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1.3. Systémovy piistup

Se slivkem systém se lze setkat v mnoha riiznych kontextech a slovnich spojenich.
Vsude signalizuje existenci n&jakych vazeb mezi prvky, fadu &i pofddku. Nejblize obecné
intuitivni predstavé je jiz klasickd definice Lofgrena, podle n&hoZ je systémem popis
usporadéni entity (objektu) a opakem systému je chaos. Systémovym piistupem pak
nazyvéme thel pohledu, ktery se snaZi vymezit pro dany Glel podstatné rysy, piiznaky,
vlastnosti & jiné prvky zkoumané entity a uvést je do vzajemnych souvislosti. Popis, ktery tim
vznikne, je systémovym modelem entity, nebo také systémem definovanym na entite.

Zkouméanim systémovych modelii se zabyva véda zvana teorie systémi. Nepieberné
mnoZstvi jejich variant a typi si d¢elové ¢leni do zakladnich kategorif vymezenych podle
nejrizngjsich hledisek: napf. podle stupné teoretické abstrakce?, podle miry 1deallzace podle
stupné proménlivosti poplsu podle charakteru oborti hodnot promennych podle miry
neurditosti popisu® apod.

Uvedeny prehled zékladnich moZnosti klasifikace systémi zdaleka nenf vy&erpdvajici.
Uvédime jej zde proto, abychom objasnili techniku tvorby jemné&jsi tcelové kategorizace
systémti. Kombinovanim zdkladnich moZnosti Klasifikace lze totiz vytvédfet kategorie
ystémiu zadanych vl ti a vhodnym zplisobem tak zuZovat obsah pojmu systém. Tak
napf. pojem uzavieny dynamicky systém diskrémi v ase a v prostoru oznacuje subkategorii
systémt, které nekomunikujf s okolim, viechny jejich charakteristiky (vEetné Easu) nabyvajf
izolovanych hodnot, pfigem systém se v Sase méni (vyviji) pretrZité (tj. po skocich) a to jen
na zéaklad¢ psobeni vnitinich procest.

Utelové kategorizace systémii (zuZovani obsahu obecného pojmu systém) umoZiuje
vytvafet riizng silné teoretické a technické prostiedky ,3ité na miru“ jak teoretickym, tak i

praktickym probléméim modelovéni entit. Obecn& plati, Ze &m siln&jsi (obecngjsi) je
prostedek, tim je co do popisu stru¢n&3i a snize se s nfm matematicky pracuje. V tom je

2 Nejnize stoji systémy s popisy komunikovatelngmi v piirozeném jazyce, vy33i stupeil abstrakce maji popisy
jazykem geometrie (grafem), jest€ vysSi stupeil abstrakce je vlastni popisu jazykem aplikované matematiky a
nejvys§i stupeti abstrakce maji popisy jazykem abstraktni matematiky.

3 Zde nejvyse (nejvyssi mira ideali ) budou stét i (i €) systémy neke ikujici s okolim, niZe

polo ¢ (jed né i s okolim) a nejniZe oteviené systémy (obousmérnd komunikace s
okolfm). Pfi tomto druhu klasifikace miiZe oviem také zdleZet na typu idealizace vlastnosti (ptedpoklad
linearity apod.).
Par: hrajicim vy. roli pfi inf systémil je &as, jehoZ formélni reprezentaci zpravidla byva
rostouci celotiselnd posloupnost nebo interval redlnych &isel. Nebereme-li ¢as v Gvahu nebo nedochdzi-li v
jeho priibéhu k postfehnutelnym kvalitativaim & kvantitativnim zméndm v popisu systému, mluvime o
statickém systému. Systémy, u nichz v pribhu Casu k postfehnutelnym zméndm dochdzi, oznatujeme
pi‘x’v]astkem dynamické.

® To, Ze &as je v popisu systému rep 4n posl , resp. i vyjadiujeme ptivlastkem diskrétni
v Case, resp. spojity v case. Podobné muzeme Odllsll poplsy systémil, v nichZ obory hodnot vSech ostatnich
charakteristik popisu jsou sp i (di. v prostoru) od popisii, v nichZ obor hodnot

alespoii jedné charakteristiky je kontmuem (spojitost v prostoru). Diskrétnim systémiim, jejichZ obory hodnot
(s vyjimkou &asu) jsou kone¢né, fikime konecné systémy.

¢ Uréuje-li sou€asny popis svou nejblizsi zménu jednoznadng, fikéme, Ze systém je deterministicky (nulovd
neurditost popisu). V opa¢ném ptipad je nedeterministicky. Je-li v pfipadé nedeterministického systému ddna

pravd&podobnostni mira nad oborem mo#nych pifstich zmen (sniZujici neurcitost popisu), fikdme, Ze systém je
stochasticky.
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2. Fundamentalni rozvoj zakladni piedstavy o automatu
2.1. Abstraktni stroj

Védni obory byvd zvykem délit na aplikované (zkoumajici pifmo realitu) a na
teoretické (zkoumajici modely reality). Teorie automatt, s jejimiz zéklady se v tomto kurzu
seznamime, patfi k tém druhym. Stfedem jejtho zéjmu je podtiida deterministickych
dynamickych systémi - tzv. abstraktni stroje. Abstraktnim strojem se rozumi jakykoli
deterministicky mechanismus, pfevadgjici ¢asové proménné podnéty, které na néj pfichazejf z
jeho okoli, na reakce, kterymi mechanismus na podnéty odpovidd a na své okoli pusobi.
Schematicky je abstraktni stroj zndzornén na nasledujicim obrazku.

X¢ A
g

Obr. 2.1: Abstraktn{ stroj

V ném obdélnik g znézorfuje transformaéni mechanismus, x, je vektor podnéti v okamziku t,
y: je vektor reakci na podnét x.. Slivko abstrakini ve spojeni abstraktni stroj znamend, Ze
odhlizime od vSech praktickych fyzikdlnich a prostoro¢asovych aspekti reality. Zejména nas
nezajimé frekvence vstupnich podnétt (respektive délka Gasového intervalu mezi jednotlivymi
podnéty), nebereme v Gvahu rozméry objektu ani kone¢nou rychlost Sifeni signalt apod.
Zaznamendvame jen odpovidajici si hodnoty podnétii a reakei a zkoumadme mechanismus g,
ktery je uvadi do souvislosti.

Maji-li vSechny prvky této predstavy diskrétni povahu, jednd se o model typu
diskrétni abstraktni stroj. Pak index t vektorti x; a y; neudavé spojity ¢as, ale nabyva jen
celodiselnych hodnot udévajicich poradi podnétu a reakce - méif tzv. diskrétni cas. Jsou-li
navic s vyjimkou diskrétniho ¢asu obory vech prom&nnych veli¢in tohoto modelu koneéné, a
i mechanismus g miZe byt zaddn kone¢nou mnoZinou transformaénich pravidel, mluvime o
koneéném abstraktnim stroji. VeSkerd informace, kterou miZe mit transformacni
mechanismus g v okamZiku t k dispozici pro volbu reakce y;, sestivd z hodnoty x; a z
nekonecné posloupnosti dvojic pfedchozich hodnot . . . ,(X¢2, ¥i-2),(Xe1, Ye1)- Z ni si ale v
dusledku své kone¢né podstaty dokédZe ,zapamatovat“ a pro transformaci vyuZit jen jeji
konec¢nou ¢&ast. Délku zapamatovatelné sekvence nazyvame hloubkou paméti stroje. Je-li
hloubka paméti nenulovd, mluvime o konefném sekvenénim abstraktnim stroji. V
opa¢ném piipad¢ se jednd o koneény kombinaéni abstraktni stroj, protoZe reakce y; je dina
jen kombinaci hodnot sloZek vektoru x, a na pfedchozich dvojicich podnét-reakce nezavisi.

~K_tomu; aby b, ‘model uZite ym ndstrojém\zkoumdnf reality, je nezbytnd &Xistence
fundamental ‘povrchinich a formaln afogij/mez] procesy probihajicimi v
mode]u-d proces 3 ‘mo -

dastedky, k y e efm Clénku této kapitoly sg proto
podrobng zabyvime fum alnfm 1 j ySe avedené-predstavy do-pedeby kone&ného
autofnatu.
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2.2. Koneény automat jako koneény sekvenéni abstraktni stroj

V ¢lanku 2.1. jsme uvedli, v jakém sméru je kone¢ny abstraktni stroj zGZenim
abstraktniho stroje schématicky znédzornéného na Obr. 2.1. Ob& vnéj$i proménné, proménna x
a proménnd y se méni po skocich a nabyvaji kone¢ny pocet |x|, resp. |y| izolovanych hodnot.
Dvojici (i1, kde x, je hodnota vstupniho podnétu v ¢asovém okamZiku t a y; je hodnota
vystupni reakce na podnét x,, nazveme aktualnim elementirnim chovanim v okamziku t.
Proménna t je diskrétni Cas, a nabyvd celoéiselnych hodnot udédvajicich poradi podnétu a
reakce.

Z podstaty véci vyplyvé, Ze v souladu s piirozenym béhem casu aktudlni hodnota
proménné t postupné roste, takZe i vzddlend budoucnost se jednou zménf na ,prchavou®
soucasnost a posléze v minulost. Budeme-li proto v dal3im hovofit o soucasnosti, budeme mit
na mysli konkrétni okamzik, tj. akrudini hodnotu T proménné t (okamZik pozorovéni) a ji
odpovidajici aktudlni elementdrni chovéni (xr,yr). Niz8f, resp. vy3§i hodnoty proménné t
(vzhledem k aktudlni hodnoté T) a jim odpovidajici aktudlni elementdrni chovani budou
slozkami aktudlni minulosti resp. budoucnosti. V dal§ich dvahéch budeme kone¢né a souvislé
fragmenty minulosti ¢i budoucnosti definovat za¢atky a konci ptislusnych sekvenct aktudlnich
elementarnich chovénti, které uzavieme do ,,$picatych“ zdvorek: Napf. ((X1.4,y1-4),(XT-1,y1-1))
oznaduje Ctyrélennou sekvenci  (X1u4,y1-4),(XT3,y1-3),(X1:2,y12),(XT-1,yT-1)  Konce aktudlni
historie, a {(x1-1,yr-1)) 0znaduje jednoglennou sekvenci (xt.1,yr.1) t€hoz.

Predpoklddejme, Ze nés stroj za¢iname pozorovat v okamziku t = 0, ktery také definuje
vychozi soucasnost, ptiemZ stroj funguje jiZ ,,0d nepaméti“ a bude po neomezenou dobu
fungovat dil. Z obou stran nekonetnou posloupnost {(x,y)}~ aktudlnich elementédrnich
chovéni minulych i budoucich ve tvaru

LY} = X2y (XY (Ko Yo) (K1Y (K22, -
nazveme fazovou trajektorii stroje. OkamZik t = 0 déli fizovou trajektorif na dvé €4sti: Na
jeji jiz probéhlou (minulou) ¢ast
<oy} = 2y Ry,

kterou nazveme historii a na odekdvanou budouct ¢ast

o (xey)}™ = Koo)Xy, (x2,y2)s -+ s

kterou nazveme evoluci.

Z jedné strany je ziejmé, Ze poCet riiznych historif, kterymi nds stroj mohl projit, nenf
shora omezen. Stejné tak nen{ shora omezen pocet moznych evoluci. Z druhé strany je zfejmé,
Ze stroj prosel jedinou historif a také projde jedinou evoluci. Jakd evoluce to bude, to jisté
bude zéviset hlavné na konkrétni posloupnosti o{x¢}” = Xo,X1,X2, . . . sou¢asného a budoucich
vstupnich podnéti. Dale to bude zéviset i na tom, jak dalece historie ovliviiuje vnitin{
mechanismus reakef stroje; nebo, pfesngji, jak dlouhou &ast historie (tj. jak dlouhou sekvenci
aktudlnich elementédrnich chovani konce aktudlni historie) si transforma¢ni mechanismus g
dokéZe uchovat &i ,,zapamatovat*.

Abychom snéze zodpovédéli otdzku - ,, Jakd dalsi minimdini informace je zapotiebi k
tomu, aby k zadané posloup i vstupnich podnéti ofx;}” bylo mozno jednoznacné predikovat
evoluci of (x,y:)}~?* - provedeme nasledujici posloupnost Gvah:
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e Nejprve piedpoklddejme vnitini mechanismus bez paméti, v némZ se do okamZiku t
neuchova ani informace o sekvenci ((Xi1,yi.1)). V takovém pfipadé y, = g(xy), a proto
of uy)}” = of (xu8(x))} ™. Vidime, Ze je moZn4 jen jediné evoluce, a k jejf predikci sta&f
pouhd znalost o{x}”.

Predpokladejme, Ze se ve vnitfnim mechanismu stroje do kaZzdého okamZiku t (a ne déle)
uchové informace pouze o sekvenci ((X.1,y.1)), a tato informace ,stejnym zpisobem*
nezdvislym na t (tj. mechanismus se nevyviji) ovliviiuje reakci y,. Pak y, = g(X¢,X1,ye1) @
of oY)} = of (X6 gXeXer,Ye1)} ™

Vidime, Ze vSechny historie, které se shoduji v (x.1,y.1), podniti touZ evoluci. Ovlivni totiZ
stejné reakci yo = g(Xo,X.1,y-1) @ budou se tim padem shodovat i v (Xo,yo). To stejn& ovlivn{
reakci y; = g(X1,X0,Y0) a povede ke shod& i v (x1,y1) atd. Z toho vyplyv4, Ze vSechny historie
shodujici se v (x.1,y.1) budou mit shodné pokracovant, tj. shodnou evoluci.

Kolik rtiznych evoluci pfi dané vstupni posloupnosti o{x.}~ pak miZe nastat? Nejvyse
tolik, kolik rtiznych jedno&lennych sekvenci ((x.1,y.1)) se v historii .W((x‘,y‘))'I muZe
vyskytnout. A téch nemuiZe byt vice neZ [x| - |y|l. Z hlediska evoluce se tak nekone¢na
mnozina vSech moznych historii rozkliadd (podle dvojic (x.;,y.1) v zapamatovatelné
koncové sekvenci) do koneéného poétu navzdjem disjunktnich tiid. K tomu, aby bylo
mozno jednoznaén& predikovat evoluci o{ (Xiy0)}~, postadi kromé znalosti o{x.}” znalost
toho, do které tifdy rozkladu spad4 historie stroje."

Predpokladejme, Ze se v mechanismu stroje do kazdého okamZiku t (a ne déle) uchovéi
informace o dvouclenné sekvenci ((Xe2,yr2),(Xe1,ye1)), @ tato informace ,stejnym
zplsobem* nezdvislym na t ovliviiuje reakci y;. Pak

¥e = gXeXenYe1Xe2Ye2) @ of (KoY} = of (Ko 8XeXet,Ye1Xe2,yi2)}

Vidime, Ze vSechny historie, které se shoduji v zapamatovatelné sekvenci ((X.2,y.2),(X-1,y-
1)), podniti touZ evoluci. Ovlivni totiZ stejn& reakci yo = g(Xo,X-1,y-1,X-2,¥-2) @ budou se tim
padem shodovat i v (xo,yo). To stejné ovlivni reakci y; = g(X1,Xo0,Y0,X-1,y-1) @ povede ke
shod¢ i v (x1,y1) atd. Z toho vyplyvd, Ze vSechny tyto historie budou mit shodné
pokracovani, tj. shodnou evoluci.

Stejné jako v predchozim piipadé Ize i zde dojit k zavéru, Ze pocet mozZnych evoluci stroje
(pti dané o{x}”) nepfevysi nejvyse mozny pocet riiznych dvouclennych sekvenci konce
historie; tento pocet je dan ¢islem (|x] - |y|)z. Z hlediska evoluce se tak nekone¢nd mnoZina
vSech moZnych historif opét rozkladd do koneéného poltu navzdjem disjunktnich tifd.
Rozklad je jemnéj3i neZ v ptedchozim piipadé a vznikl dal$im rozkladem kazdé z |x| - [y|
tifd pfedchoziho rozkladu.

! Oznatme kazdou z tfid takto definovaného rozkladu nekonetné mnoZiny viech mozZnych historii
zapamatovatelnou sekvenci, viem historiim dané tfidy spole¢nou. Pro aktudlni historii m((x.,y.))" systému pak
plati: .{(x.y0}" € ((x.1,y.1)). Pichod podnétu xo pak vyvold reakci yo = g(Xo.X.1,y-1). Tim vznikne novd
aktudlni historie ,_((xhyl))" € ((x0.Y0)) a soucasnost se ptesouvé do okamziku t = 1. Pfichod podnétu x; pak
vyvold reakci y; = g(X1,X0,Yo). Vznikne aktudlni historie ,..,((x‘,y.))' € ((x1,y1)) a soucasnost se presouvd do
okamZiku t = 2. Opakovanim t€chto krokii postupn& generujeme evoluci systému.
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Z4véry predchozich tvah Ize matematickou indukef zobecnit: Je-li koneény abstraktn
stroj s pevnym vnitfnim mechanismem (tj. mechanismem neménnym v Case) ,,obdafen*
paméti s hloubkou n (n je délka zapamatovatelné sekvence aktudlnich elementdrnich
chovani), pak k tomu, aby bylo moZno jednozna¢né predikovat evoluci of Xy}, postadi
kromé znalosti o{x;}” znalost toho, ve které z nejvyse (x| - ly)" tfid rozkladu nekone&né
mnoZiny vSech moZnych historif (indukovaného zapamatovatelnou sekvenci ((X-0,¥-0),(Xo1,Y-
1)) se stroj pravé nachazi.”

V terminologii teorie systémd je naS koneCny abstraktn{ stroj specidlnim
deterministickym dynamickym systémem. A systémim s paméti tohoto druhu se v teorii
systémt ifkd sekven¢ni systémy. V teorii systémd je dédle zvykem nazyvat informaci,
postatujici k tplné predikci evoluce systému, stavem. Proto jsou i v naSem kone¢ném
abstraktnim stroji jednotlivé tif{dy vySe zminéného rozkladu nekonetné mnoziny vsech
moznych historif nazyvény stavy a rozklad sam pak stavovym prostorem. A jak jsme vidéli,
pocet tid rozkladu, tj. pocet stavi, je koneny. Poget stavit stavového prostoru charakterizuje
rozsah nebo-li kapacitu paméti stroje.’ Formélni popis konetného abstraktniho stroje,
umoZiiujici iplnou predikci evoluce m4 po zavedenf stavového prostoru tvar:

yi=G(X, 8, Sw1 =F(Xu 80; X € X, €Y, susu1 € S.

X resp. Y je konetnd mnoZina vstupnich podn&tii resp. vystupnich reakef, neprdzdnd konetnd
mnoZina S je stavovym prostorem stroje, indexové proménnd t uddva diskrétn{ Cas.

P postupné konstrukci evoluce se provadi nasledujici kroky: Necht’ okamzikem
soucasnosti je okamzik t = T. V n&m se stroj nachdz{ ve stavu sr. Pichod podnétu xr vyvola
reakci yr = G(xt, st) a naslednou zménu stavu st na Srs podle vztahu sty = F(xr, s1);
okamzikem soucasnosti se stavd okamzik t = T + 1.* Takto fungujici kone¢né sekvencni
abstraktn{ stroje se v teorii automatii nazyvaji koneénymi automaty.’

% Predchozi pozndmka pod Carou popisuje mechanismus zmen s paméti hloubky n = 1. Nahradime-li v nf

€ ! ¢ sekvence lennymi zapamatc ymi sekvencemi, pak po pfislusném

roziiteni funkce g dostaneme zobecnénf této pozndmky na mechanismus zmén s paméti hloubky n, kde n je
libovolné kladné celé &islo.

3 Vztah mezi hloubkou a kapacitou paméti je v konkrétnich piipadech siln€ ovlivngn jak konkrétni zdvislosti
reakce na podnétech, tak stupn&m kontraktivity transformacnich funkei. V déisledku toho roste s hloubkou
kapacita mnohem pomaleji neZ ialn& (jak ndm vychézelo z naSich siln& zjednod ych dvah).

*Z poznimek 1 a 2 vyplyvé, Ze u mechanismu s paméti hloubky n s, = ((XenYen)s(Xe1:Ye1)) @ Yo = 8XoXetYeetsee Xeo
wYen) = G(X,, ). Rovnice s, = F(x,, s) popisuje prechod aktudlnf historie systému z tiidy rozkladu
{(emYen)s(Ke1Ye1)) do tiidy rozkladu {(KenetYens1):(XoY0)-

3 Je-li |S] = 1, tj. existuje-li pouze jediny stav, rovnice sy1 = F(x, s0) ztréci smysl (prechdzi v tautologii, nebot’ s, =
s pro viechna t) a G(x,, s = g(x) - viz systém bez paméti. Automaty tohoto typu nereflektujf historii a n&kdy
jsou nazyvény kombina&nimi automaty.
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Cvieni k lekci 2.

Piklad 2.1: Stara teta EvZenie jako kone&ny automat

RozpoloZeni - stavy Podnéty - stimuly Reakce - odezvy
1-spf K - kravil z ulice o - procitne

2 - vlidna, laskava V - masakr na videu B - chrape

3 - podrazdéna G - viing ginu W - zlobi se

4 - sentimentéln{ (opild) 3 - je potichu

5 - rozzufend (opild) T - pije

& - fehta se
@ - vztekd se

o - kolabuje
zména stavu reakce
K \% G K \Y G
1 2 1 1 o ) B
2 3 2 4 0 ) T
8 3 2 9 w & T
4 5 4 1 [0) d [0}
5 S 4 1 [) & [0}
A\ A\

VIE

\
/ Uszs

Obr. 2.2

=
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Priklad 2.2: Hloubka paméti kone¢ného automatu

Hleda se pravidlo g pfifazujici ke vstuptim vystupy. Jedinou informacf je historie.

Xr Yr
trajektorie
- (ny))”

historie evoluce

Ly ol uy)F
Obr. 2.3

Nemé-li pravidlo (diskrétni systém) pamét, pak y, = g(x,). To lze zjistit z historie.
Pokud se ukaZe, Ze vztah mezi y a x nenf funkcf, ale relaci, signalizuje to existenci
paméti. Kromé vstupu miZe vystup ovliviiovat jen poradi predchozich
elementdrnich chovani, jind informace do systému nevstupuje. Hloubkou paméti
je délka tseku historie, ktery ovliviiuje vystup. Hledime relaci

X X Ytn X Xp—pa 1 X Yent] oo X1=1 X Y1 X Xt X Yy
s minimdlnim n, kterd je funkci
8 Xt X Ytn X Xt-ns1 X Yent1 oo X1=1 X Y11 X X¢ = V1.

Toto minimélni n je hloubkou paméti.

Priklady:
e Otevirani dveff vytahu (automat bez paméti) - v elementarnim chovénf (x.y,) plati
X = Yeo

e Ovladani motoru vytahu (pamét’ hloubky 1). U vytahu pro tii podlaZi:
8(1,30)=g(1,37) = g(1,2,1)=(1,2,0) = g(1,2) = g(23,0) = g231) = |,
2(1,1,0) = g(1,1,V) = g(2,2,0) = g(2,2.d) = g(2,2,1) = g(3,3,0) = g(3,3,1) = 0,
2210)=g2 1 )= 2320 =g32)=320)=2310)=g3.1L1)=T.

e Tlacitkovy spinac ¢i vysouvani naplné versatilky (pamét” hloubky 1).

