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Logické obvody 1 - Úvod 

Principy logických obvodů jsou vlastně velice jednoduché. Mikrovlnná trouba, 

pračka, otvírání garážových vrat i počítač jsou řízeny ve své podstatě logickými 

obvody, které vyhodnocují určitou situaci podle navržené logické funkce. 

Představme si třeba výtah, u kterého je nutné hlídat, zda jsou zavřené dveře, jestli 

není přetížen a zda je stisknuto tlačítko volby patra atd. Výše uvedená fakta jsou 

pro nás tzv. "vstupní proměnné". Podle navrženého logického obvodu pak svými 

"výstupními funkcemi" zapíná motor, signalizuje přetížení nebo spouští alarm při 

nenadálém zablokování výtahu, tedy automaticky ovládá chod výtahu. 

vstupní proměnné = čidla, snímače, senzory 

výstupní funkce  = akční členy, signalizace 

Logickou závislost „výstupů" na „vstupech" řeší vnitřní struktura. Ta je navržena 

podle principů výrokové logiky a může být řešena jako kombinační logický obvod 

nebo sekvenční logický obvod. 

Skutečná fyzická realizace záleží už jen na našich možnostech. Můžeme vytvořit 

náš obvod pomocí diskrétních integrovaných obvodů nebo paměťovým obvodem 

třeba v jazyce VHDL. 

návrh = výroková logika, graf přechodů 

vnitřní struktura = kombinační obvod, sekvenční obvod 

realizace = diskrétní součástky, paměťový obvod 

Kombinační logický obvod 

Realizuje takové logické funkce, u kterých je logická hodnota výstupní funkce dána 

pouze kombinací okamžitých hodnot vstupních proměnných. 

 

kombinační funkce nejčastěji zapisujeme: 

1. slovním popisem 

2. pravdivostní tabulkou 

3. algebraickým výrazem 
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4. stavovým indexem 

5. Karnaughovou mapou 

6. logickým obvodem 

7. jazykem VHDL 

Rozdělujeme je podle stupně integrace: 

1. SSI - small scale integration,(1-10 hradel),AND,OR,NOT,NAN-

D,NOR,EXOR,EXNOR 

2. MSI - medium scale integration,(10-100),aritmetické obvody,dekodé-

ry,multiplexory 

3. LSI - large scale integration,(100-100 000),ALU,řadič 

SSI - základní logické členy 

 

SSI - vnitřní zapojení základních 

logických členů 
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Slovní zadání příkladů 

Následující příklady jsou pouze ukázkou, jak by mohly být jednotlivé úlohy zadány. 

První tři úlohy by se mohly řešit jako jednoduché kombinační obvody pomocí 

pravdivostní tabulky. Pro čtvrtý, pátý a šestý příklad je již lepší využít integrované 

obvody střední integrace a u sedmého příkladu jde o návrh jednoduchého 

sekvenčního automatu. Každý návrh je pak trochu jiný. 

1. př.: Navrhněte logický obvod, který vysílá signál v případě poruchy 

jednoho nebo obou větráků. U každého větráku jsou umístěny snímače, 

které vysílají trvale signál, dojde-li k poruše větráku. 

2. př.: Automat na nápoje vydá vodu nebo citronovou a nebo malinovou 

limonádu podle výběru stisknutého tlačítka. Vodu zákazník dostane 

zdarma, limonády pouze po vložení příslušné finanční částky. Navrhněte 

ovládání ventilů zásobníků: vody, citronového sirupu a malinového sirupu 

a zásobníku peněz. Limonáda se míchá z vody a příslušného sirupu, tedy 

musí být spuštěny oba ventily najednou. Pokud zadá zákazník špatnou 

kombinaci, rozsvítí se signalizace "špatná volba" a peníze jsou vráceny. 

3. př.: Navrhněte úplnou binární sčítačku pro dvě jednobitová čísla. 

