
https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-uvod

Logické obvody 1 - Úvod

Principy logických obvodů jsou vlastně velice jednoduché. Mikrovlnná trouba,

pračka, otvírání garážových vrat i počítač jsou řízeny ve své podstatě logickými

obvody, které vyhodnocují určitou situaci podle navržené logické funkce.

Představme si třeba výtah, u kterého je nutné hlídat, zda jsou zavřené dveře, jestli

není přetížen a zda je stisknuto tlačítko volby patra atd. Výše uvedená fakta jsou

pro nás tzv. "vstupní proměnné". Podle navrženého logického obvodu pak svými

"výstupními funkcemi" zapíná motor, signalizuje přetížení nebo spouští alarm při

nenadálém zablokování výtahu, tedy automaticky ovládá chod výtahu.

vstupní proměnné = čidla, snímače, senzory

výstupní funkce = akční členy, signalizace

Logickou závislost „výstupů" na „vstupech" řeší vnitřní struktura. Ta je navržena

podle principů výrokové logiky a může být řešena jako kombinační logický obvod

nebo sekvenční logický obvod.

Skutečná fyzická realizace záleží už jen na našich možnostech. Můžeme vytvořit

náš obvod pomocí diskrétních integrovaných obvodů nebo paměťovým obvodem

třeba v jazyce VHDL.

návrh = výroková logika, graf přechodů

vnitřní struktura = kombinační obvod, sekvenční obvod

realizace = diskrétní součástky, paměťový obvod

Kombinační logický obvod

Realizuje takové logické funkce, u kterých je logická hodnota výstupní funkce dána

pouze kombinací okamžitých hodnot vstupních proměnných.

kombinační funkce nejčastěji zapisujeme:

1. slovním popisem

2. pravdivostní tabulkou

3. algebraickým výrazem

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-uvod

4. stavovým indexem

5. Karnaughovou mapou

6. logickým obvodem

7. jazykem VHDL

Rozdělujeme je podle stupně integrace:

1. SSI - small scale integration,(1-10 hradel),AND,OR,NOT,NAN-

D,NOR,EXOR,EXNOR

2. MSI - medium scale integration,(10-100),aritmetické obvody,dekodé-

ry,multiplexory

3. LSI - large scale integration,(100-100 000),ALU,řadič

SSI - základní logické členy

SSI - vnitřní zapojení základních

logických členů

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-uvod

Slovní zadání příkladů

Následující příklady jsou pouze ukázkou, jak by mohly být jednotlivé úlohy zadány.

První tři úlohy by se mohly řešit jako jednoduché kombinační obvody pomocí

pravdivostní tabulky. Pro čtvrtý, pátý a šestý příklad je již lepší využít integrované

obvody střední integrace a u sedmého příkladu jde o návrh jednoduchého

sekvenčního automatu. Každý návrh je pak trochu jiný.

1. př.: Navrhněte logický obvod, který vysílá signál v případě poruchy

jednoho nebo obou větráků. U každého větráku jsou umístěny snímače,

které vysílají trvale signál, dojde-li k poruše větráku.

2. př.: Automat na nápoje vydá vodu nebo citronovou a nebo malinovou

limonádu podle výběru stisknutého tlačítka. Vodu zákazník dostane

zdarma, limonády pouze po vložení příslušné finanční částky. Navrhněte

ovládání ventilů zásobníků: vody, citronového sirupu a malinového sirupu

a zásobníku peněz. Limonáda se míchá z vody a příslušného sirupu, tedy

musí být spuštěny oba ventily najednou. Pokud zadá zákazník špatnou

kombinaci, rozsvítí se signalizace "špatná volba" a peníze jsou vráceny.

3. př.: Navrhněte úplnou binární sčítačku pro dvě jednobitová čísla.

4. př.: Navrhněte obvod, který rozsvítí led diodu, pokud součet dvou

čtyřbitových binárních čísel je větší než dekadické číslo 5.

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-uvod

5. př.: Vytvořte multiplexor a demultiplexor.