Otéazka 2.1: V ¢em je rozdil mezi hloubkou a kapacitou paméti?

Uloha 2.1: Zijistéte hloubku paméti staré tety EvZenie z pifkladu 2.1.
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3. Algebraicka definice kone¢ného automatu

Popis jednoho kroku chovéni kone¢ného automatu jsme v zévéru Elanku 2.2. uvedli ve
forme, v jaké se vyskytuje ve star$ich uéebnicich. Figuruje v ném pé&t subjektii:

mnozina X vstupnich podnéta,
mnozina Y vystupnich reakct,
mnoZina S stavi,

ptechodova funkce F,
vystupni funkce G.

Jde tedy o pétici (S, X, Y, F, G). V modernich ucebnicich vyuZivajicich aparit abstraktni
algebry se tato pétice zapisuje symboly (S, I, O, 8, B). Na tuto symboliku pfejdeme i my.
Nezilezi na symbolech, ale na jejich pofadi, které urcuje jejich vyznam.

3.1. Elementy abstraktni algebry

Zde i v dalSich lekcich uZivame nésledujici symboliku:

eJe-li f: X — Y bijektivni zobrazeni, pak symbol f oznatuje inverzni zobrazeni k f, tj.
zobrazeni ' Y — X takové, v némZ pro viechna xe X a ye Y plati:
'y =% () =)

eJsou-li f: X — Y a g Y — Z zobrazeni, pak symbol g°f oznatuje kompozici zobrazent,
tj. zobrazen{ g°f: X — Z ve tvaru [g°f](x) = g(f(x)), vzniklé postupnou aplikaci zobrazeni
fag.

4

ST e

f
Obr. 3.1
o Symbolem m, resp. T;; oznaCujeme projekei, tj. zobrazenf mi: XiXXoX ... XXy — X, resp.
Tt XiXXoX ... XX = XixXj ve tvaru (X ,X2, ..., Xn) = X, I€SP. T;i(X1,X2, -..r Xn) = (Xi,Xj).
eJsou-li f: X — Y a g: X — Z zobrazeni, pak symbol g,f oznaduje vektorové zobrazeni,
tj. zobrazenf g,f: X — ZxY ve tvaru [g,f](x) = (g(x),f(x)).

eJsou-li f: X — Y a g: U — V zobrazeni, pak symbol fxg oznatuje paralelni zobrazeni,
tj. zobrazeni fxg: XxXU — YXV ve tvaru [fxg](x,u) = (f(x),g(u)). Specidlné¢ symbol £
oznaduje paralelni zobrazen{ *: XX - Y* ve tvaru fk(xl,xz, ooy Xi) = ({1 EX2)s x5 FXK))-

e Symbol 1 oznacuje identitu na pfislu§né mnoZiné. Napt. zobrazeni 1: X — X ve tvaru

1(x) = x je identitou na mnoZziné X.

3.2. Typy automati

Ve stejném smyslu jako v pfedchozi lekci zavedeme proménnou t, kterd bude udévat
diskrétn{ ¢as. Pak miZeme definovat nasledujici typy kone¢nych automati:

e Stavovy automat (nebo také ,,automat bez vystupu®) je uspofadana trojice SA = (S, I, J),
kde S je neprizdnd kone¢nd mnoZina stavii (stavovy prostor), I je kone¢nd neprazdnd

11
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mnoZina hodnot vstupnf diskrétn{ proménné (vstupn abeceda) a 8: SxI — S je prechodova
funkce ve tvaru 8(sy, ir) = Sgs1.

¢ Mealyho automat je uspofddand pétice ME = (S, I, O, §, B), kde (S, L, 8) je stavovy
automat, O je kone¢nd neprdzdnd mnoZina hodnot vystupni diskrétni proménné (vystupni
abeceda) a B: SXI — O je vystupnf funkce ve tvaru B(s,, ir)= o, nebo B(S(sy, i), i) =
B(sw1, i) = o1,

Mooreiiv automat je specidlnim piipadem Mealyho automatu, ktery nastéva, kdyz existuje
tzv. ,.znackovaci funkce® A: S — O takov4, Ze s jejf pomoci Ize vystupni funkei B vyjadrit
ve tvaru B = A°m, tj. B(sy, it) = M(sy) = 0, nebo ve tvaru B = A3, tj. B(sy, i) = AS(sy, i) =
A(sw1) = o V prvnim pifpadé jde o Mooreiiv automat 1. druhu, ve druhém piipad¢ o
Mooretiv automat 2. druhu. V obou piipadech lze Mooretiv automat vyjadit jako pétici
MO = (S, 1,0, 8, 1), kde S, I, O, 8 jsou definovany shodné jako v Mealyho automatu.

Vidime, Ze ME je rozsffenim SA o vystupni abecedu O a vystupni funkci B. Do funkce
B Ize zavést asovou zdvislost uvedenymi dvéma zplsoby, &imZ dostdvdame dvé z hlediska
funké&nich moZnosti naprosto rovnocenné varianty Mealyho automatu. Prvnf z nich se shoduje
s formdlnim popisem sekvenéniho systému uvedenym v zdvéru &ldnku 2.2.; pifma souvislost §
s Faf s G jeziejmd. Vystupni funkce A Mooreova automatu je specificka tim, Ze je
definovéna pouze na stavovém prostoru S. Oba druhy Mooreova automatu se opét lisi pouze
zavedenim Easové zévislosti do funkce A a také jsou funkén& pln& rovnocenné.

3.3. Funkéni schémata a jejich algebraické diagramy

Formélnf rozdily mezi jednotlivymi typy automatii jsou dobte patrny z jejich funk&nich
schémat a algebraickych diagramii zakreslenych v nasledujicich obrézcich. Z algebraickych
diagramti i z funkénich schémat je dobie patrma Sasové zévislost. Oznagené bloky funkénich
schémat realizujf pifslusné prechodové ¢i vystupni funkce. Neoznageny blok ve zpétné vazbé
bloku § symbolicky zpozd'uje vstupujicf signél o jednu Sasovou jednotku (o jeden takt)."

i St41

)
SXIEaean®' S

L Stavy s a s 0znatuji dv& po sob& bezprostfednd nasledujici ustilené konfigurace systému. V piipadé
reléového obvodu je ustl 1 kazd4 stabilni kombi; poloh kontakti, kterd se samovoln& (tj.
bez vnejiiho podnétu) nemize zmenit. V piipadé domovniho vytahu je ustilenou konfigurac stdni vytahu v
prislusném podlaZi. Pfichod vn&jitho podnétu i, zahdji proces prechodu z s, do s, tzv. prechodovy dg&j. V
pripad& reléového obvodu je pfechodovym d&em postupné preklipéni kontaktd z jedné stabilni kombinace
poloh do druhé, v ptipadé domovniho vytahu jde o pohyb klece vytahu z vychoziho do cflového podlazi. N&§
model zjednodusuje realitu tim, Ze je jen ustilené kc a existenci pfechodovych d&jii nebere v
Gvahu. V praxi totiZ pfechodovy d&j trv4 jistou dobu a dal3f vngjii podnét, piisly v dob& prechodového dgje je
bud’ zcela ignorovan (n&které typy vytahii, u nich vytah na stisk tlaitka bshem pohybu nereaguje) nebo vyvold
nejednozna¢nou reakei (sloZit&j3i reléové obvody). Model predpoklddd, Ze Casova odlehlost vngjsich podn&ti
i€ je deli nez doba trvani nejdelsiho prechodového dgje, takZe nov4 ustdlend konfigurace se nastolf je3té pred
pichodem dal§tho vng&jstho podnétu. Tento dpoklad je ve funk&nir hé zndzornén zpozd'ovacim
blokem ve zp&tné vazbg, zajidtujicim i formélnf korektnost definice ptechodové funkce 8.
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Obr. 3.2: Funkéni schéma stavového automatu a jeho algebraicky diagram

O¢

St+1 N
3
[k = ——8
 EBSE
B —
St+1 f
d,my
a1 ——— S ——(0)

Obr. 3.3: Funkéni schémata a algebraické diagramy dvou variant Mealyho automatu

Sl

A

)
Sl =— ' ———@

Obr. 3.4: Funkéni schéma a algebraicky diagram Mooreova automatu 1. a 2. druhu

I kdyZ je Mealyho automat obecn&jsi neZ jeho Mooretv protéjsek, jsou oba typy
funkéné rovnocenné. Ke kazdému Mealyho automatu lze totiZ sestrojit funkéné ekvivalentni
Mooretiv automat, ov§em s v&tSim poctem stavil. Za jednodussi vystupni funkci tak Mooretv
automat ,,plati slozit&jsi pfechodovou funkci. Divody, pro¢ se v obou piipadech zavadi do
vystupni funkce Casovd zévislost dvojim zplsobem, jsou ryze praktické a souvisi s

vlastnostmi modelovaného objektu (viz rizné modely vytahu v cviéném pifkladu 3.1).

13
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3.4. Formy prezentace kone¢ného automatu

Trojici SA = (8, I, 8) a pétice ME = (S, I, O, §, ) ¢ MO = (S, I, O, §, ), je mozno
zadat &tyfmi formélng riznymi, i kdyZ z vécného hlediska rovnocennymi zptsoby: vyctem,
tabulkou prechodové a vystupni funkce, orientovanym grafem, stromem. Vysvétlime si je na
m  pifkladu  automatového modelu  tifbitového  posuvného  registru

N
(pamét’ typu FIFO).

Tiibitovy posuvny registr miZe ve svych tiech pamétovych burkach schrafiovat 2°=38
riiznych binarnich &isel, a mizZe se tak nachézet v jednom z osmi stavii. Nachézi-li se ve stavu
ijipi3, pak vstupni bindrni signdl ip zméni stav na igi;i (posun o jedno misto doprava) a
hodnota i3 se objevi na vystupu. V prvnich tfech taktech se tak na vystupu postupné objevi
pogatedni informace uloZena v paméti a dale pak vzdy o tii takty opozdény vstupni signal.
VSechny moZnosti zmén stavii a vystupt posuvného registru zachycuje nasledujici tabulka,
ktera definuje hodnoty funkei 8 a § Mealyho automatu popisujictho &innost registru.

B
S\I 0 il 0 1
000 000 100 0 0
001 000 100 il 1
010 001 101 0 0
011 001 101 1 1
100 010 110 0 0
101 010 110 1 1
110 011 111 0 0
111 011 i 1 1

Obr. 3.5: Tabulka pfechodové a vystupni funkce Mealyho automatu (titbitovy posuvny registr)

Z tabulky je ziejmé, Ze funkce {3 nezdvisi na hodnoté vstupni proménné, a ze § = A°m;,
kde A = 3, nebot’ A(ijiziz) = M3(iriziz) = i3. Jde tedy o Mooretv automat 1. druhu, jehoZ
znackovaci funkce A je definovéna poslednim (i pfedposlednim) sloupcem tabulky. Tabulku
Ize reprezentovat nasledujicim orientovanym grafem, kterému fikdme prechodovy graf
automatu.

©
o

Obr. 3.6: Pfechodovy graf tifbitového posuvného registru jako Mealyho automatu

Hrany grafu se u Mealyho automatu oznacuji hodnotami i/0, i€1, o€ O, souvisejicimi s
piisluSnym prechodem mezi stavy; uzel se oznaCuje stavem, ktery reprezentuje. Fakt, Ze nas
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automat je Mooreovym automatem 1. druhu, se v Mealyho grafu projevuje tfm, Ze viechny
hrany ze spole¢ného uzlu vystupujici jsou oznadeny stejnou hodnotou vystupu. To umoZiuje
,,pfenést” oznadeni hodnoty vystupu z hran do vychozich uzli (tj. proti sméru Sipek). V grafu
Mooreova automatu 1. druhu lze tudiZ uzly ozna¢it hodnotami s/o a hrany pouze hodnotami
iell;

Rozdil mezi Mealyho a Mooreovym piechodovym grafem je zfejmy z nésledujictho
obrézku, v némZ vidime oba piechodové grafy (vlevo Mealy, vpravo Moore) automatu
modelujictho pouze jednobitovy posuvny registr.2

00 10 n 0 1 1
—
Q0=0PlEa0==0w
0 0
Obr. 3.7: Pfechodové grafy Mealyho a Mooreova automatu pro jednobitovy posuvny registr

Prechodovy orientovany graf lze piekreslit do tvaru ndsledujictho stromu, jehoZ
konstrukce je zfejma. Za kofen stromu je tieba volit takovy uzel grafu, z néhoZ jsou vechny
ostatni uzly pfechodového grafu dosazitelné (v nasem pifpadé tuto podminku spliiuji viechny
uzly). O oznaGovéni vétvi a kofenii viech podstromi plati totéZ co uZ bylo feCeno o
oznagovani uzlii a hran.®

000
0/0

000

| N

10
100

| 0
101

A‘ "R

Obr. 3.8: Strom Mealyho automatu (tfibitovy posuvny registr)

Prezentace automatu vy&tem vychdzi ze skutenosti, Ze vektorovad funkce 8, C
SXIXSXO a lze ji proto definovat piislu$nou mnoZinou &tvefic. Kazdou ze Ctvefic lze
povazovat za prepis jedné hrany grafu; jejimi slozkami jsou pocite¢ni stav, aktudlni vstup,
nasledny stav, a vystup. N4§ automat je tak vyétem definovdn mnoZinou 8,8 = {(000,0,000,0),
(000,1,100,0), (100,0,010,0), (100,1,110,0), (010,0,001,0), (010,1,101,0), (110,0,011,0),
(110,1,111,0), (001,0,000,1), (001,1,100,1), (101,0,010,1), (101,1,110,1), (011,0,001,1),
(011,1,101,1), (111,0,011,1), (111,1,111,1)}.

2 Stejné by bylo mozno uzly a hrany oznagit i v grafu Mooreova automatu 2. druhu. Rozdil by byl pouze v tom,
Ze graf Mooreova automatu 2. druhu by vznikl z piislu§ného grafu Mealyho automatu ,,pfenesenim® hodnot
vystupu z hran do uzlfi ve sméru Sipek (u Mooreova automatu 2. druhu jsou v grafu Mealyho automatu stejnou
hodnotou vystupu oznadeny viechny hrany, které do spole&ného uzlu vstupuji).

31 zde Ize v pHpadé Mooreova automatu pou¥it zmin&ny Mooreitv zplisob oznaCovén{ uzlt a hran.
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Vsimnéme si, Ze kazdy ze tyf uvedenych popisii piné definuje automat, tedy patici
(S, L, 0, §, B), protoZe jak mnoZiny S, I, O, tak funkce & a B Ize z popisu sestrojit. V pfipadé
SA = (S, I, §) by v uvedenych forméch popisu odpadla tabulka vystupni funkce, v
orientovaném grafu a stromu by u hran (Mealy) & uzld (Moore) nebyl uveden vystup, a pii
popisu vyctem by &tvefice mnoZiny 8,8 < SXIxSxO zdegenerovaly na trojice mnoziny
8 © SIXS.



Lekce zékladniho kurzu TEORIE AUTOMATU

Cvideni k lekei 3.

Piiklad 3.1: Vytah v tifpodlaznim domé& vykonévi tfi funkce: Ovldda chod motoru, pfemistuje
kabinu mezi podlazimi, otevird a zavird dvefe v cilovych podlazich. Kvili
zjednoduseni dalstho popisu zanedbdme existenci venkovnich pfivoldvacich
tlagitek v podlaZich a budeme pfedpokladat, Ze vytah je ovlddédn jen tlacitky v
kabiné.

a) Pfemistovani kabiny mezi podlazimi

S = {s1, s2, 83} ... mnoZina stavi; jejimi prvky jsou symboly podlazi indexované &isly
podlazi,
I ={iy, ip, i3} ... mnoZina signdli vyvolanych stiskem pfislusného tladitka.

Premistovani kabiny vytahu lze popsat pfechody na mnoZing stavii, zndzornénymi
nasledujicim grafem. Jedna se o graf a funkéni schéma stavového automatu (automatu bez
vystupu) SA = (S, 1, 8); &sp, ig) = Sq-

iz

7N
H=10.

Obr. 3.9

TotéZ mizeme popsat i kombina¢nim automatem § = {s}, I = {i1, i, i3}, O = {s1, s2, 83} 8
vystupni funkef g(iq) = sq.4

b) Model ovladéni chodu motoru

Vyjdeme ze stavového automatu modelujictho pfemistovani kabiny mezi podlazimi a
roz3ifime jej 0 mnozinu vystupt O; a a vystupni funkci f takto:

# Obecné ke kazdému kombinaénimu automatu s vystupni funkei g: I — O, existuje stejn fungujici stavovy
automat (S, I, §) s mnoZinou stavii S = O a pfechodovou funkei & SxI — S ve tvaru &s,, ig) = g(iy). Opacné to
ale neplati. Ndhrada kombina¢niho automatu stejné jicim stavovym md jisté p i, a proto
ji v dal§im budeme Casto pouZivat.
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. /0
Ai=(S, 1,04, 6 B)

0,={T1,0}

Pi(spig) =0prop=q
Bi(spig) =T prop<q 1le 12/
PBi(spig) =L prop>q
11/
11/0' iy/T ' W0

Obr. 3.10

Tomu odpovida nasledujici tabulka pfechodové a vystupni funkce:

) B
S/I| i ip i3 iy ip i3
S| S1 S2 S3 0 T il
s | si [ ]|ss[L]o0o[7
s [ si | s ss [ L ]L [0

Obr. 3.11

¢) Model otevirani dveti
Tento model dostaneme jinym rozsifenim téhoZ stavového automatu:

A=(S,1,0, 6, B) ir/d;

0, = {d,dz,ds}
%A \\ &
<

Bo(spia) = B (Kspg)sig) =
11/d| 13/d3 ' is/ds

Obr. 3.12

Jemu odpovid4 nésledujic tabulka ptechodové a vystupnf funkce:’

3 Rozdil oproti predchozimu piipadu (automat A,) je v tom, Ze automat A, nejprve zméni stav (kabina pfijede do

cilového podlaZi), a aZ pak dd vystup (otevie dvefe). V diisledku kontraktivity pfechodové funkce se b&hem
piechodu ztrici informace o vychozim stavu s, (dochézi k disipaci), a v okamZiku, kdy je tfeba otevirat dvefe,
je k dispozici jen cflovy stav ... Proto je B, definovdna pomoci A, do ni% misto vychoziho stavu vstupuje
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S/I| iy ip i3 i iy i3
S1 S S2 | s3 [ di | dy | ds
s | s1 | so | s3|di|dp | ds
s3 | s1 | s2[s3|di|dy|ds

Obr. 3.13

Otézka 3.1: Jakého typu jsou automaty A; a A, v piikladu 3.1?

Uloha 3.1: Necht f: X — Y je bijekce, g8 Y — Z, h: U = V, i: U —> W jsou libovolnd
zobrazeni. Pokud je to nutné, dopliite vyrazy 1) aZ 6) zdvorkami tak, aby kazdy
vyraz korektné definoval n&jaké zobrazeni. Uved'te definiéni obory a obory
hodnot téchto zobrazeni.

) Fleq

2y e
)z fhil
4) gxfxh,i
5) gxfxhxi
6) g,f'xh,i

Uloha 3.2: Necht' f: X - Y, g: Y = Z, h: U— V, k: V— W. Dokazte, Ze plati
(gxk)°(fxh) = (g°Nx(k°h)

cilovy stav. V tomto konkrétnim p¥ipadé cilovy stav informuje i o vstupnim podnétu, takZe je postatujicim
vstupem do funkee 4" (zvl4§tni vstup pro podnét i je zde nadbytedny).
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4. Elementy systémové koncepce v teorii automati
4.1. Strucna historie vyvoje teorie automati

V roce 1936 definoval britsky matematik A. M. Turing stroj, ktery se dnes nazyvé
Turingiiv stroj. Turinglv stroj je z dne¥niho pohledu automatem s nekone¢nou (vn&jsi)
paméti; sehrdl vyznamnou roli pfi budovén{ teorie algoritmii a studenti PF JCU se s nim blize
sezndmi v rdmci pfedmétu Teoretické zdklady informatiky v &Asti pojedndvajici o teorii
vypocetniho procesu.

V roce 1943 americky fyziolog McCulloch a americky matematik Pitts vytvofili
idealizovany model neuronové sitg, ktery je v jistém smyslu také predobrazem automatu.! S
timto pfistupem se studenti PF JCU seznimf opét v pfedmétu Teoretické zaklady informatiky
v &asti pojednévajici o neuropoéitadich.

Prvni préce, ve kterych byl kone¢ny automat definovan v podstaté tak, jak jsme jej
definovali v pfedchozich lekcich, vysly po roce 1950. Touto problematikou se zabyvali
zejména dva ameri¢ti matematikové, Moore a Mealy, po nich jsou zakladni typy konetnych
automatii pojmenovény. Od této chvile se teorie automatii rozvijela nékdy i velmi boulivym
tempem. V teoretické oblasti se pak vice & mén& odd&leng rozvijely dvé koncepce teorie
automati: lingvisticka koncepce a systémova koncepce. V lingvistické koncepci je automat
néstrojem na rozpoznévéni, reprezentaci ¢&i klasifikaci formélnich jazyki - s touto koncepef se
studenti PF JCU setkaji v kurzu teorie formdlnich jazyki.> V tomto kurzu teorie automati
jsme se zatim zabyvali a i v daliich jeho lekcich se budeme zabjvat vyhradné koncepci
systémovou.3

V oblasti aplikaci se systémovéd koncepce teorie automatii uplatiiuje zejména v
technice ve spojitosti s modelovanim diskrétnich dynamickych systémt (logické obvody v
systémech fizeni a regulace, &islicové pocitade, telekomunikadni systémy apod.), ale svij
vyznam si podrZela i v oblasti biologie (celuldrni automaty, otdzky samoreprodukce,
modelovén{ riistu jednoduchych organismii apod.). A v nov&j§f dob& nabyvajf na dileZitosti i
aplikace systémového pifstupu teorie automati v riznych oblastech spole¢enskovédnich
oborti (napf. vyzkum stability systémi).

V rédmci systémové koncepce je zkouména jak struktura automatu (tj. jeho vnitini
mechanismus popsany pfechodovou a vystupni funkef, pifpadng z jakych komponent jiz
realizovany automat sestévé nebo z jakych komponent by Z4dany automat bylo mozno slozit),

! Kanonicki sit automatu definovand v éldnku 7.3 je specidlni neuronovou siti s neurony provadéjicimi operaci
]og!ckeho soucinu.
2y lingvistickém pfistupu je automat (zvany akceptor) vysledkem formalizace syntaktické analyzy jazyka. V
piipadg reguldrniho jazyka (jazyk typu 3 v klasifikaci jazykt podle Chomského) jde o kone&ny deterministicky
¢i nedeterministicky mechanismus (tzv. konetny deterministicky & nedeterministicky akceptor), v piipad&
bezkontextového jazyka (typ 2) jde o zdsobnikovy automat, v pripadé kontextovych jazykii (typ 1 a 0) jde o
Turingovy stroje. Zésobnikové automaty a Turingovy stroje jsou mechanismy s vng&jsi paméti (zdsobnik,
nekone¢nd paska) neomezenou co do kapacity.