4. př.: Navrhněte obvod, který rozsvítí led diodu, pokud součet dvou 

čtyřbitových binárních čísel je větší než dekadické číslo 5. 



https://www.itnetwork.cz/hardware-pc/hardware/logicke-obvody-uvod 

5. př.: Vytvořte multiplexor a demultiplexor. 

6. př.: Navrhněte asynchronní čítač, který má volitelný směr čítání (čítá 

vzestupně nebo sestupně). 

7. př.: Navrhněte synchronní čítač, který bude simulovat světelný semafor. 

Booleova algebra 

Booleova algebra je binární algebra (má jen dvě konstanty 0 a 1) a využívá AND, 

OR a NOT jako úplný soubor funkcí (žádné jiné nemá). Používá se k úpravě a 

minimalizaci logických funkcí. Platí v ní tři zákony, podobně jako v klasické 

algebře: 

Asociativní 

Při stejném operátoru nezáleží na závorkách. 

 

Komutativní 

Nezáleží na pořadí prvků. 

 

Distributivní 

První rovnice je běžné roznásobení, ale pozor, druhá rovnice v běžné algebře 

neplatí. Když si obě rovnice pořádně prohlédnete, tak se jen zamění znaménka  

 

Zákony není potřeba nějak studovat, prostě se počítá jako v matematické algebře. 

Pro zjednodušování jsou však mnohem důležitější následující pravidla: 
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Pravidla pro jednu proměnnou 

 

Agresivnost nebo neutrálnost 0 a 1: 

 

Pravidla pro dvě proměnné 

 

DeMorganův teorém 

Oba zákony platí pro dvě i pro více proměnných. 

 

Je dobré umět zjednodušit jednoduché logické funkce, ale pro složitější je výhodné 

využít Karnaughovu mapu. V současnosti zjednodušování umí některé simulační 

programy, např. NI Multisim. V případě, že nerealizujeme obvod základními 

logickými členy, není nutné funkci zjednodušovat vůbec, neboť se do paměti 

zapisuje buď celá pravdivostní tabulka, nebo se to řeší přes instrukce. 

Příklady 

Zjednodušení logické funkce pomocí pravidel 

Booleovy algebry 

Úprava pomocí těchto pravidel je velmi zdlouhavá a dělá se při ní poměrně dost 

chyb. Navíc většinou není úplně jisté, zda je výsledek již opravdu minimální. Velkou 
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výhodou je jen, že lze využít kdykoliv "ručně" a pro více proměnných není (mimo 

počítačových algoritmů) jiná metoda vhodná. 

 

Zjednodušení logické funkce pomocí zákonů De 

Morgana 

Stejně jako úprava podle Booleovy algebry i tady jde spíše o procvičení si logického 

myšlení a aplikace zákonů na příkladech. V současné době se většina obvodů 

realizuje zcela jinak a nebo lze využít již hotových počítačových programů. 

Nicméně na SŠ a i na VŠ se zatím oba dva typy příkladů vyskytují a zkouší a tak je 

dobré tyto úpravy znát a velmi dobře procvičit  . 
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Logické obvody 2 - Řešení příkladů a 

pravdivostní tabulka 

Řešení slovního zadání 

Pokud máme úlohu zadánu jako slovní příklad, je zapotřebí udělat něco jako 

rozbor úlohy. To v podstatě znamená určit vstupní proměnné, (z minula již víme, 

že to budou nějaká čidla nebo snímače) a určit výstupní funkce (to jsou akční členy 

– takže vykonají nějakou akci …). Prohlídneme si zadání příkladu a.: 

a. Logický obvod vysílá signál v případě poruchy jednoho nebo obou větráků. U každého 

větráku jsou umístěny snímače, které vysílají trvale signál, dojde-li k poruše větráku. 

Zeleně je označeno, kde se hovoří o snímačích a jejich počtu a červeně je označeno 

místo, které představuje požadovanou činnost navrhovaného zařízení, myslím tím 

činnost našeho navrhovaného obvodu. Takže budeme potřebovat dvě vstupní 

proměnné, protože větráky jsou dva a jednu výstupní funkci, neboť je požadováno 

pouze vyslání signálu v případě poruchy, je otázkou jakého, ale budeme 

předpokládat, že jde třeba o rozsvícení ledky. 