6. př.: Navrhněte asynchronní čítač, který má volitelný směr čítání (čítá

vzestupně nebo sestupně).

7. př.: Navrhněte synchronní čítač, který bude simulovat světelný semafor.

Booleova algebra

Booleova algebra je binární algebra (má jen dvě konstanty 0 a 1) a využívá AND,

OR a NOT jako úplný soubor funkcí (žádné jiné nemá). Používá se k úpravě a

minimalizaci logických funkcí. Platí v ní tři zákony, podobně jako v klasické

algebře:

Asociativní

Při stejném operátoru nezáleží na závorkách.

Komutativní

Nezáleží na pořadí prvků.

Distributivní

První rovnice je běžné roznásobení, ale pozor, druhá rovnice v běžné algebře

neplatí. Když si obě rovnice pořádně prohlédnete, tak se jen zamění znaménka

Zákony není potřeba nějak studovat, prostě se počítá jako v matematické algebře.

Pro zjednodušování jsou však mnohem důležitější následující pravidla:

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-uvod

Pravidla pro jednu proměnnou

Agresivnost nebo neutrálnost 0 a 1:

Pravidla pro dvě proměnné

DeMorganův teorém

Oba zákony platí pro dvě i pro více proměnných.

Je dobré umět zjednodušit jednoduché logické funkce, ale pro složitější je výhodné

využít Karnaughovu mapu. V současnosti zjednodušování umí některé simulační

programy, např. NI Multisim. V případě, že nerealizujeme obvod základními

logickými členy, není nutné funkci zjednodušovat vůbec, neboť se do paměti

zapisuje buď celá pravdivostní tabulka, nebo se to řeší přes instrukce.

Příklady

Zjednodušení logické funkce pomocí pravidel

Booleovy algebry

Úprava pomocí těchto pravidel je velmi zdlouhavá a dělá se při ní poměrně dost

chyb. Navíc většinou není úplně jisté, zda je výsledek již opravdu minimální. Velkou

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-uvod

výhodou je jen, že lze využít kdykoliv "ručně" a pro více proměnných není (mimo

počítačových algoritmů) jiná metoda vhodná.

Zjednodušení logické funkce pomocí zákonů De

Morgana

Stejně jako úprava podle Booleovy algebry i tady jde spíše o procvičení si logického

myšlení a aplikace zákonů na příkladech. V současné době se většina obvodů

realizuje zcela jinak a nebo lze využít již hotových počítačových programů.

Nicméně na SŠ a i na VŠ se zatím oba dva typy příkladů vyskytují a zkouší a tak je

dobré tyto úpravy znát a velmi dobře procvičit .

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-2-reseni-prikladu-a-pravdivostni-
tabulka

Logické obvody 2 - Řešení příkladů a

pravdivostní tabulka

Řešení slovního zadání

Pokud máme úlohu zadánu jako slovní příklad, je zapotřebí udělat něco jako

rozbor úlohy. To v podstatě znamená určit vstupní proměnné, (z minula již víme,

že to budou nějaká čidla nebo snímače) a určit výstupní funkce (to jsou akční členy

– takže vykonají nějakou akci …). Prohlídneme si zadání příkladu a.:

a. Logický obvod vysílá signál v případě poruchy jednoho nebo obou větráků. U každého

větráku jsou umístěny snímače, které vysílají trvale signál, dojde-li k poruše větráku.

Zeleně je označeno, kde se hovoří o snímačích a jejich počtu a červeně je označeno

místo, které představuje požadovanou činnost navrhovaného zařízení, myslím tím

činnost našeho navrhovaného obvodu. Takže budeme potřebovat dvě vstupní

proměnné, protože větráky jsou dva a jednu výstupní funkci, neboť je požadováno

pouze vyslání signálu v případě poruchy, je otázkou jakého, ale budeme

předpokládat, že jde třeba o rozsvícení ledky.