* V systémovém pifstupu je kone¢ny automat odvozen z predstavy abstraktniho stroje (viz lekce 2.) - jde o
kone¢ny deterministicky mechanismus. Do systémové koncepce viak spad i stochasticky automat, ktery je
odvozen z pfedstavy o chovéni diskrétniho nihodného procesu, a proto deterministickym. mechanismem byti
nemiize. Stochastickymi automaty se zde zabyvat nebudeme.
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tak jeho chovéni (zdvislost vystupt na vstupech). V dal§ich ¢lancich této lekce se nejprve
seznamime se zékladnimi pojmy strukturdlniho piistupu a pak struén& pojedndme o
problematice kompozice, dekompozice, analyzy a syntézy automatu vychézejici ze vztahu
mezi strukturou a chovanim. O chovéni automatu podrobnéji pojedndme v lekci 5.

4.2. Pojem struktury automatu

U dynamickych systémt, mezi néZ patif i automaty, je pojem struktura definovan
jednak z hlediska morfologického, jednak z pohledu ¢asového. V souvislosti s tfm mluvime o
struktufe:

o morfologické (blokové schéma propojeni podsystémii) a
o dy ické (popis mechani zmén, idea abstraktniho stroje - viz formy prezentace
trojice ¢i pétice - ¢l. 3.4.).

Morfologickou strukturu kone¢ného automatu je mozno vnimat ve dvou zdkladnich
rovindch - v roving teoretické a v roviné realizaéni - a v kazdé z nich na vice rozliSovacich
drovnich. Na nejniZ§{ rozliSovaci trovni je automat prezentovan jako jeden celek (integralni
systém). V roviné teoretické je morfologickd struktura integrilniho systému popsidna
piislusnym funkénim schématem znézorfiujicim vazby mezi prechodovou a vystupni funkef
(viz €lének 3.3.). V roviné realizaéni je morfologicka struktura integrélniho systému popsina
jen jednim blokem, tzv. &ernou schrinkou, do niZ nevidime a pozorujeme jen jeji vnéjsi
projevy (chovani).

PHi pfechodu na vyssi rozliSovaci trovné automat ztraci svou integritu a postupné se
rozpada na vzdjemné propojené komponenty (integrélni systémy nizstho fadu). V teoretické
roving jsou komponenty také automaty (obvykle jednodussi). Rikéme, e vysledny automat je
kompozici (sloZeninou) vice automati. Opakem kompozice je dekompozice (rozklad)
automatu na jednotlivé subautomaty. V roviné realizaéni jsou komponenty automatu specialni
funkéni bloky, napf. logické moduly ¢i obvody,"

Zména v morfologické struktufe vede v obecném piipadé i ke zméndm v dynamické
struktute (tj. v pétici (S, I, O, 8, B)) sloZeniny. Zikladni problém kompozice - ze zndmych
dynamickych struktur komponent zadané morfologické struktury ur¢it dynamickou strukturu
celku. Problém dekompozice je opacny - k dané dynamické struktufe celku nalézt vhodnou
morfologickou strukturu a urit dynamické struktury jejich komponent. Vzhledem k tomu, Ze
operace inverzni jsou obecné obtiZnéjsi nez operace pfimé, je i problém dekompozice

obtiZzn&j§f neZ problém kompozice a na rozdil od kompozice neni obecné jednoznacny (miize
mit vice neZ jedno fesSent).

4.3. Kompozice a dekompozice kone¢ného automatu

Dény kone¢né automaty M = (S, Ij, Oy, 81, B1), M2 = (S2, I, 02, &2, B2) a
M; = (S3, s, O3, 83, B3). Pak:

o Paralelni kompozici automatii M; a M, je automat
M, = M || Mz = (S1%S2, IixIy, 01x03, 8y, By), kde || je symbol operace paralelni kompozice,

* S realiza¢ni rovinou morfologické struktury se bliZe sezndmime v lekci 6. V této lekci se pohybujeme vyhradng
v roving teoretické.
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5p((51,52),(i|,i2)) = (8:1(s1,i1), 5Z(Szyiz)) a Bp((ShSz),(ihiz)) = (ﬁl(sl‘il); 52(Sz.i2))<
Morfologickou strukturu paralelni kompozice znzortiuji nasledujici varianty blokovych
schémat (viz Obr. 4.1):

M, M,;
IixI, 0:x0;

M, M,

Obr. 4.1

Sériovou kompozici automati M; a M, je automat My = M; ©x M, = (S1xS;, I;, 02, &, Bs),
kde © je symbol operace sériové kompozice s pfizpusobovaci funkei k: Oy — I, (anglicky
interface), 8y((s1,52),i1) = Bi(sp.i1), Sa(s2,K(B1(s1,i1)))) a Ps((s1,82)ii1) = Pals2,K(Bi(s1.i1)))-
Morfologickou strukturu sériové kompozice znazoriuje nésledujici blokové schéma (viz
Obr. 4.2):

0, L 0,
M, 4’®_' M,

Obr. 4.2
Oba vySe uvedené zikladni typy kompozice lze indukci rozsifit na libovolny podet
Clend. Kromé toho je lze i rizné kombinovat a vytvifet tak vicestuptiové smiSené
(sérioparalelni) kompozice. Zakladni morfologické struktury sérioparalelnich kompozic uvadi
nésledujici obrazek:
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IixI,
—

IixIy

Obr. 4.3

Dekompozice je opaénym procesem kompozice, a proto také muZe byt paralelni,
sériova &i smiSend (sérioparalelni). Prakticky smysl mé pouze netrividlni dekompozice, o jejiz
komponenty jsou v n&jakém smyslu jednodussi nezZ dekomponovany automat. Jak jsme vidé&li,
kompozice né&kolika automati vzdy davd vysledek jednoznaéné uréeny piislusnou
morfologickou strukturou. Naproti tomu netrividlni dekompozici automat viibec mit nemusf, a
pokud né&jakou md, mize jich mit i vice. Navic se Casto stivd, Ze zpétnou kompozici
dekomponovaného automatu nedostaneme puivodni automat, ale sloZeninu s vy$§im poctem
stavii, kterd chovani piivodniho automatu pouze simuluje.®

Najit vSechny mozné netrividlni dekompozice automatu je dkolem abstraktné pojaté
analyzy dekomponovatelnosti, vyuZivajici k tomuto Gelu jen &isté algebraické prostredky.’

® Trividlni sériovou dekompozici tvofi plivodni automat v sérii s kombina¢nim automatem, ktery na vystupu
,vraci* vstupni podné&ty. Trividlni paralelni dekompozice sestdva ze dvou piivodnich automatii nastavenych do
stejnych stavii a na néZ prichézeji stejné vstupni podnéty. Je ziejmé, Ze trividlni dekompozice existuje vZdy.

© Nevyhnutelng to nastane v piipad, kdy poget stavii dekomponovaného automatu je prvo&islo. Pocet stavi
zpétné sloZeniny prvotislem byti nemiZe (je roven soudinu poctii stavii viech komponent), a proto musi byt
jiny (vy33i). Co rozumime simulaci se dozvime v lekci 5.

7 P jici podmink i ého automatu M = (S, I, O, 8, P) je existence netrividlniho
SV rozkladu ¢ = {(s)o: €S} stavoveho prostoru S. Trividlnim rozkladem je rozklad sdruZujici viechny prvky
do jediné tfidy (nejhrubsi rozklad) nebo rozklad sestavajici jen z jednoprvkovych tiid (nejjemné&jsi rozklad). o
je SV rozklad & Va,be S: [((a)s = (b)s) = (ViEL: (3(a,i))s = (8(bsi))o)].

Splnéni postacujici podminky umoZiiuje sériovou dekompozici na komponenty M; a M,, v niZ ,image
machine M, = (0, I, oxl, &, B), kde &;({s)ai) = (3(s,1))s a B je identitou na oXI, tj. Bi((S)esi) = ((S)si)-
Interface K je také identitou na oI a , tail machine“ M = (t, oXI, O, &, B,), kde T = {(s):: s€ S}je libovolny
netrividlni rozklad ortogondlni k SV rozkladu o, tj. takovy, Ze Vs€ S: (s)o(s). = {s}. Rozklad T vZdy existuje a
miiZeme jej vytvofit napf. tak, Ze z kazdé tfidy SV rozkladu ¢ vybereme po jednom prvku a z takto vybranych
prvki vytvofime jednu tfidu rozkladu 7. Poté z neprazdnych zbytki tfid rozkladu ¢ vybereme opét po jednom
prvku a z nich vytvofime dalsi tfidu rozkladu 7. Postup opakujeme aZ do vy&erpani viech tfid rozkladu .
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Rozklad T bude mit tolik tfid, kolik m4 nejvetf tfida SV rozkladu o prvkii. Necht Xo€ 7 a o€ O jsou libovolné
prvky. Pak pro 8, a B plati:[(x)e N (y)o = @] = [8:((0)e (o) = Xo & Bo((X)o((Wesd)) = 0], [(X)e M (y)o =
{s}] = [BU)u(@eri)) = (B(s.D))c 2 Bo(X)e (Vi) = B(s,D)]-

Existence paralelni dekompozice navic vyZaduje od rozkladu T i SV vlastnost. V ni ob& komponenty M; = (o,
L, o1, §;, B1) a M, = (7, I, ©xI, 85, B,) budou typu ,image machine a prichdzi na né stejné vstupni podndty. To
zajistuje vstupni kédovaci funkce & I — IXI ve tvaru &(i) = (i,i). Naproti tomu vystupy z obou paralelnich
komponent je teba parcidlni dekédovaci funkef o' (oxXD)x(txI) — O - (ve tvaru m'l(((y>a,k),((x)hj)) = B(s,i)
Pfi (x)x N (Y)o = {s}a k=j=i; v opatném piipads, tj. k#j nebo (x)c M (y)o = B, & ((¥a:K).((X)x)) = libovolny
prvek mnoZiny O) - pfevadét do adekvétnich prvkii mnoZiny O. Proto musi byt vstupy a vystupy komponent
pripojeny k vstupnimu kodéru & a vystupnimu dekodéru o™ tak jak je to znazornéno v nasledujicim obrézku:

Obr. 4.4

Aby jak v sériové, tak v paralelni dekompozici sloZenina fungovala stejng jako integrdlni automat M nastaveny
do potite¢niho stavu s€S, je tfeba komponenty M; a M, nastavit do po&itednich stavil (s),€G a (S)ET.
Popsanym zplisobem je mozno jak v sériové tak paralelni dekompozici dile rozklddat i komponenty M; a M, a
tim postupné ziskdvat riizné jemng;j3i a smiSené rozklady automatu M.

Z uvedeného je zfejmé, Ze analyza dekomponovatelnosti musi vzit v potaz viechny existujici SV rozklady
stavového prostoru S automatu M. Za tim G&elem nejprve konstruuje tzv. svaz SV rozkladii, tj. algebraickou
strukturu SVM = (SV(M), <, *, +), kde SV(M) je systém viech SV rozkladii mnoziny S automatu M, < je
relace &aste¢ného uspofddéni na SV(M) definovand takto: Vo,7€ SV(M): 0<t <> (VsES: (s)s C (5)); * a + jsou
bindrni, idempotentni (0*c = 0, 6+0 = ©), komutativni (0*T = T*0, G+T = T+0) a asociativni (G*(T*p) =
(o*1)*p, G+(T+p) = (0+T)+p) operace na SV(M). Operace * je definovdna predpisem 6*T = {(s)o(s): s€ S},
operace + je definovana algoritmem ym timto vyvojovym di:

A: oUT = {(8)g: SESIU{(S)r: €S}
B: 3X,Ye (oun): XNY # B?

C: out = [(own) - {X,Y}HUXUY)
D: o+1=0UT

Obr. 4.5

Algoritmus konstrukce nosi¢e SV(M) svazu SVM sestavi ze tif nésledujic
® Vytvoif se viechny nejmensi SV rozklady (s,s”), obsahujici dvojici s,s’€S v jedné t¥id& rozkladu (viz &l.

11.2 avném Obr. 11.2) a ddaji se do F d (viz ¢l 11.1).
o Dalif rozklady se vytvofi aplikaci operaci * a + na vSechny dvojice nesro ych prvkii v F
diagramu.

Vznikne-li pfitom novy rozklad, doplnf se do Hasseovského diagramu a opakuje se ptedchozi krok. Pokud
Z4dny novy rozklad nevznikl, algoritmus kon&i a vysledny diagram je Hasseovskym diagramem svazu
SVM.
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Tento pifstup své z4véry vyvozuje pouze z existence a vlastnost{ specifickych rozkladu (tzv.
SV rozklad - viz pozndmka pod Carou 7) stavového prostoru dekomponovaného automatu a
vécnou podstatu problému v potaz nebere. V technické praxi se spise setkdvame s intuitivnim
pistupem k dekompozici systémi, zaloZeném naopak pravé na znalosti vécné strénky, ktery
nehledd vSechny existujici dekompozice, ale jen ty z jistych hledisek ,,dostate¢né rozumné*.
Dekompozicemi, k nimZ se dospélo na zdkladé znalosti vécné stranky jsou sériové
dekompozice zvazované v nasledujicim piikladu, na némz si ukdZeme, co je obecné hlavnim
pifnosem dekompozice problému na dil¢i podproblémy. Souvislost vécného pifstupu s Cisté
algebraickym piistupem objasnime v cviéném piikladu 4.6 a na feSenf tlohy 4.5.

Priklad sériové dekompozice: V ¢lanku 3.4. je uveden automatovy model tibitového

posuvného registru koncipovaného jako integrdlni systém s poctem =8
vnitinich stavii. Obecné plati, Ze integrdlni n-bitovy posuvny registr by mél 2" vnitinich stavi.

->li |-
Jednobitovy posuvny registr by tak mé&l jen 2' = 2 stavy (viz &l. 3.4.), dvoubitovy

2% = 4 stavy. Th’bilrl):/j’ posuvny registr lze sériové dekomponovat bud’ do tif
[ (-]

— o G oo
, nebo do jedné ze dvou moznych kombinac{

e =)
jednobitovych registrit
—)Baw i [

&i

jednobitového a dvoubitového posuvného registru
Realizace dekomponovanych verzi je jednodussi neZ realizace verze integrdlni: V prvnim
piipadé ma komponenta jen dva vnitin{ stavy, ve druhém nejvyse Etyii; tedy v obou pifpadech
méné neZ pivodnich osm. Za toto zjednoduseni se v praxi plati prodlouZenim reakéni doby
(reakéni doba sloZeniny je souétem reakénich dob komponent) nebo-li sniZenim rychlosti
funkce posuvného registru. Tiislozkovd varianta tak bude zhruba trikrdt (dvouslozkova
dvakrét) pomalejsi neZ varianta integralni.

Vyznam dekompozice vynikne zejména v rozmérngjSich piipadech. Napf. integralni
tficetidvoubitovy posuvny registr by musel mit 2%, ). vice nez 4-10° vnitinich stavi, a byl by
prakticky nerealizovatelny, zatfmco v jeho dekomponované varianté do 32 jednobitovych (32
krat pomalejsi) ¢i 16 dvoubitovych komponent (16 krat pomalejsi) je realizovédno jen 2-32 =
4-16 = 64 vnitinich stavi.®

Oproti sériové dekompozici mé paralelni dekompozice (pokud existuje) vyhodu v tom,
Ze také zjednoduSuje feseni (i kdyZ ne vzdy tak vyrazné jako v uvedeném piikladu) a pfitom
nezpomaluje funkci sloieniny,9 Vhodného kompromisu mezi rychlosti reakce a sloZitosti
realizace proto v praxi obvykle dosahujeme smiSenymi (sérioparalelnimi) dekompozicemi.

Z tvaru Hasseovského diagramu svazu SVM a z Hasseovskych diagrami jeho podsvazii Ize pak snadno odvodit
Jjak morfologické struktury moZnych dekompozic automatu M tak i dynamické struktury pfislu$nych komponent
(viz feeni tlohy 4.5 a piklad 4.7).

8 Za pipad sériové ice feSeni p Ize povaz i klasicky algoritmus, ktery je rozkladem
postupu feSenf na jednoduché na sebe navazujici dil¢i kroky. Bez moZnosti této dekompozice bychom ve
v&tsing pifpadi k vysledku sotva dosli (mohli bychom jej jen intuitivn€ odhadovat).

® Prednosti sériové a paralelni dekompozice vyniknou zejména pfi srovndvani moZnosti Elovéka a &islicového
potitate. Potitat ke zpracovdni dat vyuZiva prevdzn€ sekvencni (sériovy) piistup, zatimco funkce lidského
mozku je zaloZena na masivnim i é tkan. I kdyZ elektrochemické procesy probihajici v
elementech neuronové tkdn& jsou féadové i it p nez logické fyzikalni procesy v
prechodovych vrstvich mezi polovodici, pogitaé dominuje jen v arnich ich a logickych
operacich. Naproti tomu ve vyhodnocovéni sloZitych situaci (napf. v rozpoznévani lidskych tvéf) je ro¢ni dité
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4.4. Struktura versus chovani

V ¢lanku 22 Jsme dvojici (podnét, reakce) v okamZiku t nazvali aktudlnim
! arnim  ck kone¢ného automatu. Posloupnost aktudlnich elementdrnich
chovini, kterou automat prochézi, jsme nazvali fdzovou trajektorii okamZikem aktudlni
piitomnosti rozdélenou na historii a evoluci.

Elementarnim chovanim nazveme mnoZinu vSech mozZnych aktudlnich
elementdrnich chovani. Elementdrni chovani pak obecnime na chovdni tak, Ze aktudlni
hodnoty podnétu (x) a reakce (y) v dvojici aktudlnitho elementdrniho chovani nahradime
libovolné dlouhymi kone¢nymi sekvencemi'® neboli Fetézci X = XXuiXuz.Xun @ y=
YiYe1Yes2---Yen bezprostiednd nasledujicich hodnot vstupni a vystupni proménné. MnoZinu
viech moznych takto vzniklych dvojic nazveme chovanim koneéného automatu. Elementédrn{
chovén{ tak bude zvlastnim piipadem chovéni pro jedno¢lenné fetézce vstupnich podnétd.

Definice chovani jakoZto mnoZiny vSech moZnych dvojic vstupnich a vystupnich
fetézcl je algebraickou definici chovani. Tato definice je upfesnéna v lekci 5, v niZ se
chovanim automatu zabyvdme podrobn&ji. Kazdou mnoZinu Ize alternativné definovat i
vy&tem vlastnosti jejich prvki'' - v nasem piipadé vyétem vztahi mezi vstupnim a vystupnim
fetézcem. Tim od algebraické definice pfechdzime k verbdlnimu popisu chovéni. Zde i v
navazujicich cvi¢enich budeme chovéni automatu popisovat verbalng.

Choviéni automatu jednoznaéné vyplyvé z jeho struktury. Zjisténi chovani ze zadané
struktury je problémem analyzy automatu. Pfi analyze automatu nejprve zohlednime vliv jeho
morfologické struktury na prvky pétice (S, I, O, 8, B) celku. Pak dosazenim dynamickych
struktur komponent do pétice odvodime dynamickou strukturu celku. Z ni pak uz snadno
vyéteme verbélni popis chovéni.

Priklad analyzy automatu — Gkolem je z dané dynamické struktury vy¢ist chovani.

@0=0psow"

Obr. 4.6

ReSeni: Automat vydéva symbol b tak dlouho, dokud nenf na vstupu dvakrét za sebou symbol
0. Od toho okamZiku vydéavé pouze symbol a

rychlejdi a usp&$ngjsi neZ vykonné superpotitate. Tato vykonnost mozku je pfi¢itdna prdvé masivnimu
paralehsmu ]eho dekomponovane slruk!ury i funkce a odtud pfichdzi i motivace pro vyzkum a vyvu]
vy h systémi i vypogetni systémy, potit apod.) vyuZivaj
vypogetnich procedur.
' PFipustnd je i sekvence nulové délky (prazdni sekvence €).
" Pozor! Neplést vyeet viastnosti prvki s vyctem prvki.
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Opadny problém, tj. hledan{ struktury, kterd by vedla k danému chovani, je problémem
syntézy automatu. Syntéza je dlohou viceznanou. V oblasti morfologie jeji viceznagnost
souvisi s viceznaénosti mozné dekompozice, ale jak uvidime zejména v dalSich lekcich,
viceznacnd je i v oblasti dynamiky. Syntézou morfologické struktury jsme se v podstaté
zabyvali jiz v pfedchozim ¢&lanku, a proto se v dal§im zaméfime vyhradné na strukturu
dynamickou (tj. budeme se zabyvat jen integrdlnimi automaty). Vicezna¢nost syntézy, tedy
fakt, Ze dané chovéani lze zajistit vice riznymi (dokonce i vzdjemné si nepodobnymi)
strukturami, je pro realizaci pﬁ’nosem.lz Umoziiuje kldst na vybér struktury dalsf pozadavky
(napf. poZadavek homogenity ¢i symetrie struktury, minimalniho poctu vnitinich stavii apod.)
a tak systém ,,usit na miru“ potfebdm praxe.

PFiklad syntézy automatu - konstrukce dynamické struktury realizujici zadané chovani.