1. vstupní proměnné … 2 větráky (2 snímače) => 2 proměnné např. a a b 

V úvodu je uvedeno, že se logické obvody navrhují podle výrokové logiky, takže by 

to chtělo nějaké výroky . Výrok vyjadřuje nějaké tvrzení, na které lze odpovědět 

buď ano, nebo ne. 

proměnná a … "první větrák přestal pracovat" … pokud ano, pak a = 1; pokud ne, 

pak a = 0 

proměnná b … "druhý větrák přestal pracovat" … pokud ano, pak b = 1; pokud ne, 

pak b = 0 

(v praxi se výrok zapisuje tak, aby představoval stav, že se událost, kterou hlídáme, 

stala. Pak logickou 1 přiřadíme odpovědi ano a logickou 0 odpovědi ne. 

Samozřejmě může to být i naopak, ale když to budete takto dodržovat, bude to 

lepší) 

2. výstupní proměnné … 1 signál (1 led dioda) => 1 výstupní funkce f 

Výstupní funkce f … "rozsvítí se led dioda" … ano, je-li f = 1; ne, je-li f = 0 
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Vlastní logiku, tedy to, kdy se opravdu rozsvítí ledka, provádí navržený logický 

obvod podle zadání tj.: 

"v případě, že dojde k poruše jednoho nebo obou větráků" 

Logiku je nejjednodušší navrhnout pomocí pravdivostní tabulky, takže co to 

vlastně je pravdivostní tabulka? 

Pravdivostní tabulka 

Jednoznačně přiřazuje určitou konkrétní kombinaci vstupních proměnných jedné 

nebo několika výstupním funkcím. 

Levá část obsahuje všechny možné kombinace vstupních proměnných a stavový 

index (což je dekadicky vyjádřená binární hodnota příslušné kombinace vstupních 

proměnných). Počet těchto kombinací je dán počtem proměnných. Takže máme-

li dvě proměnné např. a a b, které mohou každá nabývat hodnoty 0 nebo 1, pak 

máme čtyři různé kombinace a to: 00, 01, 10 a 11. Obecně je počet všech 

kombinací N = 2n, kde n se rovná počtu vstupních proměnných. 

Pravá část obsahuje hodnoty výstupních funkcí, které se stanoví na základě logiky 

slovního zadání. 

Pravdivostní tabulka pro náš předchozí příklad 

Bude mít tři sloupce vlevo (stavový index s a dvě vstupní proměnné a a b) a celkem 

4 řádky (N=22) 

A jen jeden sloupec vpravo f, protože máme jen jednu výstupní funkci. 

 

Ze slovního zadání vyplývá, že výstupní funkce bude rovna 1 (tj. rozsvítí se led 

dioda): „v případě, že dojde k poruše jednoho nebo obou větráků“ 

Pravdivostní tabulka po doplnění ukazuje všechny případy, ke kterým může dojít: 
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Výhodou pravdivostní tabulky je, že zachycuje všechny kombinace, které mohou 

nastat a jak bude daný obvod reagovat. Nic jiného ani kombinační obvod neumí a 

my nemůžeme na nic zapomenout . 

Neúplně zadaná funkce 

Někdy se však stane, že pro určitou kombinaci na vstupu neexistuje fyzikální 

realizace, prostě daná vstupní kombinace není možná. Pak takové pravdivostní 

tabulce říkáme: 

Pravdivostní tabulka s neúplně zadanou funkcí (nebo funkcemi). Důvod je ten, 

že nevíme, zda výstupní funkce bude nabývat pro danou kombinaci log.1 nebo 

log.0. Vlastně je to jedno, protože daná vstupní kombinace ani nenastane, pak 

píšeme x místo 1 nebo 0. Pro názornost si uvedeme jednoduchý příklad. 

Příklad neúplně zadané funkce 

Př.: Navrhněte hlídání hladiny v nádrži tak, aby se rozsvítila kontrolka K1, pokud 

klesne hladina pod minimum a kontrolka K2, pokud hladina přesáhne maximum. 