1. vstupní proměnné … 2 větráky (2 snímače) => 2 proměnné např. a a b

V úvodu je uvedeno, že se logické obvody navrhují podle výrokové logiky, takže by

to chtělo nějaké výroky . Výrok vyjadřuje nějaké tvrzení, na které lze odpovědět

buď ano, nebo ne.

proměnná a … "první větrák přestal pracovat" … pokud ano, pak a = 1; pokud ne,

pak a = 0

proměnná b … "druhý větrák přestal pracovat" … pokud ano, pak b = 1; pokud ne,

pak b = 0

(v praxi se výrok zapisuje tak, aby představoval stav, že se událost, kterou hlídáme,

stala. Pak logickou 1 přiřadíme odpovědi ano a logickou 0 odpovědi ne.

Samozřejmě může to být i naopak, ale když to budete takto dodržovat, bude to

lepší)

2. výstupní proměnné … 1 signál (1 led dioda) => 1 výstupní funkce f

Výstupní funkce f … "rozsvítí se led dioda" … ano, je-li f = 1; ne, je-li f = 0

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-2-reseni-prikladu-a-pravdivostni-
tabulka

Vlastní logiku, tedy to, kdy se opravdu rozsvítí ledka, provádí navržený logický

obvod podle zadání tj.:

"v případě, že dojde k poruše jednoho nebo obou větráků"

Logiku je nejjednodušší navrhnout pomocí pravdivostní tabulky, takže co to

vlastně je pravdivostní tabulka?

Pravdivostní tabulka

Jednoznačně přiřazuje určitou konkrétní kombinaci vstupních proměnných jedné

nebo několika výstupním funkcím.

Levá část obsahuje všechny možné kombinace vstupních proměnných a stavový

index (což je dekadicky vyjádřená binární hodnota příslušné kombinace vstupních

proměnných). Počet těchto kombinací je dán počtem proměnných. Takže máme-

li dvě proměnné např. a a b, které mohou každá nabývat hodnoty 0 nebo 1, pak

máme čtyři různé kombinace a to: 00, 01, 10 a 11. Obecně je počet všech

kombinací N = 2n, kde n se rovná počtu vstupních proměnných.

Pravá část obsahuje hodnoty výstupních funkcí, které se stanoví na základě logiky

slovního zadání.

Pravdivostní tabulka pro náš předchozí příklad

Bude mít tři sloupce vlevo (stavový index s a dvě vstupní proměnné a a b) a celkem

4 řádky (N=22)

A jen jeden sloupec vpravo f, protože máme jen jednu výstupní funkci.

Ze slovního zadání vyplývá, že výstupní funkce bude rovna 1 (tj. rozsvítí se led

dioda): „v případě, že dojde k poruše jednoho nebo obou větráků“

Pravdivostní tabulka po doplnění ukazuje všechny případy, ke kterým může dojít:

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-2-reseni-prikladu-a-pravdivostni-
tabulka

Výhodou pravdivostní tabulky je, že zachycuje všechny kombinace, které mohou

nastat a jak bude daný obvod reagovat. Nic jiného ani kombinační obvod neumí a

my nemůžeme na nic zapomenout .

Neúplně zadaná funkce

Někdy se však stane, že pro určitou kombinaci na vstupu neexistuje fyzikální

realizace, prostě daná vstupní kombinace není možná. Pak takové pravdivostní

tabulce říkáme:

Pravdivostní tabulka s neúplně zadanou funkcí (nebo funkcemi). Důvod je ten,

že nevíme, zda výstupní funkce bude nabývat pro danou kombinaci log.1 nebo

log.0. Vlastně je to jedno, protože daná vstupní kombinace ani nenastane, pak

píšeme x místo 1 nebo 0. Pro názornost si uvedeme jednoduchý příklad.

Příklad neúplně zadané funkce

Př.: Navrhněte hlídání hladiny v nádrži tak, aby se rozsvítila kontrolka K1, pokud

klesne hladina pod minimum a kontrolka K2, pokud hladina přesáhne maximum.