Zadani: Sestrojit paralelni s¢itacku dvojic binarnich &isel, do niZ operandy vstupuji soucasné,
po jednotlivych fidech odzadu. S¢itacka postupné tiskne vysledek také po
jednotlivych fadech odzadu (viz Obr. 4.7):

.. 100011

... 001010 .. 101101

Obr. 4.7

Algoritmus s¢itanf, stejny pro vechny fdy, je definovan nésledujici tabulkou:

pfenos ,,1“ z pfedchoziho fadu
NE ANO
0+0=0 0+0=1
0+1=1+0=1 0+ 1=1+0=0 (vznikd pfenos ,,1*)
1 + 1 =0 (vznik4 pfenos ,,1%) 1+ 1 =1 (vznika pfenos ,,1“)
Obr. 4.8

12y oblasti pozndvam svéta _]e pi‘fnos viceznagnosti syntézy sporny. Napr fyzika zjistuje chovani pfirody
pozorovinim a exper b7 ych jevi pak .. i “ teorii jakoZto uceleny a logicky
zdiivodnény systém ,,piirodnich zékomﬁ“ a principli, ktery mi pozorovane chovéni vysveétlit. Zde je
nejednoznagnost syntézy spiSe na zdvadu a brdni ndm v nalezeni té sprivné predstavy. Kdybychom ji méli,
fungovala by jak v mikrosvété tak v makrosvété a Zddny novy objev by nds nepfekvapil, protoZe by jej
vysvétlovala a tudiZ pfedpoklddala. Misto toho mame jinou teorii pro mikrosvét (kvantovou mechaniku) a jinou
pro makrosvét (relativistickou mechaniku), a vice neZ dvacet zdkladnich fyzikdlnich konstant, které umime
zméfit, ale ne vysvetlit. Ze &ty zakladnich piirodnich sil - gravitace (drZi pohromad& vesmir), silnd interakce
(drzi pohromad¢ &astice v atomovych jadrech), elektromagnetickd interakce (udrZuje elektrony na drahdch
kolem atomového jddra, diky ni drZi pohromadé pevné litky i atomy v molekuldch a funguji elektrické stroje a
pistroje), slabd interakce (zpisobuje radioaktivitu typu beta rozpad a pomihd hvézdam svitit) - se zatim
podafilo sjednotit (ve smyslu vysvétlit jejich vzdjemnou souvislost) jen posledni dv&. Na cest& k sjednoceni
viech &tyF v ,unitdrni teorii“ je zatim nejvétsi prekdZzkou nejslabsi z nich - gravitace, kterd je fadové 107 krat
slabsf neZ elektromagnetickd interakce (stejny nepomér je mezi poloméry protonu a dnes zndmého vesmiru).
Zohlednit tak extrémng rozdilné hodnoty v jediné rovnici ika neumf ( malé* b
Proto nové objevy ndm piivodni pfedstavy m&ni (viz napf. zob i klasické iky na relativisti ).
Jediné co vime jist& je to, Ze Z4dnd ze soudasnych piedstav, byt sebeuZitedn&jsi, neni tou pravou. Ale véfime,
Ze rozvoj poznani nés k ni stéle pfibliZuje.
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Reseni: Automat ME = (S, 1, O, 8, B), S = {so, 51}, 8o - bez pienosu, s; - s pfenosem,
1={00, 01, 10, 11}, O = {0, 1}, tabulka funkci & a 3 vznikne transformac{ algoritmu
s¢itani do formy automatu:

3 B
S/t 00 01 10 11 00 01 10 11
So So So So s 0 1 1 0
S1 So S| S1 Sy 1 0 0 1
10/1 10/0
01/1 11/0 01/0
s
@O
00/0 o/t 111
Obr. 4.9
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Cvideni k lekei 4.

Piiklad 4.1:

Piiklad 4.2:

Piiklad 4.3:

Automaty A; = (S, I, Oy, 8, B1) - model ovladéani chodu motoru, - a automat

A, = (S, 1, 0, 3, B2) - model otevirani dveff domovniho vytahu - v piikladu 3.1
se v kazdé hodnot¢ diskrétniho asu nachézi ve stejném stavu (je jim stani
kabiny vytahu v pifsluSném podlazi) a pfichdzi na né i shodné vstupni podnéty
(stisk tladitka pro jizdu do pifslusného patra). V disledku této vzajemné
zévislosti bude vysledny model fizeni vytahu (automat A) paralelni kompozici
ve tvaru A = Aj||A; = (S, I, 01x03, §, (B1,B2)).

Sériovou kompozici (bez Gcasti prizpusobovaciho ¢lenu) dvou jednobitovych
posuvnych registrd, tj. automati Mg = (S, I, O, &, By)

S Be
0 1 0 1
0N |19 H0R (N0
0 1 1 il

Obr. 4.10
dostaneme dvoubitovy posuvny registr Mar = Mi®OM; = (SxS, I, O, &5, Bar)

52f ﬁzf

S| HOM | T KON T
I O I (0]

N _ M; M; 00]00]10] 0] O
01]00]10] 1 it
10)]01|11) 0] O
a1 1 o R ] 1

Obr. 4.11

v némZ pro vstup 0 € I ve stavu 10 € SxS dostaneme
8210, 0) = (8«1, 0), 340, B(1, 0))) = (0, 80, 1)) = 01,
B21(10, 0) = B(0, B(1, 0)) = B0, 1) =0.

Rozsitenim mnoZiny I automatu M z piikladu 4.2 o ,,nedestruktivni teni* R
dostaneme jednobitovou pamétovou butiku M. = (S, I, O, &, B).

3

R|O

#o
B
[=] [}
el
(=]

o

—|o|~[==
o|m

Obr. 4.12

Paralelni kompozici dvou bun¢k M. dostaneme dvoubitovou pamétovou buriku
Mae = MM = (SXS, IxIe, OXO, 8y, Bac) - viz Obr. 4.13:
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definovanou tabulkou

[

— M.

LxI

Obr. 4.13

M.

I

Ox0

}

00

01 |OR

i

RO

RR

00

01

OR

10

00 |00

01 [00

11

00

00

00

00

00

00

01 |00

01 |01

11

00

01

01

01

01

01

10 |00

01 |00

11

10

10

10

11 {00

01 |01

11

10

11

11

11

A

11

Piiklad 4.4: Dvoubitovy posuvny registr My z piikladu 4.2 pozménime ndsledovné: Vystup z
obou bunék bude paralelni, vstupni mnoZinu rozsifime o prvky L (loading) a R

(nedestruktivni ¢tenf), a vystupni mnoZinu roziifime o prvek R tak, aby vznikl
vysledny slozeny automat Mar = (Sar, Lk, Oar, 825, Bor):

S Bor
ST RO B SIC8 |NRE | F0| ST E TN ERY
00]00) 10| 00|00 |RR|RR| 00 |RR
01]00]10]01|01|RR|RR| 01 |RR
1001 |11)10) 10 |RR|RR| 10 [RR
11)01 |11 |11 |11 |RR|RR| 11 |RR
Obr. 4.14

Sériovou kompozici Mpp©OMy, (M. viz piiklad 4.3) dostaneme sérioparalelni
kompozici Mac = Mor®Ma. = Moppr©(Mcl[Me) = (S2p¢SXS, Ly, OXO, 8;c, Bac),

v niz

I

M.

I

Obr. 4.15

8ac((s1,(52,83)); 1) = (Bar(s1, 1),(B2c((52,83), Bar(si, 1)) a

Bac((s1,(52,83)), 1) = Bac((52,83), Bar(s1, 1))-

SloZeny automat Mac ma 4 - 2 - 2 = 16 vnitinich stavi a napt. pro vstup L ve stavu
(01,(1,0)) dostavame:
82c((01,(1,0)), L) = (82r(01, L),(32¢((1,0), B2(01, L)) = (01,( 82((1,0), 01))) =

(01,(0,1)) a
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Bac((01,(1,0)), L) = Bae((1,0), Br(01, L) = Bac((1,0), 01) = (1,0).

Piiklad 4.5 (analyza automatu): Cilem analyzy sloZeného automatu M,c z pifkladu 4.4 je

zjistit jeho chovani a verbalné je popsat. Vysledek pak Ize shrnout takto:

Morfologicky je Mjc sériovou kompozici dvou komponent: modifikovaného
posuvného registru My s paralelnim vystupem (vstupni komponenta), a
dvoubitové paméti My, (vystupni komponenta). V kazdém taktu své Cinnosti
(nezévisle na hodnoté vstupniho podnétu) Myc na vystup paralelné vyda aktualn{
obsah paméti Mj.. Ke zméndm obsahu paméti M. pfitom dochdzi jen pii
vstupnim podnétu L, a to tak, Ze se do paméti M. paralelné pfenese obsah
posuvného registru Myr, postupné napliiovaného jen vstupnimi hodnotami 0 a 1.
Vstupni podnét R neméni obsah registru ani paméti.

Zévér: Automat Myc je dvoubitovou bindrni paméti se sériovym zépisem a
paralelnim ¢tenim. K nedestruktivnimu ¢teni dochazi pfi podnétu R, k zdpisu dat
postupné nahromadénych ve vstupnim registru dochazi pii podnétu L.

Piiklad 4.6 (sériovd dekompozice staré tety EvZenie z cviéného piikladu 2.1): Kazdy z péti

stavii (rozpoloZeni) integralni tety EvZenie, oznacenych &isly 1 aZ 5, ma svij
fyziologicky a psychicky aspekt. Z fyziologického pohledu muZe byt utlumend
(spi), opild nebo stiizliva. Psychicky na tom muZe byt dobfe (mé dobrou naladu)
nebo $patné (ma Spatnou niladu). Predpokladdme-li, Ze ve spanku je na tom
psychicky dobfe, muiZeme jeji jednotlivi rozpoloZeni vyjadfit piislusnou
kombinaci obou aspekti podle nédsledujici tabulky:

rozpoloZent (stav) aspekt fyziologicky aspekt psychicky (ndlada)
1 - spi A - utlumena D - dobra
2 - vlidna B - stifzliva D - dobra
3 - podrdzdéna B - stifzliva E - $patnd
4 - sentimentaln{ C - opild D - dobra
5 - rozzufend C - opild E - $patnd

Integrélni tetu Ize pak sériové dekomponovat do dvou z hlediska poétu stavii mensich subtet
(fyziotety a psychotety) napf. takto:

kde

K V.G : L aBnamE Qo
~v—»{ fyzioteta H psychoteta }—»

Obr. 4.16
fyzioteta: 3y Bi
K \Y% G K )\ G
A B A A Ak Ay A
B B B (& Bk By Bg
@ (¢l @ A Ck Cy Cg




psychoteta:
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Ak [Av [Ag [Bk [Bv [Bg [Ck |Cv |Cg |Ak [Av [Ag [Bk |Byv |Bg |Ck |Cv |Cg

[D o b

D [E D D |E DD o [5 [B |y |5 |= 5 |o

[E

0
ENDNEN ENIDN|D y 1€ [n ¢ |& |o

Uloha 4.1:

Prazdna policka v poslednim fidku tabulky pfechodové a vystupni funkce
psychotety odpovidaji vychozi kombinaci (A,E) stavi fyziotety a psychotety, kterd
neodpovidd Zddnému stavu integralni tety (viz tvodni tabulka rozkladu stavi), a
proto (pokud ji subtetdim nevnutime vné&j$im zdsahem) nemuZe nastat. Tato
policka lze vyplnit jakkoli. V praxi tato situace nastavd pomérné &asto a obvykle
tato policka vypliiujeme tak, abychom co nejlépe vyhovéli dodate¢nym
konstruk&nim, ekonomickym & jingm poZadavkim."

Pomoci rovnic pro 8¢ a Bac uvedenych v piikladu 4.4 vypo&téte viechny prvky
tabulky ptfechodové a vystupni funkce slozeného automatu Mac.

Uloha 4.2: Urdete dynamické struktury (pfechodové a vystupni funkce) integralnich automati

Uloha 4.3:

definovanych tfemi zakladnimi morfologickymi strukturami sérioparalelnich
kompozic uvedenymi v €lanku 4.3. na Obr. 4.3.

(syntéza automatt) - Sestrojte dynamické struktury automati se vstupni abecedou

{0, 1} a vystupni abecedou {0, 1} tak, aby vyhovovaly popsanému chovani:

a) Vystupni symbol 1 se objevi pravé tehdy, jestliZe se na vstup poprvé dostane
symbol 0 ndsledujici za skupinou dvou nebo vice symboli 1. Ve viech
ostatnich piipadech vyda 0.

b) Automat se vstupy 0, 1 a vystupy 0, 1 vyda 1 pravé tehdy, jestliZze na vstupu je
1, kterd je od po¢étku v pofadi sudym symbolem 1. Jinak vyda 0.

c) Odpovédi na libovolné prvni dva symboly je 0. Déle se kazdy n-ty vystupni
symbol rovna (n-2)-mu vstupnimu symbolu.

d) Vystup 1 je vydén, kdykoli je na vstupu ¢len skupiny symbold 1, kterd je
predchazena skupinou 00. Ve viech ostatnich piipadech vyd4 0.

e) Symbol 1 je vydan tehdy, jestliZe je na vstupu (3k+1)-ni symbol pro né&jaké
prirozené ¢islo k. Jinak je vstupni a vystupni symbol stejny.

f) Automat se tfemi vnitinimi stavy odpovi na &trnactiClennou vstupni
posloupnost  00001000100010  vystupni posloupnosti 01010000101001.
Najdéte jej.

"* Z pohledu
definuje SV

Cisté algebraického piistupu ve smyslu poznimky pod arou 7 v &ldnku 4.3. fyziologicky aspekt
rozklad ¢ = {A, B, C} stavového prostoru integrélni tety, s tfidami A = {1}, B = {2, 3}, C = {4,

5}. Psychicky aspekt definuje rozklad T = {D, E} (neni to SV rozklad) s tfidami D = {1, 2, 4} a E = {3, 5}.

Rozklady &
jejich defini

a T jsou vzdjemn& ortogondlni, fyzioteta je ,image machine®, psychoteta je ,tail machine* (viz
ce v pozndmee pod Earou 7).
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Uloha 4.4: (syntéza automatu - feSend tloha) - zadéni:

Na obrizku vlevo je zndzornén ovladaci panel
Booleovského kalkuldtoru, ktery k zadané dvojici hodnot
Booleovskych proménnych x a y vypoéte jejich logicky
soudet nebo logicky soudin. Hodnoty proménnych se
zadaji postupnym stiskem tlacitek ve sloupcich pod
proménnymi a pfijeti kazdé hodnoty kalkuldtor oznami
pipnutim. Stisk tlacitka poZadované operace zobrazi jeji
vysledek na displeji umisténém v pravém hornim rohu.
Vytvoite Mealyho model kalkulatoru.

Regenf:

Obr. 4.17

I={A,B,C,D,E, F}, 0= {#,0, 1}, kde symbol # zna&{ pipnuti a symboly A aZ F
zna¢i podnéty vyvolané stiskem pifslusného tlacitka (vyznam je uveden v zévorce za
symbolem): A(x=0), B(y=0), C(x=1), D(y=1), E(x*y), F(x+y). U podnéti E a F
vystup zdvisi i na dvojicich hodnot xy, proto je vyhodné vzit tyto dvojice za hodnoty
stavové proménné: S = {a, b, ¢, d}, kde a = 00, b = 01, ¢ = 10, d = 11. Hledany
automat ME = (S, I, O, 3, f) je pak popsan nésledujici tabulkou vektorové funkce
(8,8): SXI — SxO.

A B (€ D g B

a#t aft c# b.# a,0 a,0
b,# a# d,# b.# b,0 b,1
a# c# c# d# c,0 Gl

alo |o|»

b# [ c# | d# | d# | d]1 d,1

Uloha 4.5 (analyza dekomponovatelnosti automatu - feSené tloha).

Zadén{: Vytvorite vSechny rozklady stavového prostoru Booleovského kalkuldtoru z tlohy 4.4;

Regeni:

podle ndvodu v poznimce pod Earou 7 proved’te analyzu dekomponovatelnosti
kalkuldtoru, nakreslete schémata mozZnych dekompozic a definujte jejich
komponenty.

Z patnécti existujicich rozkladi L = {{a},{

o= {{ab}.{cd}} ={U,V}, 1= {{ach{bd}} = {WX}, p={{ad}.{bc}} = {Y.Z},
n={{a}.{bc,d}}, v={{b}.{acd}}, u={{c}.{ab.d}},n = {{d}.{abc}},

o= {{a},{b},{c.d}},y={{a}{c}.{bd}}, e= {{a}.{d}.{b.c}},
¢={{b}.{c}.{ad}}, 0= {{b}.{d},{ac}}, w={{c}.{d}.{a,b}}, jsou jen prvni étyii
SV rozklady. SVM) = {L,[, 6, 7} a Hasseovsky diagram svazu SVM ma tento tvar:

bh{ch{d}L = {{abed)},
s
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2N
N,/

Obr. 4.18

Vzhledem k tomu, Ze 6*T = o*p = T#p = L, jsou (kromé¢ jinych) moZné i tyto
morfologické struktury dekompozic,

Obr. 4.19

a dynamické struktury jejich komponent jsou definovany nésledujicimi tabulkami
vektorovych funkef:

M, A B C D E F
0 U,U,A) | G,UB) | VU0 | UUD) | UUE) | UUF
v U CAR RV VBN RV (VIR AV (VD) BV V.E)S [(RV(VE)

M A B @ D E F
W [W,(W,A) | W,(W,B) [ W,(W,0) | X,(W,D) [ W,(W,E) | W,(W,F)
X X,(X,A) | W,(X,B) | X,(X,0) | X,(X.)D) | X,(X,E) | X,(X,F)
My |UA|UB|UC|UD|UE|UF|VvA|VB|VC|VD|VE|VE
W [wa|wa[wr][xz|[wo[wo[wa[ws|[wa[x#[Wo[W,L1
X | X# | W[ X# | X# X0 X1 [ X# [ Wit Xt [ X# | X1 X1
My:|UA|UB|UC|UD|UE|UF|V,A|VB|V,C|VD|VE|VF
vl v iy [z fz A ol Ry ol Fz Tz A oy 2 e YT
Zh iz Aaalizaizol izn aizaizaaizolzn
Myr: |W,A|WB|W,C|WD|WE|WF|XA|XB|XC|XD|XE]|XF
U |[us|ug|ve|ug|uo|uouz|us|ve|ug|uo|ul
V [ug[vg|ve|[ve]volviJug|ve[vg|ve[vi]vi
My: |[WA|WB|WcC|WD|WE|WF|XA|XB|XC|XD|XE|XF
Y valvs|za | za | Yo YO |Z# |28 | v # [ YH[ X1 Y1
z | xelzelzg | velzo [z Zze vk Y e 28] Z0 [ Z1
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Parcidlni dekédovaci funkce w™': (oxx(txI) — O v paralelnf dekompozici je
definovana nésledujici tabulkou, v niZ prazdna poli¢ka Ize vyplnit libovolng&:

o:|UA|UB|UC|UD|UE|UF|VA|VB|VC|VD|VE|VF

WA|[ # #

XOE 1 1

Uloha 4.6: Které dalsi dekompozice Booleovského kalkulétoru, neuvedené v fedeni dlohy 4.5
jsou mozné? Najdéte je a definujte dynamické struktury jejich komponent.

Piiklad 4.7: Nasledujici obrazek (Obr. 4.20) ilustruje postup ziskdvani dekompozice automatu
v piipad¢ slozitych Hasseovskych diagrami svazu SVM. Silné vyznaleny
integralni automat M definovany na mnoZiné S vnitinich stavii ma Hasseovsky
diagram svého svazu SVM nakreslen nad sebou. Mezi nejvyse poloZenym
trividlnim (nejhrub§im) SV rozkladem [s a nejniZze poloZzenym trividlnim
(nejjemngj§im) SV rozkladem LS leZi pét riznych netrividlnich SV rozklada A,
B, C, D, E mnoZziny S.

Pifi konstrukei nejjemnéjsich dekompozic je tieba zaéinat zdola, tj. od rozkladu E.
Ten umozni sériovou dekompozici typu M = Mg,M; zakreslenou napravo od M.
Automat Mg (image machine) je definovdn na stavovém prostoru E (jeho stavy
jsou t¥{dy rozkladu E mnoziny S). Pfechodem od M k Mg jsme piesli od mnoZiny
S k mnoZing E = {(s)g: s€ S}, v niZ tfidy (s)g jsou nejmensimi a déle nedélitelnymi
prvky (novymi elementdrnimi stavy). Hasseovsky diagram svazu SVMg automatu
Mg odvodime z Hasseovského diagramu svazu SVM tim, Ze v ném vypustime
rozklady, z nichZ nevede ,klesajici cesta* do E; v takto vzniklém podgrafu jsou
LE a[E nové trividlni rozklady, a index E u zbylych rozkladi vyjadiuje fakt, Ze se
jednd o SV rozklady mnoZiny E. V naem piipadé dostaneme druhy diagram
zleva.

Netrividlni SV rozklady v nové vzniklém diagramu lze vyuZit k dalsf dekompozici
automatu Mg. Tvar diagramu fik4, Ze neporovnatelné rozklady Cg a Dg jsou
vzajemné ortogondlni (existence piimych spoji s LE). To umoziuje jak sériovou
tak paralelni dekompozici automatu ME.

V sériové varianté dekompozice automatu Mg (horni ¢4st obrdzku) jsme v nasem
piipadé ze dvou moznosti (Cg ¢i Dg) zvolili SV rozklad Cg k dekompozici Mg =
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Mcg,M,, &m? jsme dostali ti{stuptiovou sériovou dekompozici M = Mce M, M;.
Mck je definovdn na stavovém prostoru C = {(x)c: X€E}, coZ je SV rozklad
rozkladu E. Z Hasseovského diagramu jeho svazu SVMce (tfeti graf zleva)
odvozeného z diagramu svazu SVM dle vySe uvedenych zdsad je zfejmd existence
netrividlntho SV rozkladu mnoziny C - je jim SV rozklad Ac. To umoZiiuje
dekomponovat Mcg na Mac,M; a dospét k dekompozici M = Mac;M3,Mp,M1. Z
uvedené posloupnosti Hasseovskych diagramii vyplyva, Ze automaty Mac, Msa
M, dile dekomponovat nelze (neexistuje netrividlni SV rozklad jejich stavového
prostoru). U automatu M, jsme méli moZnost zvolit za jeho stavovy prostor
mnoZinu D = {(x)p: X€E}. Pokud jsme volili jinak, ani M, dekomponovatelny
nenf. V opatném pifpadé (D je stavovym prostorem automatu M) M,
dekomponovatelny je. Vyplyvé to z existence netrividlniho SV rozkladu Bp
mnoZiny D (viz posledni diagram vpravo). Dekompozici M pak dostaneme jiz
dale nedekomponovatelny vysledek, kterym je pétistupiiovd sériovd dekompozice
M = Mac,M3,Mpp,My,M;.

V paralelnf varianté dekompozice automatu Mg (spodni &ést obrédzku) byla pro
dekompozici automatu Mg vyuZita existence ortogondlnich SV rozkladt Cg a Dg
rozkladu E. Tak vznikla dekompozice M = (McglMpg),M;. Dalsi dekompozice
automatd Mcg a Mpg probghla analogicky s vySe popsanou sériovou variantou.
Dile nedekomponovatelnym vysledkem je pak sérioparalelni dekompozice

M = (Mac,M3)l|(Map,Ma) My

14 Automaty Mpp 2 My maji v sériové i sérioparalelni variant€ shodné stavové prostory, ale definovény jsou riizn&
(v sériové variant¥ jsou komponenty ,tail machine® M,, v sérioparalelni variant¢ jsou komponenty ,.image
machine* Mpg).
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Obr. 4.20
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5. Chovani kone¢ného automatu
5.1. Uvod

V ¢lanku 4.4. jsme v ramci algebraického piistupu (po zohlednéni symboliky zavedené
v lekei 3.) nazvali elementdrnim chovénim koneéného automatu mnoZzinu {(i, f(s, 1)): i € L, s
€ S} c IxO, respektive {(i, A(s)): i € I, s € S} < IXO pro Mealyho, respektive Mooretiv
automat. Vzhledem k tomu, Ze IXO je kone¢nd mnoZina, je mozno elementdrni chovéani
definovat vy¢tem. Vybér relevantnich dvojic zde provadi vnitini mechanismy, znédzorn&né
funkénimi schématy v ¢ldnku 3.3.

Zobecnit elementérni chovani na chovéni znamen zjistovat reakce systému nejen na
prvky kone¢né mnoziny I, ale na vSechny fetézce, které lze z jejich prvki vytvofit, a téch je
nekone¢né mnoho. Chovani koneéného automatu je tak popsiano nekone¢nou mnoZinou
dvojic fetézct shora neohrani¢ené délky. Tuto mnoZinu nelze definovat vyctem, ale lze ji
definovat rekurzivné. Co to konkrétné znamend se dozvime hned v nasledujicim ¢lanku.