1. vstupní proměnné … 2 snímače (minimum a maximum) => 2 proměnné 

např. a a b 

proměnná a … "snímač minima pod vodou" … pokud ano, pak a = 1; pokud ne, 

pak a = 0 

proměnná b … "snímač maxima pod vodou" … pokud ano, pak b = 1; pokud ne, 

pak b = 0 

2. výstupní proměnné … 2 signály (2 led diody, K1 a K2) => 2 výstupní 

funkce f1 a f2 

výstupní funkce f1 … "rozsvítí se K1" … ano, je-li f1 = 1; ne, je-li f1 = 0 

výstupní funkce f2 … "rozsvítí se K2" … ano, je-li f2 = 1; ne, je-li f2 = 0 

pravdivostní tabulka 
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Tyto "neúplně zadané" stavy je důležité v tabulce vyznačit (a ne je vynechat), neboť 

se využívají pro zjednodušení minimalizace výstupní funkce. 

Zápis funkce stavovým indexem 

Jak už bylo uvedeno v předchozím článku, funkci lze také zapsat pomocí stavového 

indexu. Jde vlastně o zkrácený zápis pravdivostní tabulky. Stavový index je 

dekadické číslo, jehož hodnota odpovídá binární kombinaci vstupních 

proměnných v určitém řádku. Samozřejmě zde záleží v jakém pořadí se vstupní 

proměnné uvádí. V předchozích příkladech je proměnná a vždy nejvíce vpravo a 

tedy jde o bit s nejnižší vahou 20. 

Zápisy pak mají následující tvar: 

1.př.: úplně zadaná funkce - porucha vrtáku 

za symbolem "suma" je výčet jedničkových stavů výstupní funkce 

za symbolem "pí" je výčet nulových stavů výstupní funkce 

 

2.př.: neúplně zadaná funkce - Hlídání hladiny vody 

Za symbolem "suma" je výčet jedničkových stavů výstupní funkce a za 

symbolem "suma s x" jsou nedefinované stavy 

Za symbolem "pí" je výčet nulových stavů výstupní funkce a za symbolem "pí s 

x" jsou nedefinované stavy 

 

Oba zápisy, ať už ze sumou nebo pí, vyjadřují stejnou funkci.
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Logické obvody 3 - Normální formy a 

Karnaughovy mapy 

Realizace pomocí logických členů, co je 

potřeba 

1. zjednodušení (minimalizace) logické funkce 

a. buď: výpis výstupní funkce v algebraickém tvaru + minimalizace pomocí pravidel 

Booleovy algebry 

b. nebo: zápis výstupní funkce přímo do Karnaughovy mapy, která slouží k 

minimalizaci výstupní funkce grafickou metodou 

2. nakreslení schéma logického obvodu 

a. buď: přímo pomocí základních logických členů – AND, OR, NOT nebo i dalších 

(EXOR, …) 

b. nebo: pouze pomocí členů NAND nebo pouze pomocí členů NOR, napřed je ale 

potřeba převést logickou funkci podle De Morganových zákonů 

Výpis výstupní logické funkce v algebraickém 

tvaru 

1. Jako úplná normální disjunktní forma (ÚNDF) 

• tu získáme z pravdivostní tabulky tak, že vytvoříme součiny vstupních 

proměnných v řádcích, kde má výstupní funkce hodnotu f = 1 tzv. mintermy. 

Všechny tyto mintermy pak sečteme. Každá proměnná v součinu je zapsána tak, 

že pokud nabývá hodnoty log 0, pak ji píšeme s negací, pokud log 1, pak píšeme 

bez negace. 

2. jako úplná normální konjunktní forma (ÚNKF) 

• která se skládá ze součtů vstupních proměnných v řádcích, kde má výstupní 

funkce hodnotu f = 0 tzv. maxtermů, a všechny tyto maxtermy pak vynásobíme. 