1. vstupní proměnné … 2 snímače (minimum a maximum) => 2 proměnné

např. a a b

proměnná a … "snímač minima pod vodou" … pokud ano, pak a = 1; pokud ne,

pak a = 0

proměnná b … "snímač maxima pod vodou" … pokud ano, pak b = 1; pokud ne,

pak b = 0

2. výstupní proměnné … 2 signály (2 led diody, K1 a K2) => 2 výstupní

funkce f1 a f2

výstupní funkce f1 … "rozsvítí se K1" … ano, je-li f1 = 1; ne, je-li f1 = 0

výstupní funkce f2 … "rozsvítí se K2" … ano, je-li f2 = 1; ne, je-li f2 = 0

pravdivostní tabulka

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-2-reseni-prikladu-a-pravdivostni-
tabulka

Tyto "neúplně zadané" stavy je důležité v tabulce vyznačit (a ne je vynechat), neboť

se využívají pro zjednodušení minimalizace výstupní funkce.

Zápis funkce stavovým indexem

Jak už bylo uvedeno v předchozím článku, funkci lze také zapsat pomocí stavového

indexu. Jde vlastně o zkrácený zápis pravdivostní tabulky. Stavový index je

dekadické číslo, jehož hodnota odpovídá binární kombinaci vstupních

proměnných v určitém řádku. Samozřejmě zde záleží v jakém pořadí se vstupní

proměnné uvádí. V předchozích příkladech je proměnná a vždy nejvíce vpravo a

tedy jde o bit s nejnižší vahou 20.

Zápisy pak mají následující tvar:

1.př.: úplně zadaná funkce - porucha vrtáku

za symbolem "suma" je výčet jedničkových stavů výstupní funkce

za symbolem "pí" je výčet nulových stavů výstupní funkce

2.př.: neúplně zadaná funkce - Hlídání hladiny vody

Za symbolem "suma" je výčet jedničkových stavů výstupní funkce a za

symbolem "suma s x" jsou nedefinované stavy

Za symbolem "pí" je výčet nulových stavů výstupní funkce a za symbolem "pí s

x" jsou nedefinované stavy

Oba zápisy, ať už ze sumou nebo pí, vyjadřují stejnou funkci.

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-normalni-formy-a-karnaughovy-
mapy

Logické obvody 3 - Normální formy a

Karnaughovy mapy

Realizace pomocí logických členů, co je

potřeba

1. zjednodušení (minimalizace) logické funkce

a. buď: výpis výstupní funkce v algebraickém tvaru + minimalizace pomocí pravidel

Booleovy algebry

b. nebo: zápis výstupní funkce přímo do Karnaughovy mapy, která slouží k

minimalizaci výstupní funkce grafickou metodou

2. nakreslení schéma logického obvodu

a. buď: přímo pomocí základních logických členů – AND, OR, NOT nebo i dalších

(EXOR, …)

b. nebo: pouze pomocí členů NAND nebo pouze pomocí členů NOR, napřed je ale

potřeba převést logickou funkci podle De Morganových zákonů

Výpis výstupní logické funkce v algebraickém

tvaru

1. Jako úplná normální disjunktní forma (ÚNDF)

• tu získáme z pravdivostní tabulky tak, že vytvoříme součiny vstupních

proměnných v řádcích, kde má výstupní funkce hodnotu f = 1 tzv. mintermy.

Všechny tyto mintermy pak sečteme. Každá proměnná v součinu je zapsána tak,

že pokud nabývá hodnoty log 0, pak ji píšeme s negací, pokud log 1, pak píšeme

bez negace.

2. jako úplná normální konjunktní forma (ÚNKF)

• která se skládá ze součtů vstupních proměnných v řádcích, kde má výstupní

funkce hodnotu f = 0 tzv. maxtermů, a všechny tyto maxtermy pak vynásobíme.

Každá proměnná v součtu je zapsána tak, že pokud nabývá hodnoty log 0, pak ji

píšeme bez negace, pokud log 1, pak píšeme s negací.