5.2. Rekurzivni definice chovani koneéného automatu

Znat chovani kone¢ného automatu znamend umét ke kazdé kone¢né posloupnosti
(fetézci) vstupnich podnétd piifadit relevantni fetézec vystupnich reakci. Za tim tcelem je
tieba nejprve definovat fetézec a pak zobecnit popis vnitintho mechanismu kone¢ného
automatu tak, aby byl aplikovatelny na vstupni fetézce. Nastroji k tomuto Gcelu pithodnymi
jsou rekurzivni definice mnoZiny, jiZ Ize definovat prvky nekoneénych mnoZin, a rekurzivni

rozSifeni operace, jimZ Ize definovat operace nad nimi.

Rekurzivni definice obecné sestdva ze tif Casti: baze (v ni se vyétem definuje kone¢ny
pocet prvki), rekurze (pravidla jak z danych prvki vytvofit nové), a ohraniceni (prvky
nezatazené do baze ani nevzniklé rekurzi do mnoZiny nepatif). V naSem piipadé jsou
relevantni nésledujici definice:

¢ Rekurzivni definice ietézce:
1) Baze: Kazdy prvek kone¢né mnoZiny (abecedy) je fetézec.
2) Rekurze: Jsou-li x, y fetézce, pak jejich spojent (zietézeni), oznacené xy je fetézec. Je-li
x fetézec, pak kazdé €, pro n&Z plati ex = xe = x je fetézec a nazveme ho prazdny
Fetézec.
3) Ohranideni: Jinak uZ nic neni fetézec.

Mnozinu viech fetézct nad abecedou I, resp. O, oznaéime I', resp. 0" Délku fetézce x
ozna¢ime |x| a budeme ji rozumét pocet pismen abecedy obsaZenych v x. Plati:
[xyl = [x| +Iyl, le] = 0.

o Princip rekurzivniho rozsifeni piechodové a vystupni funkce koneéného automatu je
zndzornén na Obr. 5.1:

! Alternativni algebraickd definice mnoZiny Fetézcii nad abecedou I: I" = U I", kde I" oznatuje n-ndsobny
w0

Kartézsky soutin mnoziny I (I" = IXIXIX ... XI) a I’ = & (prdzdnd mnoZina).
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8'(s,ax)

8 (8(s,a),x)

Bs.a) B(8(s.2)x)

ax

B(s,2)B"(8(s,2).x)

Obr. 5.1

V souladu s nim funkce § a p v ME = (S, 1, O, §, B), respektive a A v MO = (S, I, O, §, 1)
zobecnime na §": SXI" — S a B": SXI" — O takto:
8'(s, &) = s, 8'(s, ax) = 8"(8(s, a), X);
B*Gs, &) =€, B'(s, ax) = B(s, a)B"(8(s, a), x), kdeae Lse S,xe I'.
V piipadé MO 1. druhu B(s, a) = A(s), u MO 2. druhu B(s, a) = A(8(s, a)).

Chovéanim | énél pak rozumime mnoZinu {(y, B’(s, y)):s€ S, ye I'}.
5.3. Simulace a ekvivalence chovani

Necht' s a s” jsou rizné stavy téhoZ automatu M nebo stavy ve dvou riznych
automatech M; a M, vnichzI; =T, =T a O; = O, = O. Stavy s, s” nazveme ekvivalentnimi
stavy, pravé kdy? platf B"(s, x) = B°(s’, x) nebo B;"(s, x) = B2°(s", x) pro viechna x € I".

Automaty M; a M, nazveme ekvivalentnimi automaty, jestlize ke kazdému stavu v
M, existuje ekvivalentni stav v M; a naopak. Je ziejmé, Ze ekvivalentni automaty produkuji
shodné chovéni, tj. {(y, Bi*(s, y)): s € Sy, y € I'} = {(x, B2"(s, X)): s € Sz, x € '}, a proto (v
piipadé jejich pocite¢niho nastaveni do ekvivalentnich stavii) budou vzdjemné funkéné
zamenitelné.

V piipadé, kdy ke kazdému stavu v M, existuje ekvivalentni stav v M, a naopak tomu
tak nenf (tj. v M, existuje stav, nemajici ekvivalentni stav v M), je
{4, B, y)):s € Si,ye I'} € {(x, B2's, x)): s € Sz, x € I').
Pak automat M, dokize ve funkci plné nahradit automat M;, ale naopak tomu tak neni
(automat M,; ,umi mén&“ nez M,). Rikédme, e M, (na podmnoZiné svych stavi,
ekvivalentnich se stavy v Sy) simuluje chovani automatu M.

5.4. Konstrukce ekvivalentniho MO k danému ME.
V lekci 3. jsme poznali, Ze Moorelv automat je specidlnim piipadem Mealyho
automatu. Od Mooreova modelu piejdeme k Mealyho modelu jen tim, Ze pfeneseme hodnotu

vystupu z uzlu na hrany. U MO 1. druhu pfend$ime ve sméru Sipek (napt. v grafu posuvného
registru - viz ¢l. 3.4.), u MO 2. druhu proti sméru Sipek (napf. v grafu modelu otevirani dveif
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Kazdy stav tohoto MO2 je ekvivalentni s tim stavem v ptivodnim ME, jehoZ $tépenim vznikl,
a naopak, kazdy stav ME je ekvivalentn{ se viemi substavy MO2 vzniklymi jeho roz§tépenim.
Proto jsou ME a MO2 ekvivalentnimi automaty.

Zobecnime-li uvedeny postup a popiSeme-li jeho kroky aparitem abstraktni algebry,
muzeme vysledek formulovat nasledovné:

K danému Mealyho automatu ME = (S, I, O, 8, ) vZdy existuje ekvivalentni Mooreiiv
automat 2. typu MO2 = (S, 1, O, 8", 1), v ném#

S7=SX0,

8" = (8,8)°mi3: SXOXI — SxO, §7((s, 0), ) = (5(s, i), B(s, i), s€ S,ie Loe O;

A =m: SXO — O, A(s, 0) =0;

a v némz projekce m;: SXO — S piifazuje staviim z S” ekvivalentn{ stavy v S.

5.5. Klidovy a autonomni reZim automatu

Vratme se k piikladu paralelni s¢itatky dvojic bindrnich &isel z ¢lanku 4.4. (viz Obr.
4.9). Tato s¢itacka je nedokonala tim, Ze nepoznd, kde operandy zacinaji a kde konéf, a proto
donekonecna tiskne vysledky. Nevi, kdy ma se s¢itdnim zagit a kdy ma prestat s¢itat. Chceme-
1i to napravit, potfebujeme kromé dvou aktivnich vstupnich signlti 0 a 1 jesté n&jaky klidovy
vstupn{ signdl X, ktery by s&itatce fekl, aby nereagovala.’ V realizacich automatu byvi
nepiitomnost podnétu vzdy signalizovédna piitomnosti n&jakého klidového signalu X.? Zcela
analogicky je tfeba i mnoZinu vystupnich reakci automatu doplnit o piislusnou klidovou
vystupni reakci, kterou automat reaguje na permanentni pfitomnost klidového vstupniho
signlu X. V piipadé nasf scitacky ji oznacime symbolem ,,_“. Pfi ni se papir neposouvi a nic
se netiskne.

V dal$im budeme piedpokladat, Ze u s¢itanct nestejné délky je kratsi s¢itanec zepiedu
doplnén nulami na délku delsiho s¢itance. Z pohledu nasi s¢itacky pak soucet 38 + 7 = 45 by
mél v jejim bindrnim provedeni vypadat nisledovné:

XXX100110XXX
XXX000111XXX

__l1o01101 _ _ _ vystup ME
Na obou vstupech s¢itactky se musi klidovy signdl X vyskytovat soucasné. Pokud tomu tak
neni, jde o poruchu v datech. Pfi jejim vyskytu by automat mél prejit do zvlastniho
absorpéniho stavu a ohldsit chybu v datech.

Po zohlednéni vSech vySe uvedenych pozadavki pivodni graf pfechodové a vystupni
funkce automatu paralelni s¢itacky dostane nésledujici podobu (do chybového stavu automat
piejde pfi vstupech X0, 0X, X1, 1X):

2y praxi to lze realizovat tfemi hodnotami vstupniho signdlu (1 - kladny potencial, O - zdporny potencial, X -
nulovy potencidl) a vstupnim obvodem typu ,,polarizované relé", ktery na nulovy potencial nereaguje. Zachovat
bindrni signdly na viech pnich portech Zliuje jiné feSeni, vyuZivajici zvlaStni bindrni Fidici vstup,
kterym se s¢itacka zapind a vypind. Klidovym signdlem je pak kazd4 kombinace s hodnotou 0 na fidicim vstupu
(viz Pfiklad 5.4 ve cviceni k této lekci).

® V pripadg vytahu je klidovym signilem X nestlageni Z4dného z ovlddacich tlatitek.
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CD chyba
10/1 / \ 10/0
01/1 11/0 01/0
C (o _GI

00/0 /M OO L X 1171

Obr. 5.3

V dals$fm budeme predpoklddat, Ze k chybdm v datech nedochézi, a proto vezmeme v tvahu

jen tento subautomat:
10/1 10/0
01/1 11/0 01/0
—
@O ===

00/0h /e UL 1171

Obr. 5.4

Scitacka realizujic tento subautomat dokaze secist dvé libovolné velké binarnf &isla.

Nyni si polozme otdzku: ,Je moino podobnym zpiisobem sestrojit paralelni
ndsobicku, kterd by dokdzala libovolné velkd bindrni cisla vyndsobit?“ Abychom mohli
odpovedét, musime prozkoumat, co se déje v koneéném automatu, vystaveném del$i dobu
pusobeni klidového signalu. Paralelni ndsobicka totiZ musi v kone¢né fazi vypodtu v takovém
reimu pracovat. Mé-li napf. vynasobit &islo 2" sebou samym, bude vysledkem &islo 22 (2N -
2N = 2™) V bindrnim kédu bude aktivnf vstupni sekvenci na obou vstupech N nul
zakon¢enych jednic¢kou, na vystupu pak dostaneme sekvenci 2N nul zakoncenych jednickou.
Poslednich N cifer vysledku tak automat na vystup vydé pii klidovém signdlu XX na svém
vstupu.

Takovému reZimu price fikime autonomni reZim a automat se v ném chova
autonomné, tj. tak, Ze na klidovy vstupni signdl odpovi na vystupu signilem aktivnim.*
Autonomni reZim koneéného automatu lze zndzornit podgrafem grafu prechodové a vystupni
funkce, v némZ jsou zobrazeny jen pfechody a reakce na klidovy podnét. V pfipadé vyse
uvedené bindrn{ s¢itadky na bazi Mealyho automatu by $lo jen o jeden pfechod mezi dvéma

stavy, tedy o tento podgraf:

Obr. 5.5

XX/

* Odpovi-li automat na vstupni klidovy signdl vystupnim signdlem klidovym, f{kdme, Ze pracuje v klidovém
rezimu. Na rozdil od autonomniho rezimu klidovy rezim automatu neni zajimavy, a proto byvd v popisu
automatu zcela ignorovéan (nemiiZze-li automat pracovat v autonomnim reZimu, pak klidovy podnét a klidovou
reakei v zinichTa O zpravidla jeme).
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V piipadé ndmi zvaZované paralelni ndsobicky by automat ve findlni fazi nasoben{
&isla 2N sebou samym musel projit segment podgrafu svého autonomniho rezimu sestévajici z
fetézce N + 1 vnitinich stavli zndzornéného v nésledujicim obrazku:

XX/_

o) () Xx0 A XX0 (") XX/0
SO G

Obr. 5.6

Z podstaty véci vyplyvd, Ze pokud automat, pracujici v autonomnim reZimu, na své pouti
fetézcem stavi vstoupi do stavu, kterym jiZ prosel, zacykli se - viz Obr. 5.7 - a z nekoneéného
opakovani cyklu jej pak miiZe vysvobodit jen piichod aktivniho podnétu.

OO0

Obr. 5.7

Z toho ale bezprostfedné plyne, Ze paralelni nisobicka, kterd by dokazala vyndsobit
libovoln¢ velkd bindrni &isla, nemtZe byt koneénym automatem. Kdyby jim byla, méla by
kone¢ny pocet stavii. A pokud by pocet jejich stavii byl mensi neZ ¢islo N (a takovych &isel N
je nekonetné mnoho), pak pfi ndsobeni Cisla 2 sebou samym by ve zminéné findlni fazi
vypoctu musela projit fetézcem N + 1 svych stavi. V takovém fetézci by se nutné nékteré
stavy musely opakovat, &imZ by vznikl cyklus, ve kterém opakované na vystup vydava jen
nuly, a to nenf spravny vysledek.

Dosli jsme tak k zavéru, ktery lze vyjadiit takto: I kdyZ kone¢ny automat libovolng

velkad ¢fsla seéist umi, vyndsobit libovolné velka ¢isla neumi.
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Cvideni k lekci 5.

Priklad 5.1: Grafem pfechodové a vystupni funkce Mooreova automatu 2. druhu (MO2), ktery
je ekvivalentnim automatem k Mealyho subautomatu paralelni s¢itaky na Obr.
5.4 je tento graf:

0
01
10
11
Sov 51.
01 TOXX00 .
lot.10
' XX,00 '

=y

Ptiklad 5.2: Grafem prechodové a vystupni funkce automatu MOI1 (Mooretlv automat 1.
druhu) ekvivalentniho k Mealyho subautomatu paralelni s¢itacky na Obr. 5.4 je
stejny graf jako na Obr. 5.8 s tim, Ze zdpis vystupu bude v MO1 oproti MO2 o
takt opozdén (MO piipisuje vysledek operace k nasledujicimu stavu).

Obr. 5.8

Piiklad 5.3: Autonomni reZim automati MO2 a MOI1 z piedchozich dvou piikladi je
znazornén na Obr. 5.9:

S0;
U

Obr. 5.9

Piiklad 5.4 (varianta paralelni s¢itatky dvojic bindrnich &isel s bindrnimi vstupnimi a
vystupnimi signély): Vstupni obvody paralelni s¢itacky dle Obr. 5.4 rozliSuji na
kaZdém ze dvou vstupnich porti tfi Grovné signlu s hodnotami 0, 1 a X. Vystupn{
obvody pak na jediny vystupni port doddvajf tfi drovné signdlu (hodnoty 0, 1 a _).
V technické praxi se sndze pracuje s dvouhodnotovymi (binirnimi) signdly, k
jejichZ dal§imu zpracovani lze s vyhodou vyuzit aparit dvouhodnotové logiky -
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viz lekce 6. Blokové schéma jedné z moZnych variant na$i paralelni s¢itacky
pracujici vyhradné s binarnimi signaly je uvedeno na Obr. 5.10:

R

A —

B —

fo fi f, fe

0

M —

8x

RAB | 000 | 001 | 010 | ot1 | 100 | 101 | 110 | 111

fofifaf | 0001 | 0001 | 0001 | 0001 | 1000 | 0100 | 0100 | 0010
Obr. 5.10

V ném A a B jsou bindrnf{ vstupy operandi a R je bindrn{ f{dici vstup. Pfi R =0 je
kazda kombinace hodnot na vstupech A a B poklddéna za klidovy vstup.
Pfevodnik P transformuje vstupni trojice bindrnich hodnot RAB do ¢&tvefic
vstupnich binarnich hodnot fof f>f, automatu M dle uvedené ptevodni tabulky. V
kazdém kroku funkce automatu je ,7Zivy“ pravé jeden jeho vstup (vektory
(fo.f1,f2,fx) jsou jednotkovymi vektory). Pofadi ,,Zivého vstupu nese informaci o
tom, jednd-li se o vstup klidovy (fy), a v opaéném pifpadé nese informaci i o poStu
aktudlng s¢itanych jedniek v operandech (pocet aktudln& s¢itanych jednicek je
dan indexem ,,Zivého* vstupu).

Kone¢ny automat M pak podle své tabulky piechodové a vystupni funkce
transformuje vstupni jednotkové vektory (fo.fi,f2,f,) na vystupni jednotkové
vektory (g0,21,gx)- Index aktudlné ,,zivého* vystupniho portu informuje o aktudlné
provadéné ¢innosti: gy - tisk 0 na posouvajici se papir, g; - tisk 1 na posouvajici se
papir, gx - papir se neposouvd a nic se netiskne (klidovy stav). Na Obr. 5.11
vidime tabulku pfechodové a vystupni funkce (pro vektorovou funkei [3,8])
Mealyho automatu M:

S\I 1000 0100 0010 0001
So (50,100) | (s0,010) | (51,100) | (s0,001)
S| (50,010) | (s1,100) | (51,010) | (50,010)

Obr. 5.11
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Na Obr. 5.12 je tabulka pfechodové a vystupni funkce k nému ekvivalentniho
MO2:

S\ 1000 0100 0010 0001 A
(50,100) | (50,100) | (50,010) | (51,100) | (s0,001) | 100
(50,010) | (50,100) [ (50,010) | (51,100) | (s0,001) | 010
(s0,001) | (s0,100) | (50,010) | (51,100) | (50,001) | 001
(51,100) | (50,010) | (51,100) [ (51,010) | (50,010) | 100
(s1,010) | (50,010) [ (51,100) | (51,010) | (s0,010) | 010

Obr. 5.12

Uloha 5.1: ReSenf iilohy 4.4 definuje automat Booleovského kalkulatoru, feSeni dlohy 4.5
definuje jeho pét moznych dekompozic. U kazdé varianty dekompozice zjistéte
viechny dvojice ekvivalentnich stavii v integrdlni a dekomponované verzi. O jaky
druh funkéni podobnosti (zaménitelnost ¢i simulaci) se zde jednd?

Uloha 5.2: Toté% co v dloze 5.1 zjistéte u ,staré tety EvZenie* (viz piiklad 2.1) a jejf
dekompozice (viz piiklad 4.6). O jaky druh funkéni podobnosti se jedna tam?

Uloha 5.3: K Mealyho automatu (ME) ,,staré tety EvZenie* (viz piiklad 2.1) sestrojte tabulku
prechodové a vystupni funkce ekvivalentntho MO2.

Uloha 5.4: K Mealyho automatu (ME) Booleovského kalkuldtoru (viz feSeni dlohy 4.4)
sestrojte tabulku pfechodové a vystupni funkce ekvivalentniho MO2.

Otazka 5.1: DokaZe &islicovy pocita¢ von Neumannovy koncepce vyndsobit dvé libovolné
velka &isla? Vysvétlete pro¢ ano, ¢i pro¢ ne.
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6. Systémy typu logicka sit’ a jejich realizace

V této lekci se zaméiime na specidlni kategorii kombinacnich automati snadno
fyzicky realizovatelnych logickym obvodem, kterd je nejCastji uZivanou bdzi pro
implementaci a hardwarovou realizaci' kone¢nych automati.
6.1. Funkéni a strukturalni pohled
Z funkéniho pohledu

je logicka sit’ systémem s n, (resp. k) bindrnimi vstupy (resp. vystupy), v némz vztah
mezi vstupy a vystupy je popsan vektorovou Booleovskou funkef, tj. zobrazenim

f = (f1.f, ... fi): {0,1}" — {0,1}*. Funkce f je obvykle zadéna tabulkou.

Piiklad pron=3 ak =2:

X . x[oJoJoJo]T[T[L1]1

¢ = A EON KOS (I R OR[HON 18| 1

O | = z]o|t|of1fof1|of1

z f|olL1]0]|o0|L][L]0]o0

f=(ff {01 oy L LLILIOLII0ILI110
Obr. 6.1

Strukturalni pohled

Vektorovou Booleovskou funkci f = (f},f, ... fi): {0,1}" — (O,l}k 1ze rozlozit do jejich
slozek, tj. do dil¢ich Booleovskych funkei fi: {0,1}" — {0,1}, i = 1 az k. KaZdou z nich Ize
pak vyjadfit ekvivalentnim vyrazem Booleovy algebry, v némZ jsou symboly proménnych
vézany vyhradné operacemi logického souétu, logického soucinu a negace. 2 Pi{mo z tabulky
funkce lze ziskat ekvwalemm Booleovsky vyraz bud’ v tplné disjunktivni normalni formé
(UDNF - soucet soucmu) nebo v Gplné konjunktivni normalni formé (UKNF - sougin
soudtd)*. Systém Booleovskych vyrazi viech slozek popisuje strukturu logické sits
algebraicky. V naSem piikladu (Obr. 6.1) je jednou z moznosti tato dvojice vyrazi:

! Co rozumime implementaci a realizaci automatu upfesnime v nisledujici lekci.

% Negace je undrni operaci na mnoZing {0,1} a zna¢ime ji pruhem nad negovanou proménnou & vyrazem.
Logicky soucet (disjunkce) a logicky soucin (konjunkce) jsou bindrnimi operacemi na mnozin& {0,1} a
pouzijeme pro n& b&Znych symbolli aritmetickych operaci (+ a ). Defini¢ni tabulky t&chto tfi zdkladnich
operacf Ize nalézt na Obr. 6.4. Vyraz Booleovy algebry je pak vysledkem syntézy prislusné Booleovské funkce
z téchto tif zdkladnich operaci.

3 Konstrukce UDNF pro f;: Z tabulky vybereme viechny sloupce, v nichz f; = 1. Ke kazdému takovému sloupci
vytvoiime konjunkci (log. sou¢in) viech pnick pro ych, v niZ p 4, majici ve sloupci hodnotu 0,
bude negovéna (jde o tzv. elementdrni kon_]unkt.e) UDNF tunkce f; pak bude disjunkei (log. souctem) viech
téchto elementdrnich konjunkci. P¥inos UDNF Booleovské funkce je v tom, Ze ddvd dokonaly prehled o

ich hodnot pnich pro ych, které funkce pipousti.

* Konstrukce UKNF pro tabulky vybereme viechny sloupce, v nichZ f; = 0. Ke kaZdému takovému sloupci
vytvoifme disjunkci (log. soucet) viech vstupnich prom&nnych, v niZ proménnd, majici ve sloupci hodnotu 1,
bude negovéna (jde o tzv. elementdrni disjunkce). UKNF funkce f; pak bude konjunkei (log. souginem) viech
téchto elementdrnich disjunkci. Vztah UKNF a UDNEF: Vytvotenim UDNF pro viechny sloupce tabulky, v
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1= T 02 L0 X 00 R e (UDNF f;)
f=2 (x+F+2) (X+Y+2) (F+F+ID). eorernne (UKNF f,)

Kazdy Booleovsky vyraz v UDNF & UKNF lze graficky znazomit siti vzjemné
propojenych logickych modult i typt (invertorti, log. scitatek a log. nésobicek),
provadgjicich piisluiné Booleovské operace nad nejvyse dvéma vstupnimi proménnymi.
Schéma zapojeni modult viech sloZek vektorové Booleovské funkce graficky znézornuje
strukturu logické sit¢. V nasem pifpads je jednou z moZnost tato struktura (Obr. 6.2):°

Obr. 6.2

Popsany piechod od tabulky ke schématu zapojeni modulii je procesem syntézy
struktury logické sité z popisu jeji funkce. A jelikoZ je syntéza dlohou viceznaénou (tj. méa
vice moznych feSenf), Ize na ni klast riizné optimaliza¢ni pozadavky.

nichz funkce f; = 0, dostaneme UDNF negace funkce f;. Negovénim této UDNF dostaneme po aplikaci De
Morganovych pravidel pro negovani vyrazii (negaci sou¢tu je soudin negaci a negaci sou¢inu je soudet negaci)
UKNF funkee ;.