Každá proměnná v součtu je zapsána tak, že pokud nabývá hodnoty log 0, pak ji 

píšeme bez negace, pokud log 1, pak píšeme s negací. 

Příklad vytvoření ÚNDF a ÚNKF z pravdivostní tabulky: 
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Samozřejmě teď bychom mohli nakreslit schéma obvodu, ale vždy je dobré 

výstupní funkci zkusit zjednodušit. Již dříve jsme využívali pravidla Booleovy 

algebry, takže jen zopakujeme  

Minimalizace ÚNDF podle Booleovy algebry 

 

Jak je vidět, dospěli jsme ke stejnému výsledku jako je ÚNKF. Oba tvary jsou 

samozřejmě tatáž funkce, takže to zas tak velké překvapení není. Zajímavé je na 

tom jen to, že ÚNKF byl tvar, který byl již minimální (byl to jediný řádek, resp. jediná 

nulová hodnota funkce, takže proto). Princip minimalizace spočívá v určitém 

vhodném slučování jedniček pro ÚNDF a nul pro ÚNKF, nicméně minimalizace se 

dělá především pro ÚNDF a pro ÚNKF se volí pouze, pokud je výrazněji méně nul 

než jedniček, což byl náš případ. 

Schéma výstupní funkce ze základních 

logických členů 

Tak a teď schéma ze základních logických členů. Příklad je příliš jednoduchý, takže 

je hned zřejmé, že postačuje použít jeden OR. 

 

Raději uvedu ještě jeden příklad, který je zadán pravdivostní tabulkou a opět 

máme vypsat ÚNDF a ÚNKF: 
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Minimalizace ÚNDF podle Booleovy algebry 

 

Tak tady už byla úprava mnohem zajímavější, ale realizovatelná. 

Pokud bychom chtěli zjednodušovat ÚNKF, bylo by nutné závorky mezi sebou 

roznásobit a .... to už samo o sobě je hrozná představa, takže to dělat 

nebudeme  

Schéma výstupní funkce ze základních 

logických členů 

Ještě schéma naší funkce. Ze základních členů budeme potřebovat 3x 

dvouvstupový AND a 2x dvouvstupový OR. 

 

Schéma vypadá dobře a není ani moc složité, ale každý typ logického členu je 

obsažen v jiném integrovaném obvodu. Konkrétně dvouvstupový AND v TTL 7408, 

kde jsou čtyři tyto členy a dvouvstupový OR zase v TTL 7432, kde jsou také čtyři 

členy. Což tedy znamená celkem dva integrované obvody. 
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Realizace výstupní funkce pouze pomocí členů 

NAND 

V rámci úspor (místa i financí) se minimalizace týká i omezení typů použitých členů. 

Takže se pak provádí převedení již minimalizované funkce na jen NAND nebo jen 

NOR a to pomocí De Morganových pravidel. 

Já to trošku zjednoduším. Chceme-li použít jen NAND, musíme se zbavit všech 

součtů ve funkci a naopak chceme-li funkci realizovat jen NOR, pak je potřeba 

odstranit součiny. To provedeme "dvojitou negací" nad součtem (nebo součinem). 

Otázka je proč dvojitá negace, když podle De Morgana stačí jen jedna negace pro 

změnu součtu na součin (nebo součinu na součet). Tak pokud bychom naší funkci 

znegovali pouze jednou, tak vlastně realizujeme funkci právě opačnou než jsme 

chtěli. Takže ta druhá negace je tam proto, abychom nezměnili původní funkci. Pro 

vlastní demorganování ji nepoužijeme, jen tam zůstane. 

 

Schéma výstupní funkce jen z logických členů 

NAND 

 

Když na to teď koukám, tak jsme si moc nepomohli, protože zase budeme 

potřebovat dva integrované obvody (TTL 7400 a TTL 7411). Sice je dvou i 

třívstupové NAND stejný typ, ale bohužel se rozlišuje i počet vstupů, ale doufám, 

že princip je jasný . 

Minimalizace výstupní funkce pomocí 

Karnaugovy mapy 

Cílem minimalizace je nalézt co nejjednodušší vyjádření zadané logické funkce. 