Příklad vytvoření ÚNDF a ÚNKF z pravdivostní tabulky:

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-normalni-formy-a-karnaughovy-
mapy

Samozřejmě teď bychom mohli nakreslit schéma obvodu, ale vždy je dobré

výstupní funkci zkusit zjednodušit. Již dříve jsme využívali pravidla Booleovy

algebry, takže jen zopakujeme

Minimalizace ÚNDF podle Booleovy algebry

Jak je vidět, dospěli jsme ke stejnému výsledku jako je ÚNKF. Oba tvary jsou

samozřejmě tatáž funkce, takže to zas tak velké překvapení není. Zajímavé je na

tom jen to, že ÚNKF byl tvar, který byl již minimální (byl to jediný řádek, resp. jediná

nulová hodnota funkce, takže proto). Princip minimalizace spočívá v určitém

vhodném slučování jedniček pro ÚNDF a nul pro ÚNKF, nicméně minimalizace se

dělá především pro ÚNDF a pro ÚNKF se volí pouze, pokud je výrazněji méně nul

než jedniček, což byl náš případ.

Schéma výstupní funkce ze základních

logických členů

Tak a teď schéma ze základních logických členů. Příklad je příliš jednoduchý, takže

je hned zřejmé, že postačuje použít jeden OR.

Raději uvedu ještě jeden příklad, který je zadán pravdivostní tabulkou a opět

máme vypsat ÚNDF a ÚNKF:

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-normalni-formy-a-karnaughovy-
mapy

Minimalizace ÚNDF podle Booleovy algebry

Tak tady už byla úprava mnohem zajímavější, ale realizovatelná.

Pokud bychom chtěli zjednodušovat ÚNKF, bylo by nutné závorky mezi sebou

roznásobit a to už samo o sobě je hrozná představa, takže to dělat

nebudeme

Schéma výstupní funkce ze základních

logických členů

Ještě schéma naší funkce. Ze základních členů budeme potřebovat 3x

dvouvstupový AND a 2x dvouvstupový OR.

Schéma vypadá dobře a není ani moc složité, ale každý typ logického členu je

obsažen v jiném integrovaném obvodu. Konkrétně dvouvstupový AND v TTL 7408,

kde jsou čtyři tyto členy a dvouvstupový OR zase v TTL 7432, kde jsou také čtyři

členy. Což tedy znamená celkem dva integrované obvody.

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-normalni-formy-a-karnaughovy-
mapy

Realizace výstupní funkce pouze pomocí členů

NAND

V rámci úspor (místa i financí) se minimalizace týká i omezení typů použitých členů.

Takže se pak provádí převedení již minimalizované funkce na jen NAND nebo jen

NOR a to pomocí De Morganových pravidel.

Já to trošku zjednoduším. Chceme-li použít jen NAND, musíme se zbavit všech

součtů ve funkci a naopak chceme-li funkci realizovat jen NOR, pak je potřeba

odstranit součiny. To provedeme "dvojitou negací" nad součtem (nebo součinem).

Otázka je proč dvojitá negace, když podle De Morgana stačí jen jedna negace pro

změnu součtu na součin (nebo součinu na součet). Tak pokud bychom naší funkci

znegovali pouze jednou, tak vlastně realizujeme funkci právě opačnou než jsme

chtěli. Takže ta druhá negace je tam proto, abychom nezměnili původní funkci. Pro

vlastní demorganování ji nepoužijeme, jen tam zůstane.

Schéma výstupní funkce jen z logických členů

NAND

Když na to teď koukám, tak jsme si moc nepomohli, protože zase budeme

potřebovat dva integrované obvody (TTL 7400 a TTL 7411). Sice je dvou i

třívstupové NAND stejný typ, ale bohužel se rozlišuje i počet vstupů, ale doufám,

že princip je jasný .

Minimalizace výstupní funkce pomocí

Karnaugovy mapy

Cílem minimalizace je nalézt co nejjednodušší vyjádření zadané logické funkce.