* Neoznagené moduly jsou invertory; s¢itacky resp. nésobicky jsou oznaeny symboly + resp. o,
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6.2. Optimalizace struktury logické sité

Jednim z optimaliza&nich poZadavkid kladenych na strukturu logické sité je poZadavek
homogenizace struktury (tj. poZadavek minimalizace poctu zyp#i modulil), druhym je
minimalizace celkového podtu zapojenych modulii. K homogenizaci struktury nds nuti
pievazné diivody vyrobni, k minimalizaci pottu moduli zase diivody spiSe ekonomické.

Homogenizace struktury

Kazdy soubor riiznych typt modulii, provadgjicich Booleovské operace nad nejvyse
dvéma vstupnimi proménnymi a postadujicich k syntéze struktury libovolné logické sité,
nazveme #plnym souborem modulit (USM). A kazdy USM, ktery by po vypusténi n&kterého
typu modulu prestal byt USM, nazveme minimdlnim iiplnym souborem modulit MUSM). Z
tvaru UDNF & UKNF Booleovské funkce vyplyva %e soubor tf typi moduli zminénych
v &lanku 6.1. [invertor, s¢ftatka a nésobicka] je USM. Tento soubor ale nenif MUSM. Vyplyva
to z De Morganovych zékonti Booleovy algebry (x+y— Xy, Xy y= X+Y), jejichZ platnost
dokazuje shoda 5. se 7., respektive 9. s 10. sloupcem nasledujici tabulky hodnot
Booleovskych vyrazi:®

1 2. 3 4 5 6 1. 8 9. 1o
X y X 5 | ®y |xty|xty| xy | xy |F+¥
0 0 1 1 1 0 1 0 1 1
0 1 1 0 0 1 0 0 1 1
1 0 0 1 0 1 0 0 il il
1 1 0 0 0 1 0 1 0 0

Negaci vyrazii na obou stranich De Morganovych rovnic totiz dostdvime x+y=
X-y, respektive x-y= X+75. Dle toho je moZno disjunkci sloZit z jedné konjunkce a tff
negaci, respektive konjunkei sloZit z jedné disjunkce a t negaci. Proto i s¢itatku Ize vytvofit

propojenim i invertord s ndsobickou a naopak nasobi¢ku lze vytvofit propojenim tif
invertorii se s¢itatkou, tak jak je to zndzornéno na nésledujicim obrazku:

= :
oS X+
5

y

#>~ o>

Obr. 6.3

6 Jednd se o ditkaz ekvivalence Booleovskych vyrazii provedeny tabulkovou metodou.
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Soubory [invertor, s¢itacka] ¢i [invertor, ndsobicka] uz MUSM jsou.

Kromé tif dosud zvaZovanych logickych moduld existuji i dal3f univerzélni ,,stavebn{
kameny“, z nichZ Ize libovolné logické sité stavét. Pfi poZadavku ,nejvySe dvou bindrnich
vstupit je kompletni bazi pro jejich konstrukci tplny seznam vsech Sestnécti existujicich
Booleovskych funkei dvou proménnych, uvedeny spolu s nazvy jednotlivych funkei a jejich
UDNE na Obr. 6.4.

x |0 0 1 1 Uplna disjunktni normélni Nazev funkce

y |0 1 0 1 forma funkce

fo |0 0 0 0 (fo=0 Nulovi funkce

fi [0 0 O IR =%ty Logicky soucin

£ |0 0 1 0 [fp=xJ Inhibice (x)

fz |0 0 it 1 |fi=xJ+xy=x Opakovani (x)

f+ |0 il 0 0 |[fi=xy Inhibice (y)

fs |0 il 0 Il =yt sy =1y Opakovanf (y)

fs |0 1l 1 ORlifs= %y X Neekvivalence

f7 |0 1 1 1 [fF=Xy+xJ+x-y=x+y Logicky soucet

fs |1 0 0 0 |fs=xy Peirceova funkce

fo |1 0 0 1 |foi=xy+xy Ekvivalence

fio |1 0 il 0 (fio=Xy+x-y=5 Negace (y)

fu |1 0 1 1 |fu=x3y+x-y+xy Implikace (y — x)

fiz |1 1 0 0 |[(fe=Xy+X-y=X Negace (x)

fiz |1 il 0 1 |fis=X-y+X-y+xy Implikace (x — y)

fia |1 1 1 0 |fu=X-y+X-y+x-y Shefferova funkce

fis |1 1 1l 1 fis=1 Jednotkova funkce
Obr. 6.4

Funkee fy a fis definuji nuldrni operace (konstanty) na mnoziné {0,1}, funkce f3, fs, fio
a fi, definuji undrni operace na mnoziné {0,1}, ostatni funkce definuji binirni operace na
mnoziné {0,1}. Operaci f, jiZ provadi naSe nasobicka, operaci f; naSe s¢itacka, operace fio i fi2
provadi na§ invertor s jednim vstupem. Stejné tak muZe jeden logicky modul s jednim
vstupem provadét jak operaci fs, tak operaci fs. Z celkem 14 riznych typt logickych modult,
provadgjicich uvedenych 16 operaci Ize pak sestavit dvacet dvouélennych MUSM a dokonce
dva jednoclenné.

Jednoclennymi MUSM jsou logické moduly provadgjici Peirceovu funkci fy = X¥-y=
mnebo Shefferovu funkei f14 = ry= X+ . Doklada to Obr. 6.5, v némZ symbol f znaci
Peircetv (fs) ¢i Sheffertiv (f14) operétor realizovany jednim integralnim logickym modulem
(viz levé schéma). Po propojeni jeho vstupti (prostiedni schéma) se v obou pifpadech modul
chovd jako invertor. Sériovd kompozice dvou stejnych moduli (pravé schéma) v piipadé
Peirceova operatoru ddvad logickou séitatku, v piipadé Shefferova opertoru logickou

52



Lekce zékladniho kurzu TEORIE AUTOMATU

ndsobicku. Z modulu tak lze sestavit dvojici, o nf% u vime, e je MUSM; tudf¥ sim je

O - g

Obr. 6.5

Vyznamnou z hlediska aplikaci je zejména Peirceova funkce, protoZe ji lze realizovat
jednoduchymi tranzistorovymi obvody (viz Obr. 6.6):

il U
Xty xty
x
X y
)
+Us

Obr. 6.6

Kdybychom v logické siti naseho tvodniho piikladu (Obr. 6.2) nejprve nahradili
nasobicky kompozici invertort se séitakou (Obr. 6.3), mohli bychom pak v nové vzniklé
logické siti nahradit vSechny invertory a s¢ita¢ky adekvétné propojenymi Peirceovymi moduly
(Obr. 6.5). Tim bychom ziskali stejné fungujici logickou sit’ s homogenni strukturou, v niZ
by jedinym pouzitym typem logického modulu byl Peirceoviiv modul.

Minimalizace po¢tu moduli

Kazdy logicky modul ve schématu struktury logické sité provadi jednu Booleovskou
operaci. Upravou Booleovského vyrazu, vedouci ke sniZeni poctu potfebnych operaci (a
neménici piivodni vektorovou Booleovskou funkci) se proto snizi i poéet modulii zapojenych
Vv siti.

V algebie Booleovskych vyrazi (Booleova algebra) se vyrazy upravuji podobné jako
v bézné Skolské (Peanové) aritmetice: Vytykdnim spoleénych &asti s¢itanych soucint pied
zdvorku ¢i naopak odstrafiovanim zdvorek (rozndsobovanim soucinu souétu). Témito kroky
ziskavdme dil¢i vyrazy, ke kterym existuje jednodussi ekvivalent, a timto ekvivalentem je
nahrazujemeA7 Postupné Ize takto dospét k ekvivalentnimu a z hlediska poctu potiebnych
logickych modulti mnohem Gspornéjsimu Booleovskému vyrazu.

7 Méme na mysli zejména tyto ekvivalenty: X+x=x-x=x+0=x-1=x, X+x=x+1=1,
X-x=x-0=0, x+X-y=x+y.
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Tak napf. struktura funkce f; = X-y-z+x-J-Z+x- -z vyjidiené v UDNF vyZaduje
celkem 10 moduld (3 invertory, 5 ndsobicek, 2 s¢itatky — viz Obr. 6.2). Vyse zminénymi
algebraickymi Gpravami Ize vyraz postupné pievést do tvaru:
fi =Xy 2+x5Z+xY 2 = X 2+xJ-Z+)=%X-F 2+x-J=F(X-2+x) =7 (x+2);
v tomto novém tvaru ji lze realizovat jen tfemi moduly (1 invertor, 1 ndsobicka, 1 s¢itacka).

V technické praxi je oblibenym ndstrojem slouZicim k minimalizaci Booleovského
vyrazu tzv. Karnaughova mapa. Karnaughova mapa vznikla modifikaci tabulky Booleovské
funkce. Jak - to si op&t vysvétlime na piikladu funkce f;. Na Obr. 6.7 vlevo vidime jeji
tabulku, vpravo ji odpovidajici Karnaughovu mapu:

x[oJoJoJo T [1]1]1
ylolo|1|1|o]o|1]1
z]lol1]ofl1fof1]o]1
filo]1]oJo[1]1]0]o0
Obr. 6.7

Posledni fadek tabulky, sestdvajici z bun&k s funkénimi hodnotami, byl rozebrin a
prerovnén do tvaru dvoufddkové matice vpravo. V nf je uspordddni bunék definovéno pruhy
pojmenovanymi po vstupnich proménnych, zakreslenymi pod ¢i nad sloupce matice a vlevo ¢i
napravo od jejich fadki. V takovém uspofddini ma kazda z bunék svou stdlou adresu ve
formé elementdrn{ konjunkce vstupnich proménnych, v niZ je proménna, nepokryvajici buiiku
svym pruhem, negovéna. Toto schéma nazyviame Karnaughovou mapou tif proménnych.

Na dal$im obrazku vidime, jak se pfidanim dalsf vstupni proménné Karnaughova mapa
zdvojuje (tetkovana &st);® navic do bunék Kamnaughovy mapy pro &tyfi vstupni proménné v,
X, Y, z byly vepsény jejich adresy. Z nich je ziejmé, Ze kazdé adresa se od &tyF sousednich 1is{
jen v jediné proménné." A to plati ve viech takto odvozenych Karnaughovych mapéch. Na
této vlastnosti Karnaughovych map je zaloZena jednoduchd metoda minimalizace
Booleovskych vyrazi popsand niZe.

8 Karnaughova mapa dvou proménnych je &tvercova. Ctvercovou mapu lze zdvojit v libovolném ze &ty smérii.
Neni-li mapa &tvercova, musi se zdvojenim doplnit na &tverec. Pruh nové prom&nné kryje pravé viechny butiky
nové vzniklé ¢4sti. Pruhy stdvajicich prom&nnych se symetricky rozsff{ i na nové vzniklou &4st.

° Prvni a posledni Fadek spolu v uvedeném smyslu sousedi. Lze si to predstavit tak, Ze rovinnou mapu srolujeme
podle vodorovné osy do vilcové plochy, na niZ se prvni a posledni fidek dotknou. Presng totéZ Ize fici o levém
a pravém sloupci pii rolovani podle svislé osy.
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X X
| | | | | VXYZ|VXyz| VXyz | VXyz
)’l [ [ | y| [ [ | : : VXYZ | VXyz | Vxyz | VxyzZ
z e z Y VXYZ | VXYZ | VXYZ | vXyT
N VXYZ i VXYZ i VXYZ i VXYZ
................... 4
¥
v
z
........................................ o
Obr. 6.8

Kombinacim hodnot vstupnich proménnych, ziskanym prekédovanim adres bunék
Karnaughovy mapy do nul a jednicek tim, Ze za proménné v zdkladnim tvaru dosadime 1 a za
negované proménné 0, jsou v ptvodni tabulce dané Booleovské funkce pfifazeny funkéni
hodnoty (1 nebo 0). Pfenesenim téchto funkénich hodnot do bunék Karnaughovy mapy
ziskédme Karnaughovu mapu dané Booleovské funkce. V piipadé funkce f; (viz Obr. 6.7) je ji
mapa uvedend vpravo.

Ve shodé s poznamkou pod &arou 3 UDNF f; dostaneme logickym sou¢tem adres
bunék Karnaughovy mapy s hodnotou 1. Jak uZ bylo fe€eno, tuto verzi f; lze realizovat 11
funkénimi moduly. Ve shod¢ s poznidmkou pod Carou 4 UKNF f; dostaneme logickym
sou¢inem negovanych adres bunék Karnaughovy mapy s hodnotou 0."° K realizaci této verze
je tieba 17 funkénich modulii (3 invertory, 10 s¢itacek, 4 nasobicky).

Av3ak vzhledem k tomu, Ze v Karnaughové mapé se adresy sousednich bunék lisf jen
v jedné proménné, je moZno pii odvozovani vyrazii pracovat misto s jednotlivymi butikami s
bloky bungk'!, pfidemZ bloky se sm&jf i prekryvat (tj. mohou mit neprdzdny prinik). Tento
postup vede k vyraztim vyznadujicim se malym poétem operaci. Zdrojem dspory operaci je
jednak to, Ze &im vétsi jsou bloky, tim méné jich je k popisu funkce zapotiebi, a jednak i to, Ze
&m V&t je blok, tim méné proménnych mé jeho adresa.'” Z uvedeného je ziejmé, Ze cesta k
minimalnimu vyrazu vede pfes nejvétsi bloky.

Tak napf. v Karnaughové mapé funkce f; (Obr. 6.7) vidime dva dvouclenné bloky
jedni¢ek: V poslednim sloupci (adresa bloku je x-y ) a v rozich spodniho fadku (adresa bloku
je z:y); proto f; = x-y+ z-y. K realizaci této verze staci jen 4 moduly (1 invertor, 1
s¢itatka, 2 ndsobi¢ky). AvSak vidime tam i dva bloky nul: Ctyitlenny v prostiednich dvou
sloupcich (adresa bloku je y) a dvou¢lenny v hornim fidku (adresa bloku je ¥-Z); proto f; =

U= (x+y+2) (x+Y+2) X +J+2) (x+J+7)-(X+ Y +72).

! Blokem bungk se rozumi kazdy na vilcovych plochdch z poznimky 9 souvisly obdélnik & &tverec sestdvajici
z bungk obsazenych stejnou funkéni hodnotou, ktery v pfipadé, Ze je pruhem n&jaké prom&nné pokryt Edste¢ng,
je jim pokryt prévé z poloviny. Blokem bungk tak napf. miZe byt i Ctvefice rohovych bungk Karnaughovy
mapy, je-li jim pfifazena stejnd funkéni hodnota.

12V adrese bloku se nevyskytuji proménné, jejichZ pruhy je blok kryt z poloviny.
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¥-(x+2). Tato verze je jesté o jeden modul Gsporn&jsi neZ verze predchozi. Je to tim, Ze v ni
byl vyuZit vétsi blok.

6.3. Logické obvody

Integralni systém fyzicky realizujici logicky modul nazveme (v souladu s b&Znymi
zvyklostmi) logickym ¢&lenem. A sit’ vzdjemné propojenych logickych ¢lent pak nazveme
logickym obvodem. V daliim se zamé&fime zejména na logické ¢&leny, které jsou realizaci
né&jakého USM (konkrétng opakovaciho &lenu," invertoru, ndsobicky a s¢itacky) nebo MUSM
(modul Peirceovy ¢&i Shefferovy funkce). Logickému modulu, resp. logické siti (rovina
teoretickd), tak odpovid4 stejné fungujici logicky ¢len, resp. logicky obvod (rovina realiza¢ni).

Piiklad realizace: Logické Cleny reléovych spinacich obvodi

logické moduly logické ¢leny (vnitini propojent civek relé a jejich kontaktii)
= )
+ =%
x s i

X

x+y r—[z: ety
Z]Y
y

x+y

T

58T Y]
lﬂ
|
J

Obr. 6.9

Reak¢éni doby logickych obvodi

Na rozdil od logickych moduli, které jsou idealizaci skutetnosti zejména v tom
smyslu, Ze ignoruji Casoprostorové souvislosti, v logickém &lenu nastéva pii zmén& hodnot
vstupnich proménnych prechodovy fyzikilni d¢j, ktery je zakonfen novym stabilnim
ustdlenym stavem (napf. prechod kotvy relé z jedné polohy do druhé, otevirani, respektive
zavirani tranzistorti apod.). V dusledku tohoto pfechodového d&je se reakce vystupu logického
€lenu na zménu vstupnich signli zpozd'uje (oproti logickému modulu) o dobu At; zvanou
reakéni doba. Reakéni doba je ddna charakterem vstupni zmény a v obecném piipadé je pro
riizné vstupni zmény i rizné dlouha.

‘SOpakovacim ¢leny se v kratSich vétvich asynchronnich obvodii zpoZd'uje signdl (viz odstavec Eliminace
hazardi niZe).
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Pt{klad reakénich dob: Reakénf doby reléovych kontakti'*

"
5 .

—

x 03

T - e

Obr. 6.10

Z uvedeného je ziejmé, Ze vSechny logické ¢leny na Obr. 6.9 maji (v zdvislosti na
vstupni zmén€) reakéni dobu At, nebo Aty

Charakteristickym rysem kazdého ptechodového dgje je jistd ,,setrvaénost” pivodniho
stabilniho stavu. Navenek se tato setrvagnost projevuje tim, Ze logicky ¢len obvykle nereaguje
na vstupni impulsy s dobou trvéni krat3i neZ je délka jeho reakén{ cloby.15 Existence reak¢nich
dob logickych &lent: tak shora omezuje pifpustnou frekvenci zmén vstupnich signali.

Zpomaleni reakce obvodu a omezeni piipustné frekvence vstupnich zmén nejsou
jedingmi negativnimi déisledky existence reakénich dob. Dalsfm je moZnost vzniku impulsi
nespravnych hodnot na vystupech logickych Elenti &i logickych obvodi. Na trovni logickych
&lent je konkrétni pii¢inou vyskytu nespravnjch hodnot nerovnost At, # At,. U poslednich
&ty ¢lent na Obr. 6.9 vznikd impuls nespravného vystupu bud’ pii vstupni zméné 01 — 10
nebo 10 — 01, m4 3itku rovnou hodnoté |At, — Aty| a je za pifslusnou vstupni zménou
opozdén o dobu At = min(At,, Aty). Neni-li hlavn{ pfi¢inou rznosti reakénich dob At, a At,
technické zévada napf. typu ,lepeni kontakti“ (kdy At, >> Aty), je impuls velmi dzky (Ato —
At, = 0), a proto i neSkodny (ndsledné Cleny jej ignorujf)A“’ Podobné impulsy vznikajici
v diisledku réizné dlouhych vétvi logickych ¢lenti na trovni logického obvodu (viz niZe) jiz
tak neskodné nejsou a vynucujf si koncepéni technické feSen.

Logicky obvod vznikne sériovym, paralelnim & sérioparalelnim propojenim logickych
&lenti. Lze v ném vysledovat riizné dlouhé vétve do série zapojenych &lent (cesty), kterymi se
signal vstupni zmény soub&Zné §ifi. Kazdé z téchto vétvi zadind n€kterym vstupnim Elenem a
kongf nékterym &lenem vystupnim. Doba, kterou 3ifici se signdl vstupni zmeény potiebuje k
projiti dané vétve, je rovna soudtu reakénich dob logickych €lenti vétev tvoficich. Tuto dobu
nazveme reakéni dobou prislusné vétve. Mé-li logicky obvod vice riizng dlouhych vétvi, pak
necht’ Atymin (1esp. Atimax) je nejkratsf (resp. nejdelsi) zjidténd reakenf doba vétve. Je zfejmé, Ze
pak Atmin (resp. Atmax) je také nejkratSi (resp. nejdel§f) moznou reakéni dobou pifslusného
logického obvodu.

Ly At, oznatuje dobu pfitahu kotvy relé, Aty dobu odpadu kotvy relé.

15 Ke zmén& stabilniho stavu je zapotfebi vynaloZit jistou energii. Pfedpokldda se, Ze energie, kterou systém k
tomuto G¢elu vynakldd, je Gmérna 3ifce vstupniho impulsu stimulujiciho piislusnou zménu. Je-li impuls kratsi
nez reakéni doba, skon¢i pifsun této energie piili¥ brzy a stabilizaénf sfly udrZ{ systém v plivodnim stavu.

16 Z uvedenych divodi se v praxi obvykle snaZime vhodnym napruZenim odtrhovacich pruZin kotvy relé
doséhnout stavu Aty = At, = At .
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Jednoduchy (spiSe ilustraéni nez prakticky) piiklad vidime v ndsledujicim obrizku:

?* = a

Obr. 6.11

Vlevo je logicka sit' (schéma propojeni modult), vpravo je odpovidajici schéma propojeni
civek relé a jejich kontaktl. V ném pismeno v oznaceni civky relé vyjadfuje piislusnost k
modulu, index 1 (resp. 2) znaéf pfipojeni civky relé k hornimu (resp. dolnfmu) vstupu.17

Pii analyze vétvi logického obvodu je mozno vyjit jak z podrobného schématu
propojeni civek relé a jejich kontaktti, tak ze schématu propojeni logickych Clent. Schéma
propojeni logickych ¢lenti logického obvodu je téméf identické se schématem propojeni
logickych modulii v logické siti. Navic jsou v ném jen tidaje o reakénich dobéch jednotlivych
jeho ¢lent (reakéni doby logicka sit’ ignoruje). My budeme u viech relé predpokladat At, = At,
= At; (existence jediné a shodné reakéni doby u kazdého clenu). Schéma propojeni ¢lent
obvodu byvé prehlednéjsi nez schéma propojeni civek a kontakti, proto z n&j vyjdeme. Na
prvni pohled v ném vidime 4 riizné vétve: Nejkratsi z nich vede ptes ¢leny D-E, ostatni 3 jsou
stejné dlouhé; jedna vede pies C-D-E, zbylé 2 ptes A-B-E. OkamZit¢ vidime Atrmin = 2-Aty,
Atrmax = 3-At,. Zjisténa trojice hodnot At; (reakéni doba Clenu), Atimin @ Atimax (nejkratsi a
nejdelsf reakéni doba obvodu) jsou vyznamnymi parametry uréujicimi moZnosti praktického
vyuZitf daného obvodu.