Tato metoda je vhodná maximálně pro 4 až 5 proměnných, ale je rychlá a výsledná 

funkce je vždy v minimálním tvaru. 
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Hledáme: 

MNDF, minimální normální disjunktní formu - logický součet minimálního počtu 

minimálních součinů (mintermů) 

nebo 

MNKF, minimální normální konjunktní formu - logický součin minimálního počtu 

minimálních součtů (maxtermů) 

Postup minimalizace pomocí Karnaughovy mapy 

1. Zapíšeme výstupní funkci do mapy. 
2. Vytvoříme smyčky. Pro hledání MNDF vytváříme smyčky přibližně ve tvaru čtverce 

nebo obdélníku, které obsahují, co největší počet „sousedních jedničkových 

stavů“. Počet těchto stavů musí být vždy mocninou čísla 2 (tj. 1, 2, 4, 8, 16, … atd.). 

Sousední jedničkové stavy jsou „jedničky“, které spolu sousedí hranou, a to i přes 

okraje mapy. Smyčky se mohou navzájem překrývat, neděláme však smyčky 

nadbytečné. Všechny jedničky musí být popsány buď v rámci některé smyčky, 

nebo samostatně. 

3. Jednotlivé smyčky se popisují mintermy, složenými pouze z těch proměnných, 

které se během celé smyčky nemění (proměnná a bude v mintermu obsažena, 

pokud pro všechny „1“ ve smyčce nabývá stejné hodnoty, např. a = 1). Termy 

dvou sousedních polí se od sebe liší jen ve stavu jedné proměnné a o tuto 

proměnnou lze funkci, při sloučení těchto polí do smyčky, zjednodušit. Čím více 

sousedních „1“ je ve smyčce, tím méně proměnných bude v příslušném 

mintermu. 

4. Výsledná MNDF je součtem takto vytvořených minimálních mintermů. 

Pro MNKF platí totéž, s tím, že smyčky vytváříme kolem „sousedních nulových 

stavů“ a smyčky se popisují pomocí maxtermů. Výsledná MNKF je pak součinem 

těchto minimálních maxtermů. 

Př.: Napište pravdivostní tabulku, Karnaughovu mapu, MNDF a MNKF funkce, 

zadané pomocí stavových indexů. 
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Př.: Vytvořte pravdivostní tabulku, Karnaughovu mapu, MNDF a MNKF logického 

členu OR. Uvažujte dvě vstupní proměnné. 

 

Minimalizace neúplně zadaných funkcí 

Při minimalizaci neúplně zadaných funkcí postupujeme shodně jako při 

minimalizaci funkcí úplně zadaných s tím, že neurčené stavy x zahrnujeme buď do 

smyček s „jedničkami“ nebo do smyček s „nulami“ nebo je nemusíme zahrnout do 

žádné smyčky. Vždy hledíme na výhodnost jejich polohy pro tu kterou 

minimalizaci. Stručně řečeno, pokud je výhodné zahrnout neurčitý stav a získat tak 

větší smyčku (tedy menší počet proměnných) učiníme tak, jinak ne. 

Př.: pravdivostní tabulka a Karnaughova mapa funkce neúplně zadané 

 

Pro MNDF není výhodné neurčený stav zahrnovat, vedlo by to pouze k vytvoření 

další smyčky a tím dalších proměnných. 
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Pro MNKF je však smyčka s x výhodnější neboť je popsána jen proměnnou b, 

oproti popisu samotné „0“, jež by vedlo k popisu (a + b). 

Př.: Minimalizujte neúplně zadanou funkci pomocí Karnaughovy mapy a zapište ve 

tvaru MNDF. Funkce je zadána stavovým indexem. 

 

Tak myslím, že v tomto díle toho už bylo poměrně dost , tak abychom se úplně 

mentálně nevyčerpali je nutné říci, že většina lepších simulačních programů umí 

provést minimalizaci ze zadané pravdivostní tabulky nebo funkce v algebraickém 

tvaru jedním kliknutím. 


