak pro daný obrazový vstup odpovídá přibližně stejným výstupem. Při vlastním
přenosu je pro daný obrazový signál x1 ..., xn u vysílače nejprve vypočten stav skrytých neuronů z1 , ..., zn/4 a
takto kompresovaný obraz je přenášen informačním kanálem k příjemci, který jej dekóduje výpočtem stavů
výstupních neuronů x´1 ,..., x´n . Tímto způsobem je získán téměř původní obraz. Při vlastním experimentu se

ukázalo, že kvalita přenosu (srovnatelná s jinými způsoby komprese dat) závisí na tom, zda jsou přenášené
obrazy podobné tréninkovým vzorům, na které se síť adaptovala.

xn

vysílač

přenos

přijímač

x2

zn/4z1

x1

x´nx´2x´1

O b r á z e k 3 9 : K o m p r e s e p ř i p ř e n o s u s i g n á l u p o m o c í
n e u r o n o v é s í t ě s t o p o l o g i í n - n / 4 - n / 4 – n .

Posledním oborem aplikace neuronových sítí, který zde uvedeme, jsou expertní systémy. Velkým
problémem klasických expertních systémů založených na pravidlech je vytvoření báze znalostí, která bývá
časově velmi náročnou záležitostí s nejistým výsledkem. Neuronové sítě představují alternativní řešení, kde
reprezentace znalostí v bázi vzniká učením z příkladových inferencí. V tomto případě aktivní režim neuronové
sítě zastupuje funkci inferenčního stroje. Na druhou stranu implicitní reprezentace znalostí neumožňuje pracovat
s neúplnou informací a neposkytuje zdůvodnění závěrů, což jsou vlastnosti, bez kterých se prakticky použitelný
expertní systém neobejde. Tento problém částečně řeší univerzální neuronový expertní systém EXPSYS, který
obohacuje vícevrstvou neuronovou síť o intervalovou aritmetiku pro práci s nepřesnou informací a o heuristiku
analyzující síť, která umožňuje jednoduché vysvětlení závěrů. Systém EXPSYS byl úspěšně aplikován
v energetice a medicíně. Např. v lékařské aplikaci jsou zakódované příznaky onemocnění a výsledky různých
vyšetření vstupem do neuronové sítě a diagnózy, popř. doporučená léčba jsou jejím výstupem. Tréninkovou
množinu lze získat z kartotéky pacientů.

Implementace neuronových sítí a neuropočítače

Odlišná architektura neuronových sítí vyžaduje speciální hardwarovou realizaci. V této souvislosti
hovoříme o tzv. neuropočítačích. Avšak vzhledem k rozšířenosti klasických počítačů a kvůli problémům
spojeným s hardwarovou realizací neuronových sítí zatím nejjednodušší implementací neuronových sítí, se
kterou se nejčastěji (zvláště v České republice) setkáváme, je tzv. netware, což je software pro klasické počítače
(např. PC), který modeluje práci neuronové sítě. Jedná se většinou o demonstrační programy s efektním
uživatelským interfacem, které simulují práci nejznámějších modelů neuronových sítí na jednoduchých
příkladech. V některých již dokonalejších programech je možné zadat vlastní aktivní i adaptivní dynamiku, což
umožňuje relativně rychle přizpůsobit model neuronové sítě danému praktickému problému nebo ověřit
použitelnost navrženého nového modelu. Existují i programovací jazyky (a jejich překladače) pro klasické
počítače, které podporují programovou implementaci neuronových algoritmů. Příkladem takového
programovacího jazyka je AXON, který je podobný jazyku C. Dokonalejší netware většinou podporuje využití
specializovaných koprocesorů (které je možno např. připojit k PC), které efektivně implementují neuronové
funkce a urychlují časově náročné učení.

Vlastní neuropočítače většinou nepracují samostatně, ale jsou napojeny na klasické počítače, které
mohou realizovat např. uživatelský interface. To je dáno především tím, že neuropočítače nejsou používány jako
univerzální počítače, ale převážně fungují jako specializovaná zařízení pro řešení specifických úloh, Malé
neuropočítače jsou spojeny přímo se sběrnicí klasického počítače a větší se mohou uplatnit jako servery na
lokální síti.Podle způsobu aktualizace parametrů neuronové sítě rozdělujeme neuropočítače na spojité a diskrétní
a podle typu reprezentace těchto číselných parametrů máme analogové, digitální, resp. hybridní (kombinace
analogových a digitálních) neuropočítače. Zřídkakdy jeden neuron v implementované síti odpovídá jednomu
procesoru neuropočítače (tzv. plně implementované neuropočítače), což se využívá pro velmi rychlé výpočty
v reálném čase. Většinou se konstruují tzv. virtuální neuropočítače, kde jeden procesor vykonává práci stovek i
tisíců neuronů části implementované neuronové sítě.

Z hlediska technologie je většina neuropočítačů založena na klasické mikroelektronice (např. VLSI
technologie), kde neurony odpovídají hradlům (např. speciálním tranzistorům) a váhy synaptických spojů jsou
reprezentovány rezistorovými vazbami. Tento přístup však s sebou přináší technické problémy jako je velká
hustota propojení neuronů (roste řádově kvadraticky vzhledem k počtu neuronů) nebo adaptovatelnost vah u
všech těchto spojů. Proto adaptivní režim neuronové sítě je někdy předem realizován odděleně pomocí
dostupného netwaru na klasickém počítači a výsledná konfigurace sítě je napevno zapojena do příslušného
obvodu neuropočítače. Také se stále více uplatňuje optoelektronika a dlouhodobější výhledy počítají s úplně
odlišnými technologiemi, jako např. molekulární elektronika, hybridní biočipy apod.

Korespondenční úkoly:

Vypracujte seminární práci na téma „Použití neuronových sítí v …“ (oblast použití si zvolte sami).
Informace hledejte především na www-stránkách.

Literatura:

[1] Beale, R. - Jackson, T.: Neural Computing: An Introduction. J W Arrowsmith Ltd,

Bristol, Greit Britain 1992.

[2] Fausett, L. V.: Fundamentals of Neural Networks. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey 1994.

[3] Herz, J. - Krogh, A. - Palmer, R. G.: Introduction to the Theory of Neural Computation.
Addison Wesley Publishing Company, Redwood City 1991.

[4] Kvasnička, V. - Beňušková, L. - Pospíchal, J. - Farkaš, I. - Tiňo, P. - Kráľ, A.:Úvod do
teórie neurónových sietí. IRIS, Bratislava 1997.

[5] Novák, M.: Neuronové sítě a neuropočítače. Výběr, Praha 1992.

[6] Šíma, J. - Neruda, J.: Teoretické otázky neuronových sítí. Matfyzpress, Praha 1996.

[7] Vondrák, I.: Umělá inteligence a neuronové sítě. Skripta VŠB-TU, Ostrava 1995.

[8] Volná, E.: Neuronové sítě a genetické algoritmy. Skripta Ostravské univerzity,
Ostrava 1998.