Vyskyt nechténé reakce logického obvodu (hazard)

V dusledku riizng dlouhych reakénich dob jednotlivych vétvi, jimiZ se vstupni zména
soubézné obvodem §iif, dorazi nékteré slozky novych podnétii vyvolanych zm&nou na vstupy
vystupnich ¢lenti obvodu dfive, jiné pozdgji. V mezidobi od pfichodu prvni zmény podnétu do
posledni jsou tak vystupni Cleny vystaveny sérii pfechodovych kombinaci vstupnich podnéti,
na niZ reagujf sérif prechodovych vystupnich reakef. Pii nepifznivé konstelaci'® se tak mohou
na vystupech obvodu pfechodné vyskytnout impulsy nespravnych hodnot. Na rozdil od situace
na trovni logickych ¢lenti k tomu dojde i pfi At, = At, = At; uvnitf asového intervalu (Atemin,
Atrmax) po pifslusné vstupni zméné, a pro §itku At jednoho impulsu plati: At; < At < (Atrpax —
Atimin). Tyto impulsy jiz neskodné nejsou, protoZe nasledné logické &leny na né reaguji. ZvIast’
nebezpeénymi jsou v sekvencénich obvodech (viz pozn. pod ¢arou 19), v nichZ se zp&tnymi
vazbami udrZuji ve hie i delsi dobu a spolu s dal§imi diive &i pozdg&ji vzniklymi impulsy
nespravného vystupu dokéZi nepfedvidatelnym zpiisobem ovlivnit chovéni obvodu, piipadné

'7 Obvod realizuje logickou funkci X+ y+X-y=X-y+X-y=%-(J+y) =X.
'8 Konstelaci se zde rozumi soubdh vice faktordi, z nichz k nejvy j$im patii mor struktura
logického obvodu, dynamické struktury logickych ¢lenti do obvodu zapojenych a charakter vstupni zmgny.
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jej rozkmitat. Konstelace, vedouct k nez4doucfmu chovénf obvodu byvé v odborném Zargonu
oznadovana jako hazard.

V naSem jednoduchém logickém obvodu (Obr. 6.11) hazard vznikd jen pfi vstupni
zmén& 01 — 00, kterd by vystup obvodu ménit neméla. Pfesto jej na dobu At, zménf; ukaZeme
pro¢: Vstupni kombinace xy = 01 dodévé na (horni,dolni) vstupy ¢lenu E podnét (0,1), vstupni
kombinace xy = 00 dodév4 tamtéZ podnét (1,0). Na oba tyto podnéty ¢len E reaguje hodnotou
1, proto by mél vstupn{ zménu 01 — 00 ignorovat. V daném obvodu tomu ale tak nenf. Druhd
slozka nového podnétu (1,0), vyvolaného vstupni zménou 01 — 00 se §if{ kratSf vétvi, a proto
dorazi na dolnf vstup &lenu E o At; difve neZ prvni slozka na horn{ vstup. Pfechodng (po dobu
At;) se tak na vstupech &lenu E objevi podnét (0,0), na n&jZ ¢len E zareaguje vystupni
hodnotou 0.

Eliminace hazardi

Identifikaci a nasledné eliminaci hazardi v logickych obvodech se v technické praxi
vénuje znaéna pozornost. Metody eliminace hazardi vychéz{ z poznatku, Ze k nespravnému
vystupu dochézi uvnitt ¢asového intervalu (Atrmin, Atmax) O pHislusné vstupni zméné, a Ze
doby trvani prechodnych podnéti neptesihnou délku tohoto intervalu. Hazardy lze pak
eliminovat v podstat& tfemi zplisoby:

. Volbou dlouhych reakénich dob koncovych logickych ¢lent logického obvodu (zavadénim
tzv. tlumicich ¢lenti s reakéni dobou At; > (Atmmax — Atemin))-

2. Symetrizaci obvodi, tj. vytvdfenim obvodi se stejné dlouhymi vétvemi. Symetrizace miZe
byt:
o umél4 - zafazovani zpozd'ovacich ¢lenti (opakovacit) do kratsich vétvi obvodu;
e prirozend - konstrukce symetrickych obvodi.

. Vn&jif synchronizaci kombinagnich obvodi.”

w

ad 1. Je-li doba trvénf prechodné vstupni kombinace krat§f neZ reakéni doba ¢lenu, logicky
&len na ni nezareaguje. V obvodu na Obr. 6.11 by statilo prodlouZit reakéni dobu At,
relé E; snizenim tlaku odtrhovaci pruZiny na kotvu relé. ZvySenim hmotnosti kotvy lze
prodlouZit jak At, tak i At,.

ad 2. Umglou symetrizaci bychom provedli zafazenim opakovactho &lenu mezi proménnou y a
dolnf vstup logického modulu D. Kvili pfirozené symetrizaci je tfeba opustit koncepci
zavedenych moduldl (negétoru, logického sou¢tu a soudinu), v nichZ je u kazdého relé
vyuZit jen jeden kontakt, kontakty riznych relé jsou pevné propojeny a neni k nim
pifstup. A misto toho sestavovat logické obvody libovolnym propojovanim i vice
spinacich a rozpfnacich kontakti jednoho relé.?° V ramci tohoto piistupu by stejnou
funkei plnil tento symetricky obvod:

19 Realizace dopfednych logickych sitf (t]. sitf bez zp&tnych vazeb, v nichZ vystupy modulfl jsou pfipojeny jen ke
vstuplim nésledujicich moduldl) byvaji nazyvény kombinaénimi logickymi obvody. Kombina¢ni logické
obvody jsou systémy bez paméti a jejich vystup je jednoznatng uren posledni kombinact hodnot na vstupech
obvodu. Realizace logickych siti se zp&tnymi vazbami (vystup modulu je pfipojen i na vstupy téhoZ modulu &
na vstupy nékterych predchozich modulii) byvaji nazyvany sekvenénimi logickymi obvody. Sekvenéni logické
obvody jsou systémy s paméti. Informace zakédovand do kombinace vstupnich hodnot se v nich diky zp&tnym
vazbam udrZuje del§i dobu, vystup obvodu pak zdvisf na sekvenci vstupnich podn&tii a miiZe byt i nestabilni.

2 Tento Aln&jsi a iGtEj31 piistup ke i reléovych obvodi budeme nadile uZivat.
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Obr. 6.12

ad 3. PH tomto zptisobu se kombinaéni logicky obvod doplni o obvody vnéjsi synchronizace
napf. tak, jak je to uvedeno v nasledujicim schématu vnéjsi synchronizace obvodu se
tfemi binirnimi vstupy a dvéma binirnimi vystupy (Obr. 6.13): V ném kazdd vné&jsi
bindrni proménnd daného logického obvodu je vedena na dolni vstup svého
vzorkovactho hradla oteviraného synchronizanimi pulsy pfivadénymi z generitoru
pulsii na horni vstup.”' Vystupy vstupnich hradel jsou vedeny na piisluiné vstupy
logického obvodu, na vystupech vystupnich hradel ziskdvame jeho vysledné reakce. Pro
sftku oteviracich pulsti Aty plati Aty < Aty < Atryin, pro vzdalenost At, oteviracich pulst
plati At; > Atmax, kde Aty je reakéni doba hradla, Atmmin je nejkrat$i reakéni doba
logického obvodu, a Atrmax je nejdelsi reakéni doba téhoz.

au A
ZDROJ
SYNCHRON.
PULSU
x
KOMBINACN{ fi
LOGICKY
y OBVOD
D—‘ &
z
2! Princip funkce vzorkovaciho hradla si ime na nésledujicim siln& zjednodusené hé jeho

mozného zapojeni (neberoucim v potaz n&které energetické aspekty jeho funkce):

=1°

PFivadéné synchroniza¢ni pulsy prochazi civkou vzorkovaciho relé (horni vstup), jehoZ spinacim kontaktem je
hodnota vstupni proménné, pivadéné na dolni vstup, vzorkovana. Kondenzitor C je jednoduchym pam&fovym
prvkem: Pres sepnuty kontakt vzorkovaciho relé se nabiji (&i vybiji) na aktudlni hodnotu vzorkované vstupni
promeénné. Tuto hodnotu pak udrZuje na vystupu hradla i po rozepnuti vzorkovactho kontaktu (tj. aZ do

Zi orkovani dal$im synchroni pulsem). Reakéni doba hradla At, je souctem reakéni doby
vzorkovactho relé a doby potfebné k nabiti (i vybiti) kondenzatoru.
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Obr. 6.13

K eliminaci hazardi zde dochédzi nasledovné (viz Obr. 6.14): Za dobu Aty po pfichodu
prvniho zakresleného oteviraciho pulsu se na jednotlivych vstupech logického obvodu
objevi hodnoty aktudlniho podnétu, ktery se po dobu Atg = At; + At; (tj. aZ do okamZiku
zpozdéného o dobu Aty za piichodem dal$iho pulsu) nebude ménit. Pfechodové reakce
na tento podnét se na vystupech logického obvodu (nebo-li na vstupech vystupnich
hradel) objevi v dobé mezi okamzZiky 1 a 2. V té dobé jsou hradla zaviend, takZe na
jejich vystupy neproniknou. Nejpozdéji v okamZiku 2 se ustali spravna vystupni reakce
logického obvodu na aktudlni podnét a bude k dispozici na dolnich vstupech vystupnich
hradel nejméné do okamZiku 3. Proto ji druhy zakresleny oteviraci puls propusti na
vystupy vystupnich hradel, kde se udrZi také po dobu Atg = At; + Aty. Soucasné béhem
druhého oteviractho pulsu vstupni hradla ,,pfe¢tou” novy aktudlni podnét, ktery vyvold
piechodové reakce mezi okamziky 3 a 4, a spravnd reakce na néj se ustali nejpozdé&ji
v okamZiku 4. Ve se znovu opakuje.

At Atrax
Aty Atein Aty Atoin
At
1 2 5 4
= t
Aty Aty Aty Aty
Obr. 6.14

Synchronni a asynchronni obvody

Z uvedeného je ziejmé, Ze popsand vn&j§i synchronizace vnucuje vSem takto
synchronizovanym logickym obvodim umélou a jednotnou reakéni dobu Atg = At; + At,.
Nespravné reakce vyvolané hazardy se zde nemohou projevit, protoZe se vyskytuji pouze v
dob& uzavieni hradel a na jejich vystup neproniknou. Logickym obvodim s vné&jsi
synchronizaci se fikd synchronni obvody. Naproti tomu logickym obvodiim, u nichZ se
hazardy eliminujf jen symetrizaci struktury & tlumicimi &leny, a jejichZ reakéni doby jsou tak
dény jen piirozenymi fyzikdlnimi pfechodovymi d&ji jejich ¢lenti a nejsou ovliviiovény z
vn&jsku, se fikéd asynchronni obvody.

Pro spravnou funkci synchronnich (resp. asynchronnich) obvodi je nutné, aby
frekvence zmén vstupnich podnétii, udand poétem zmén za sekundu, nepfesdhla hodnotu
1/Atg (resp. 1/At;), kde reakéni dobu uddvdme v sekundédch. Asynchronni obvody tak mohou
byt mnohem rychlej$i nez obvody synchronni. Naproti tomu synchronni obvody obecné
funguji spolehlivéji neZ obvody asynchronni. S ohledem na tyto vlastnosti se asynchronnf
obvody uplatiiuji pfedevsim tam, kde se vyZaduje vysoka rychlost zpracovéani pozadavki
(napf. v fidicich systémech digitdlnich spojovacich systémi); synchronni obvody se uplatiiujf
zejména tam, kde se klade diraz na spolehlivost funkce (napf. v &islicovych pogitacich).
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Cviceni k lekci 6.

Piiklad 6.1: M4 se dokazat, Ze neekvivalence fs = X-y+x-y spolu s implikaci
fir = X-y+x-y+x-y=x+y nebo fi3= X-y+X-y+x-y=X+y tvoi uplny
soubor Booleovskych funkef.

Lze to dokdzat napf. tak, Ze zapojenim moduld realizujicich piislusné operatory
vytvofime Shefferovu funkci fi4 = X y+X:-y+x-y=X+y (viz nésledujici

schémata zapojeni modulti):

Obr. 6.15

Piiklad 6.2: M4 se dokdzat, Ze ekvivalence fo = Xy +x-y spolu s inhibici f; =x-3 nebo
f+= Xy tvoif dplny soubor Booleovskych funkci.

Lze to dokazat napf. tak, Ze zapojenim moduli realizujicich piislu$né operatory
vytvofime Peirceovu funkci fg = X-3 (viz nasledujici schémata zapojeni
modult):

Obr. 6.16

Priklad 6.3: M4 se navrhnout prevodnik pro vzdjemné jednoznacnou transformaci viech 2°
moznych hodnot vektoru (x,y,z) vstupnich binérnich proménnych do hodnot
signalii na 2° vystupnich portech oznagenych na Obr. 6.17 &sly 0 aZ 7. Pfitom se

pozaduje, aby pievodnik na vstupni kombinaci bindrn& reprezentujic &islo N na
vystupu odpovédél piftomnosti signalu pravé na portu &islo N.

o —
w —
»e—
»o—
o —
< —]

Obr. 6.17
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Reseni:

Jedni se o prevod vstupnich &fsel z bindrni soustavy do soustavy undrni, v niZ je
&slo déno poétem ,mrtvych® portd nachézejicich se nalevo od jediného
. Zivého* vystupntho portu. Kazdy vystupni port se miZe nachdzet ve dvou
stavech (,,zivy", ,mrtvy*), a Ize jej poklddat za binérni prom&nnou. Nasi unarn{
reprezentaci &fsla N lze tak ztotoZnit s fet€zcem, za&inajicim inverzi bindrniho
kédu &sla 2~ doplnénou zprava na potfebny rozmér nulami.?? Dochézime tak k
nasledujicf transformagnf tabulce pfevodniku, majici nenulové hodnoty pouze na
hlavni diagondle:

2 ¢ ow|le o o2 ¥ @4 g & 7

0O 0 0|1

0o 0 1 1

0 it 0 1

0 1 il 1

1 0o 0 1

1 0 1 1

1 1 0 1

1 1 1 1
Obr. 6.18

Tabulka definuje Booleovské funkce realizované jednotlivymi porty a z ni lze
odvodit abstraktni model ptevodniku ve formé nésledujict logické sité:

| ﬁ
....

0 i 2 3 4 5 6 7

Obr. 6.19

2 1verzi Fetézce cifer se zde rozumf uvedent cifer v opa&ném pofadi. Napt. pro N = 4 je 10000 bindrni kéd ¢isla
2N, Jeho inverzi je 00001 a po doplnéni nulami zprava na osm cifer dostévéme 00001000 (unarni reprezentace
&isla N =4).
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Zésadn( rozdil mezi vstupnimi a vystupnimi porty sit& spotivd v tom, Ze vstupni
porty zde predstavuji vzdjemn& nezdvislé bindrni proménné, zatimco vystupni
porty predstavuji mnoZinu &isel, z nichZ se jedno vybird (unarni kéd &fsla).
Alternativné lze na vystupni porty nahliZet jako na vzdjemné zdvislé bindrnf
proménné, jejichZ vzdjemny vztah je dén pravidly transformace vstupti na vystupy.

Uloha 6.1: Navrhnéte jednoduchy pfevodnik z uvedené osmiportové unérn{ soustavy na tii
fady binarni soustavy (pfechod z ,,osmidrétu na tifdrat).

Uloha 6.2: Hornf &4st logické sfté na Obr. 6.2 je jednim z moznych grafickych zndzornén{
struktury Booleovské funkce f). Zndzornéte strukturu téze funkce n&jakou jinou
logickou siti.

Piiklad 6.4: Transformacn{ funkci pfevodniku P zadanou tabulkou na Obr. 5.10 (Ptiklad 5.4)
Jje moZno vyjadtit Karnaughovou mapou na Obr. 6.20 a z nf pak odvodit piislusné
Booleovské vyrazy pro fy, fi, f; a f.

- 3 fo=R-AB
[ooo1 T 0001 | 0001 [ 0001 | fi=R-(A-B+A-B)
R
| ["1000 [ 0100 | 0010 | 0100 |A S RUAE
fi=R

Obr. 6.20

Z nich vyplyvd, Ze pievodnik je moZno realizovat reléovym kontaktovym
obvodem, jehoZ schéma je uvedeno na Obr. 6.21.

Obr. 6.21

Piiklad 6.5:
Prvky kontaktovych obvodii

Doposud jsme pedpokladali, Ze do logickych obvodii vstupuji z okolf bindrn{ signély,
které pak obvody déle zpracov4vaji. Konkrétng v kontaktovych obvodech mély tyto signaly
formu elektrickych potenciald, pivadénych na civky relé vstupnich ¢lent. Tak tomu obvykle
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byvd zejména v pifpadech, kdy jsou vstupy daného obvodu piipojeny k vystuptim jinych

prvky, mezi néZ patif spinace, prepinade a tlagitka.

Tlacitka jsou klasickymi monostabilnimi prvky, s jednim stabilnim stavem
(nestisknuto), ve druhém - nestabilnim (stisknuto) je tfeba drZet je vn&jsi silou. Na Obr. 6.22
je schématické znacka tlacitka spinaciho, rozpinaciho a kombinovaného:

Obr. 6.22

Naproti tomu dvoupolohové spinace a prepinace jsou bistabilnimi prvky a mohou byt
oto¢né ¢&i preklapéci. Schématické znalky (postupné zleva doprava) prekldpéciho spinace,
dvoupolohového pieklapéciho piepinace, prekldpéciho kifZového piepinace a vicepolohového
oto¢ného piepinace jsou na Obr. 6.23:

Obr. 6.23

Ovladaci prvky privadi napéti k civkam vykonnych prvkii ¢i zapojuji do obvodu slaboproudé
spotfebide, jakymi jsou napt. Zarovky. K vykonnym prvkiim patii ndm uZ znama slaboproudé
relé a navic i silnoprouda relé, tzv. stykace, které svymi silnoproudymi kontakty pfipojuji ke
zdrojim elektrické energie silnoproudé spotiebice, jako napi. elektromotory, topnd télesa
apod. Schéma stykace vidime na Obr. 6.24. Zikladem stykace je silny elektromagnet, jehoz
civku vidime uprostied. Kotva elektromagnetu spind jak masivni silnoproudé kontakty (na
obr. vlevo), tak slaboproudé kontakty (na obr. vpravo). Silnoproudy (vykonovy) a slaboproudy
(tidici) obvod stykace jsou od sebe oddéleny.

14 |
[

Obr. 6.24

Ptiklad 6.6:
Jednoduché obvody s ovlddacimi a vykonnymi prvi

Na Obr. 6.25 jsou uvedena zdkladni schémata zapojeni monostabilniho (vlevo) a
bistabilniho (vpravo) klopného obvodu pro ovladéni elektrického spotiebice (Zarovky).

—J:= aal = O—ON
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Obr. 6.25

Na Obr. 6.26 vidime bistabilni klopné obvody ovlidané z vice mist (v praxi Casto
uzivand zapojeni schodidfovych vypina&l, v nichZ ke zvySovani poctu ovladacich mist
dochézf vkladanim dalSich kiiZovych prepinadii):

Obr. 6.26

Na Obr. 6.27 vlevo je schéma zapojeni reléového astabilntho multivibrdtoru, neboli
generétoru obdéIntkovych pulsi. V praxi je toto zapojeni pouZito mimo jiné i u elektrického
zvonku.

+

T i e -
A s

A, At X7

Obr. 6.27
Na Obr. 6.27 vpravo vidime zapojent silovych obvodii dvojice stykaCl pro reverzaci

chodu tiifazového asynchronntho indukéniho elektromotoru. Zapojeni fidicich kontaktti
stykacl nesmf pfipustit soutasné sepnutf obou styka&ii (zkrat féz{ X a Y) - viz Ptiklad 7.3.
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7. Implementace a realizace automatu

Vime, Ze pétice (S, I, O, 8, B), v niZ S, I, O jsou neprazdné kone&né mnoziny a funkce
8: SXI — S a B: SXI — O jsou spolu svdzany nékterym z funk&nich schémat uvedenych v
¢lanku 3.3. (morfologicka struktura v roving teoretické), je algebraickym popisem koneéného
sekvenéniho abstraktniho stroje zvaného kone¢ny automat. Jde o mechanismus, ktery (z isté
vnéjsiho pohledu) Easovym posloupnostem hodnot z mnoZiny I piifazuje Sasové posloupnosti
hodnot z mnoZiny O. Realizovat tento automat znamend vytvofit stroj uritého typu, ktery by
préave toto délal. Takovym strojem muZe napf. byt:

a) program pro ¢islicovy pocita¢ ¢ vhodné naprogramovany mikroprocesor (zde mluvime o
simulaci automatu),

b) VLSI' obvod realizujici mikroCip na bézi kanonické sité automatu,

c) synchronni ¢i asynchronni logicky obvod sestaveny ze spinacich prvkd dané fyzikdlni
podstaty (pneumatickych ¢i hydraulickych prvki, elektronickych spinacich prvkd,
elektromagnetickych rel€ a jejich kontaktii apod.).

Proces zrodu kazdého takového stroje ma dvé zakladni fize. V prvni fazi, nazvané
implementace automatu, navrhneme model stroje. Druhou f4z{ je fyzicka realizace tohoto
modelu:

ad a) Implementaénim modelem softwarové &i mikroprocesorové simulace automatu je
vyvojovy diagram algoritmii pfechodové a vystupni funkce, popsanych pifslugnymi
tabulkami. Fyzickou realizaci zde rozumime piepis vyvojového diagramu do formy
akceptovatelné pocitacem ¢i mikroprocesorem, tj. do piislusného programovaciho
jazyka ¢i do sekvence mikroinstrukei mikroprocesoru.

ad b) V pifpadé realizace automatu VLSI obvodem je implementaénim modelem kanonick4
sit’ automatu, fyzickou realizaci pak p¥islusny mikrodip vytvoreny VLSI obvodem.

ad c¢) V ptipad¢ realizace logickym obvodem je vysledkem implementace automatu logicka
sit, popsand systémem Booleovskych funkci nebo schématem zapojeni logickych
modulii. Fyzickou realizaci na bazi kontaktovych obvodi je pak odpovidajici vodivé
propojent civek relé, jejich kontaktt, a zajisténi potfebného asovani signéli.

V nisledujicich dvou ¢léncich této lekce pojedndme o implementaci i realizaci obecné
a vyklad doprovodime piikladem implementace automatu logickou siti a jeji realizace
kontaktovym obvodem. Ve tfetim ¢lanku pfedstavime kanonickou sit’ automatu, k softwarové
a mikroprocesorové simulaci se vritime az v ¢lanku ¢tvrtém. V poslednim pétém &lénku
budeme fesit tlohu opacnou: Jak z daného schématu zapojeni logické sité ¢i kontaktového

obvodu zjistit, co dany stroj ,,d€la, a jak vysledek prezentovat ve form& kone&ného automatu.
7.1. Implementace automatu

Filosofie implementace vychdzi z poznatku o jednoznagnosti analyzy, ktery iika, Ze
systémy s podobnou dynamickou strukturou (tj. s podobnym mechanismem zmén) se musf i
podobné chovat. PoZadavek nejvyssi dosazitelné podobnosti chovani stroje a jeho vzoru -

implementovaného automatu - si tak vynucuje nejvyssi dosaZitelnou podobnost dynamické
struktury stroje s dynamickou strukturou vzoru. A té lze dosahnout postupnym vérnym

! VLSI (Very Large Scale Integration) obvod je obvodem s velmi vysokou koncentraci polovodivych prechodii.
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prenosem dynamické struktury (mechanismu) implementovaného automatu do mechanismu
stroje. Parametry dynamické struktury (napf. podet stavi) zdvisi i na volbé funkéniho
schématu (morfologicka struktura v roving teoretické). Proto v&my prenos mechanismu
obvykle za¢in pfenosem funkéniho schématu implementovaného automatu do morfologické
struktury stroje.