Tato metoda je vhodná maximálně pro 4 až 5 proměnných, ale je rychlá a výsledná

funkce je vždy v minimálním tvaru.

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-normalni-formy-a-karnaughovy-
mapy

Hledáme:

MNDF, minimální normální disjunktní formu - logický součet minimálního počtu

minimálních součinů (mintermů)

nebo

MNKF, minimální normální konjunktní formu - logický součin minimálního počtu

minimálních součtů (maxtermů)

Postup minimalizace pomocí Karnaughovy mapy

1. Zapíšeme výstupní funkci do mapy.
2. Vytvoříme smyčky. Pro hledání MNDF vytváříme smyčky přibližně ve tvaru čtverce

nebo obdélníku, které obsahují, co největší počet „sousedních jedničkových

stavů“. Počet těchto stavů musí být vždy mocninou čísla 2 (tj. 1, 2, 4, 8, 16, … atd.).

Sousední jedničkové stavy jsou „jedničky“, které spolu sousedí hranou, a to i přes

okraje mapy. Smyčky se mohou navzájem překrývat, neděláme však smyčky

nadbytečné. Všechny jedničky musí být popsány buď v rámci některé smyčky,

nebo samostatně.

3. Jednotlivé smyčky se popisují mintermy, složenými pouze z těch proměnných,

které se během celé smyčky nemění (proměnná a bude v mintermu obsažena,

pokud pro všechny „1“ ve smyčce nabývá stejné hodnoty, např. a = 1). Termy

dvou sousedních polí se od sebe liší jen ve stavu jedné proměnné a o tuto

proměnnou lze funkci, při sloučení těchto polí do smyčky, zjednodušit. Čím více

sousedních „1“ je ve smyčce, tím méně proměnných bude v příslušném

mintermu.

4. Výsledná MNDF je součtem takto vytvořených minimálních mintermů.

Pro MNKF platí totéž, s tím, že smyčky vytváříme kolem „sousedních nulových

stavů“ a smyčky se popisují pomocí maxtermů. Výsledná MNKF je pak součinem

těchto minimálních maxtermů.

Př.: Napište pravdivostní tabulku, Karnaughovu mapu, MNDF a MNKF funkce,

zadané pomocí stavových indexů.

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-normalni-formy-a-karnaughovy-
mapy

Př.: Vytvořte pravdivostní tabulku, Karnaughovu mapu, MNDF a MNKF logického

členu OR. Uvažujte dvě vstupní proměnné.

Minimalizace neúplně zadaných funkcí

Při minimalizaci neúplně zadaných funkcí postupujeme shodně jako při

minimalizaci funkcí úplně zadaných s tím, že neurčené stavy x zahrnujeme buď do

smyček s „jedničkami“ nebo do smyček s „nulami“ nebo je nemusíme zahrnout do

žádné smyčky. Vždy hledíme na výhodnost jejich polohy pro tu kterou

minimalizaci. Stručně řečeno, pokud je výhodné zahrnout neurčitý stav a získat tak

větší smyčku (tedy menší počet proměnných) učiníme tak, jinak ne.

Př.: pravdivostní tabulka a Karnaughova mapa funkce neúplně zadané

Pro MNDF není výhodné neurčený stav zahrnovat, vedlo by to pouze k vytvoření

další smyčky a tím dalších proměnných.

https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-normalni-formy-a-karnaughovy-
mapy

Pro MNKF je však smyčka s x výhodnější neboť je popsána jen proměnnou b,

oproti popisu samotné „0“, jež by vedlo k popisu (a + b).

Př.: Minimalizujte neúplně zadanou funkci pomocí Karnaughovy mapy a zapište ve

tvaru MNDF. Funkce je zadána stavovým indexem.

Tak myslím, že v tomto díle toho už bylo poměrně dost , tak abychom se úplně

mentálně nevyčerpali je nutné říci, že většina lepších simulačních programů umí

provést minimalizaci ze zadané pravdivostní tabulky nebo funkce v algebraickém

tvaru jedním kliknutím.