Po proveden{ tohoto kroku bude ¢4sti neboli podstrukturou morfologické struktury G
stroje morfologickd struktura H’, izomorfni? s funkénim schématem implementovaného
automatu (viz Obr. 7.1):

Obr. 7.1

H” vymezuje v G implementaci ovlivnitelnou oblast a soucasné zajistuje i
proveditelnost vémého prenosu tim, Ze pro n& vytvai{ vhodny rdmec. Vémé prenést
mechanismus automatu do mechanismu stroje pak v praxi znamen4 spravn& naplnit tento
ramec. K tomu je tfeba provést fadu spolu souvisejicich krokil. Uvedeme si je v jejich
prirozeném sledu na konkrétnim pikladu implementace automatu ME logickou sitf.

Priklad implementace
Zadani:

Logickou sitf se tfemi bindrnimi vstupy Xi, Xz, X3 a tfemi bindrnimi vystupy y1, y2, y3 s
hodnotami signdlti 0 a 1

X1 N

X2 ? Y2

X3 Y3
Obr. 7.2

implementovat automat ME = (S, I, O, §, B), S = {o, € v}, 1= {A, B, C}, 0 = {a, b, c}, v
némz funkce 3 a B jsou popsany nasledujicim grafem ¢&i tabulkou

2 Izomorfni znamend identicky aZ na piejmenovani prvkii. Izomorfizmus je vysoky stupefi strukturdlni
podobnosti, nésledujici hned za rovnostf neboli identitou (izo = stejny, morphé = tvar).
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| A B @

Cle
Ala . o | (a) (e0) (aub)
Ala CJa B/E e | &) (eb) (1.0
D v | (@) (b (ea)
—————p
Blc

C/b

Obr. 7.3

tak, aby A = (1,0,0)=a, B = (0,1,0)=b,aC = (0,0,1) =c.

ReSenf:

V souladu s vySe uvedenym bude prvnim krokem vémého pfenosu mechanismu
automatu ME vytvofeni rdmcové morfologické struktury H” logické sité. Dostaneme ji
prostym pienesenim funkéniho schématu automatu ME (na Obr. 7.4 vlevo) do prostiedf
logické sité (na Obr. 7.4 vpravo):

i i

iel

Lo = b [
St S2 02

=0"={00, 01, 10, 11}

icl” seS”
Obr. 7.4

Vidime, Ze struktura H” je funkénim schématem jistého automatu ME” = (S°, I’, O7,
8%, B), a Ze toto funkéni schéma je izomorfni s funkénim schématem implementovaného
automatu ME. Pocet paralelnich cest kazdé sbérnice piendSejici piislusnd data automatu ME”
je dén potiebou prosté zobrazitelnosti mnozin S, I, O do mnozin S’, I’, O” vektorii hodnot
bindrnich signali pfendSenych paralelnimi cestami pifslu$né sbérnice. Je totiZ tieba po nich
piendset stejné mnoZstvi dat jako po cestich funkéniho schématu automatu ME. V piipadé
tifprvkovych mnoZin stadi dvourozm&mé binarni vektory. Casovd zpoZdéni ve zpétnych
vazbich zohlednime aZ ve fizi fyzické realizace. Pii poZadavku maximélni operaéni rychlosti
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asynchronntho obvodu (jfmZ budeme v nafem piipadé sit' realizovat) vyuZijeme jen
pfirozenych reakénich dob a Zadn4 dodatena zpozdéni nezavedeme.

Vyse uvedené schéma logické sité definuje vstupy vektorové funkce [8°,87], tj. vstupy
do jeji tabulky. ProtoZe se jedna o tabulku logické funkce, je vyhodné vyjadiit ji ve formé
Karnaughovy mapy.

(67871
I
S'\I"| 00 | 01 ] 10| 11
00
01 =
10 S
11
st o
Tabulka pfechodové a e
vystupni funkce
Obr. 7.5

Vérny prenos mechanismu automatu ME do logické sité pak zajistime spradvnym
vyplnénim poli této Karnaughovy mapy, ¢imZ vytvoiime adekvatni pfechodovou funkci 8" a
vystupni funkci B~ automatu ME’. K tomu je tfeba provést nasledujici tfi kroky:

. Zvolit trojici injektivnich neboli prostych zobrazeni ¢: S — S, & 1> 1", w: O — O, (ve
tvaru @(s) = 182 = s, (i) = ijiz = i, ®(0) = 0,0, = 0) zvanych kédovaci funkce a jimi
piifadit prvkiim mnoZin automatu ME (vzortim) vektory hodnot bindrnich proménnych sité
(obrazy). V naSem piipadeé tato zobrazeni volime takto:

|b|c

s|a|£|y i|A|B]|C o a
o(s)[ 00 ] 01| 10 gi| o1 [10] 11 (o) [ 000111
Obr. 7.6

N

Uvést v roving obrazii (tj. v Karnaughové mapé vektorové funkce [8°,8°]) vstupni a
vystupni hodnoty do vztahti fundamentdlné analogickych ke vztahtim, definovanym v
roviné vzorti prechodovou funkei & a vystupni funkei B (viz Obr. 7.3). Vysledek tohoto
kroku vidime na Obr. 7.7.

* Tabulka prechodové a vystupni funkce automatu ME pfifazuje kazdé kombinaci soucasného stavu s € S a
vstupniho podnétu i € I (vstupy do tabulky) bezprostfedn& nésledujici stav 8(s,i) € S a reakci B(s,i) € O
(vystup z tabulky), &mZ k danému pocdtetnimu stavu so € S a posloupnosti igiy,iz... vstupnich podnéti
jednozna¢ng definuje posloupnost 0g,0;,02... vystupnich reakei. Hodnoty (8(s,i),8(s,1) jsou v tabulce zapsany v
poli o soufadnicich (s,i). Tento vztah mezi podnéty na stran€ jedné a reakcemi na stran€ druhé je (vzhledem k
danému funkénimu schématu automatu ME) rdmcové popsén levym ¢&i pravym algebraickym diagramem

le_&L’SXO 0<—p—le—-8—>S

Fundamentdlng analogicky vztah

S’XI’—LS'/ Sx0” 0"—‘5—/ S’xl'—’ﬁl S
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3. Pokud po provedeni kroku 2 ziistala v Karnaughové mapé volna pole (tak jak je tomu vi v
nasem piipadé), vyplnime je tak, abychom z mapy ziskali co nejjednodussi Booleovské
vyrazy. Detailni postup je uveden na Obr. 7.9 a Obr. 7.10: Parcidlni Karnaughova mapa z
Obr. 7.7 je na Obr. 7.9 rozloZena do dvou map (vlevo je mapa pro 8" SXI” — S, vpravo
je mapa pro B: S’XI” — O"). Kazda z nich je na Obr. 7.10 déle rozloZena do slozek s;(t+1)
a sy(t+1) vektoru s (vlevo), respektive do slozek 0; a 0, vektoru o (vpravo). Parcidlni
Karnaughovy mapy sloZek jsou na tplné Karnaughovy mapy doplnény tak, aby v nich
vznikly velké a souvislé bloky jedniek (v souladu se zvolenou technikou zjednodugovan{
Booleovskych vyrazii). Takto vzniklé Booleovské vyrazy slozek funkei 8" a B~ jsou v Obr.
7.10 ptipsany pod pifslusné Karnaughovy mapy.

v automatu ME” ziskdme tak, Ze:

© Soufadnicim (s,i) pole (v némZ je vepsina hodnota (8(s,i),B(s,i)) - hodnota vzoru) tabulky pfechodové a
vystupni funkce [8,8] automatu ME pfifadime paralelnim zobrazenim @x&: SXI — S°XI” soufadnice
(0(5).&(i)) souvztazného pole v Karnaughové mapé vektorové funkce [57,87].

* Do tohoto pole Karnaughovy mapy vepiSeme hodnotu (¢(8(s,i)),eXB(s,i))), kterd je vysledkem paralelniho
zobrazeni @x®: SXO — SO hodnoty souvztazného pole (hodnoty vzoru) v tabulce [8,B].

Souvztaznymi poli jsou napf. pole o soufadnicich (%B) v tabulce [8,8] na Obr. 7.3 a pole o soufadnicich
(10,10) v Karnaughové mapé [8,37] na Obr. 7.7, nebot @(p) = s = s;5, = 10 = iyi, = i = (B). Proto jak v
Karnaughové mapg, tak i z ni odvozené tabulce prechodové a vystupni funkce automatu ME” nachézime v poli
o soufadnicich (10,10) hodnotu (00,01), nebot’ 00 = s;5, = s = @(ct), 01 = 0,0, = 0 = (b), kde (a,b) je hodnota
souvztazného pole (hodnota vzoru) v tabulce [§,B].

Popsany vérny pfenos mechanismu lze graficky zndzornit t&mito ickymi diagramy r

zobrazeni:
SxI—S'L>SxO o ‘_LSXIL*S

e e T e Tk

5XI" ——— §'%0’ o—f s %
0br.7.8

V levém diagramu zobrazeni @& véZe souvztaznd pole tabulek pfechodovych a vystupnich funkef a zobrazeni
@xo transformuje hodnotu vzoru na hodnotu obrazu. Pravy diagram je rozkladem levého diagramu podle
sloZek vektorovych funkei, vytvafejicich dvé dil&f ,.okna*. Z popsaného postupu vérného pfenosu mechanismu
plyne, Ze od soufadnice (s,i) € SXI Ize k hodnoté obrazu (9(8(s,)),0(B(s,1))) € SXO” dojit dvéma riiznymi
cestami (viz levy diagram): dolni cestou ve sm&ru kompozice zobrazenf [8",3]°(¢xE), a horni cestou ve sméru
kompozice zobrazeni (¢xw)°[8,B], proto plati rovnost [8°,371°(gXE) = (¢xw)°[8,B], matematicky deklarujici
nezdvislost vysledku na cestg, kterou byl dosaZen. V terminologii abstraktnf algebry se jedné o tzv. podminku
komutace algebraického diagramu, kterd se rozepsdnim do slozek vektorovych funkei rozpadne na dvojici
podminek §°(Qx€) = ¢°8 a B°(gxE) = w°B. Prvni je podminkou komutace pravého okna, druhd je podminkou
komutace levého okna pravého algebraického diagramu.
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(87,67
iz
1 00.01 |0L11 S’\I’| 00 01 10 il
| 2 00 10,00 | 01,11 | 00,01
0121310 1010k = 01 01,11 | 01,01 | 10,11
Sz 10 00,00 | 00,01 | 01,00
00,00 [ 01,00 | 00,01 T
S ——
01/00 AN
01/11
01/00 10001
‘ 10/01
————
a 10/11
11/01
Obr. 7.7
(s,0)
ip
10,00 | 00,01 | 01,11
01,11 | 10,11 | 01,01
‘ 00,00 01,00 [00,01|
sy —_
) /\ .
10 00 01 00 01 11
01|10 o1 1 (1 o1
00 o1 oo 2 ‘ 00 |00 o1
S il S

Obr. 7.9
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i1 _Jo TJo 1o Jo [z
olo 1 o o[z 1 To

o[ o 1 o}, of 1 1 o],

oo o o 2 olo o o 2

s — i s1 _
St =i, 8 5, + 0, 0y 5, o1= 10y 8 5+ i, 5,
12 12
1o 0 1 1o il i
ir Jo 1 1 |1 |1

1 1 1] off, i af 1,

olo 1 TJo & 1o Jo [z 4

1 —_— s1 _
Sut+l) =4, 5, + 4y 8, + 0y 6y 5, =i+ 8, + s

Obr. 7.10

Slou¢enim doplnénych dil¢ich map podle Obr. 7.10 vznikne Karnaughova mapa dplné
vektorové funkce [8°,87] a ji odpovidajici automat ME” (viz Obr. 7.11).

iz [6°8]
11,11 10,00 [00,01 [ 01,11

S\I"| 00 | oL 10 | 11
00 | 11,11 [ 10,00 | 01,11 | 00,01
v IROL LD, IO LOT = 01 | 01,01 | 0111|0101 | 10,11

01,01 (01,11 11,11 [00,01 % 10 | 00,01 | 00,00 | 00,01 | 01,00
00,01 | 00,00 | 01,00 | 00,01 11 01,01 | 01,11 | 00,01 | 11,11

S1 ——— ]

11/0Q

01/00
10/01, 00/01

01/00
01/11
10/01, 00/01

10/11
10/01

11/ 0wt 0001

§
(v jm
N
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Obr. 7.11

Vlevo je Karnaughova mapa, vpravo ji odpovidajici tabulka pfechodové a vystupni funkce, a
pod tim dynamicka struktura automatu ME” = (S*, 1", 0", §", ) vytvofeného logickou sit{. K
vérnému pienosu mechanismu implementovaného automatu ME doslo v kroku 2; vysledky
tohoto kroku jsou v mapg, tabulce i grafu vyznageny silné a proloZeng. V grafu vytvoreného
ME" je patrny podgraf izomorfni s grafem implementovaného ME, svédéici o shodé v
mechanismech obou automatt.

Vytvofenim automatu ME” (obrazu) zohlediujictho mechanismus automatu ME
(vzoru) féze implementace je$t¢ nekonéi. Vysledkem implementace méi byt model stroje,
ktery ,,déla“ pfesné to, co automat ME. A to, jak vidno, automat ME” nedéld. Automat ME
funguje v prostiedi s obecnymi vné&j§imi proménnymi I a O, automat ME" v prostiedi s
bindrnimi vektorovymi vné&j§imi proménnymi I a O”. V terminologii matematické lingvistiky
mé mechanismus automatu ME” jak sloZit&jsi abecedu (vice vstupnich podnétl a vystupnich
reakef), tak i sloZit&jsf gramatiku (vice stavii a pfechodd, tj. vice pravidel). Aby automat ME”
,,délal“ to, co automat ME, je tieba jej pfimét reagovat na podnéty z mnoZiny I, udrZet jej v
siln& vyznacené podmnozing stavii jeho pfechodového grafu, a prevést jeho reakce z mnoziny
O’ na adekvétni reakce z mnoziny O.

K tomu je nutné a stacf piipojit vstup automatu ME” na vystup vstupniho pfevodniku s
kédovaci funkei & I — I, kterou jsme pfi vérném pienosu struktury jiz pouzili, a na vystup
automatu ME” pfipojit vstup vystupniho pfevodniku s transformacni funkci (7507 =0,
pfi¢emz souvislost transformacni funkce o's jiz pouzitou kédovaci funkei ® je zfejmé z
porovnani jejich tabulek:

0—0" 010" =0
o | a | b | ¢ o |o00]|o1]10]11
w0)| 00 [ o1 | 11 o'@| a b | -]c¢
Obr. 7.12

Transformaéni funkce @' vznikne libovolngm dodefinovanim parcidlni funkce
inverzni ke kédovaci funkci @ na funkei dplnou. Kompozice funkei o '° je identitou na
mnoziné O. Situace pak vypada takto:

prostiedi s obecnymi
proménnymi

prostiedi s binarnimi
proménnymi (logicka sit’)

Obr. 7.13

a model stroje dostévé nasledujici obecnou podobu:
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Obr. 7.14

K tomu, aby se uvedeny model stroje choval vskutku tak, jako automat ME ve stavu
s € S, stadf nastavit automat ME” do stavu ¢(s) € S”.* Je tomu tak proto, Ze na§ model stroje
je automatem schopnym simulovat (viz ¢lanek 5.3.) chovéan{ implementovaného automatu ME
astavy s a @(s) jsou ekvivalentnimi stavy.’

& Pripojeni vstupniho pfevodniku s kédovaci funkei & spolu s nastavenim automatu ME” do pociteéniho stavu

@(s) za)lsu stdlou existenci prvniho tseku spodnich cest (tj. zobrazeni X&) v pravém algebraickém diagramu

i (viz pfedchozi & pod &arou). Slozku & priib&Zn& vytvaii ptevodnik, slozku @

pak priib&Zng generuje spole¢nd &st mechanismu obou automatil. Plyne to z podminky komutace pravého

okna ve tvaru 87°(¢xE) = @°, kterd Fikd, %e vazba okamZitych stavil zobrazenim @ se prendsi na nésledniky

(presnji: kazdé dva stavy, jeden v ME, druhy v ME", pokud budou vdzény zobrazenim @: S — S, budou mit
na kazdy vstup i € I své nasledniky také vdzdny zobrazenim ¢: S — S).

Podminka komutace levého okna ve tvaru B°(gx&) = °B k tomu dod4vé, Ze pritom vystup z ME” (levd strana

rovnice) bude stejny, jaky bychom ziskali kédovanim v)"slupu z ME funkei o (pravéd strana rovnice). Po

pripojenf vystupniho pfevodniku s transformacni funkei o™: O° — O splitujici pozadavek w™'°o = 1na

vyslupu ze stroje dostaneme @’ "ﬂ ‘{wX{) = 0 '°0°B = 1°B = A. Prolozen& vyznaten4 rovnost je podminkou
levého okna algeb: ictho do souvislosti viechny funkéni vztahy mezi
ajeho i im modelem (viz nasledujici Obr. 7.15):

i
o @ i e = g

o oxE o 3°(ex€) =98
. ’ o oBr(exe) =B

(OF e i 2o

Obr. 7.15

° Na vstupni fetézec x € 1" zareaguje automat ME ve stavu s € S vystupnim fetézcem B*(s, x), a nas
lmplememaém model ve stavu @(s) € S” zareaguje na ste]ny vstupni fetézec vystupnim fetézcem
@ (B(9(s), &'(x))). Dokdzeme-li platnost rovnosti @™ (B~*(q(s), E'(x))) = B'(s, x) pro VxeI', dokdzeme, Ze
stavy s a @(s) jsou ekvivalentni stavy. Ditkaz provedeme indukci na délku fetézce a vyjdeme pti ném z
nsledujicich predpokladii:
L. :A>B,f: A" B, (€€ A", [e]=0,) = (f'(e) =€), (ajayas...a,=x € A") = (' (x) = fa)f(ar)f(as)...f(an),
V(a€ A, x€ A"): f'(ax) = f(a)f'(x) - definice f* jako roziFeni f na Fetézce prvkii definicniho oboru A;

2. 8'(s, &) =s, 8'(s, ix) =8"(8(s, i), x); B(s.€) =€, B'(s, ix) = B(s, )B(S(s, i), x), kdeie Is€ S,
x € I' - rozsifent prechodové a vystupni funkce na Fetézce;
3. 8@(s), ED) = 98(s, i), o' (B(@(s), E(0)) = B(s, i) - podminky k Igebraického di

Diikaz (horni index u rovnitka odkazuje na pouzity pi‘edpoklad pro substiluci)
e pro x| =0, tedy prox = &, @ "(B"(0(s). E'(e “‘([5 (@), 8) =2 0 "(e) =" £ =2 B'(s. £);
* proki=1 tedyprox=ic, wAB_(@i s). £ m Lo (B @) &lie) =
o (B0, EDB(8(@(s), ED), ©) = 0 (B (0(5), EM)) =" & B @(s), ED)) = Bs, D) =* B'(s.i)-
o Induktivni krok: z pfedpokladu platnosti
@796, E@) =B ) profi=n  (¥)
dokdzeme platnost pro [ix| = n+1.
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Poslednimi kroky implementace je konstrukce pfevodniku z I do 1" (kodéru) a
pievodniku z O” do O (dekodéru) v prostiedi logické sité. Z pohledu logické sité se sou¢asnd
situace v ndmi zvazovaném piipadé jevi tak, jak ji popisuje Obr. 7.16:

X1 1 (o} Y1
~1
x g ME’ <) y2
X3 12 02 YJ
g X | 100 010 | 001 . o |oo]o1 |11
i Jor 1011 * "y |100]o10]001
Obr. 7.16

Na ném je jiZz Casteéné rozkryta struktura bloku oznaceného v Obr. 7.2 otaznikem. V
prevodnich tabulkdch x = (X1,X2,X3), i = (i1,i2), 0 = (01,02), ¥ = (Y1,¥2.y3), a piislusné
transformaéni vztahy jsou disledkem pozadavku (viz zadani piikladu) A = (1,0,0) = a, B =
(0,1,0) = b, a C = (0,0,1) = ¢ a dalsich dil¢ich transformacnich vztahti z Obr. 7.6 a Obr. 7.12.
Podrobna struktura ME” je uvedena na Obr. 7.4, jeji funkce je z pohledu teorie automatti
zfejmd z Obr. 7.11 a v prostiedi sekvencnich logickych siti je popsdna soustavou
Booleovskych vyrazi (viz Obr. 7.10)

1 S H s s = 4 s+

si(t+l) = Z R S

Ofi=NE s (S, -+ i s, Rl0p = LR bR T B

Na Obr. 7.17 vidime Karnaughovy mapy kodéru a dekodéru. Silné a proloZené jsou v
nich zapsdny hodnoty parcialnich funkei & a o' definované pievodnimi tabulkami na Obr.
7.16, a jejich rozsiteni na funkce dplné bylo opét zvoleno tak, aby dalo co nejjednodussi
Booleovské vyrazy.

X3
1111 10[10 100 |010
01 01| 00| 00 101|001
X1 X2 (W] 02
M= 5o S 5 Y1=0,, ¥2= 0,05, Y3= 0,
@b

Je zfejmé, Ze pii takto zvoleném rozfteni funkef & a o kodér pouze neguje své
vstupy X; a Xz, zatimco vstup x3 zcela ignoruje; dekodér na vystupu y; vydavé sviij vstup oy,
nay; vydava negaci svého vstupu 0, a na y, vydavé konjunkci negaci ostatnich vystupt.

O (B (s, Ex)) =' 0 (B (9(s), EDE ) = 0 (B (@), E@B (B (0(s), 1), E'@))) =
o' (B(9(s), E(0)) 0B (B (9(s), &), E'x)) =" Bs, DB (B (@(s), &), E'®)) =
B(s, D (B (0@(s, 1)), E'(x))) = B(s, B (S(s, i), ) => B'(s. ix). Tim je ditkaz dokoncen.
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Po zohlednéni téchto fakt bude kone¢nym vysledkem implementace naseho automatu ME
logicka sit’ zndzorn&nd na ndsledujicfm obrazku:

01 Q)
X1 Y
X2 e y2
02 =g
X3 ¥3
Obr. 7.18

7.2. Realizace logické sité automatu kontaktovym obvodem

V souladu s tim, co bylo fedeno v tvodu této lekce, je cilem ndsledujici fize
konstrukce stroje ,,fungujiciho stejn&* jako automat ME z Obr. 7.3, névrh schématu logického
obvodu, realizujictho logickou sit' z Obr. 7.18. Tato sit’ byla v ptedchozim &lénku popséna

timto systémem deviti Booleovskych vyrazii:

o SIS S 0 SR8

SEIDI= 0 Siar S
01 = sy £ sy
& 5 U Oy

SCN OB S R U RNt e
1
=

UZijeme-li k negaci piislusnych vyrazti De Morganovych zikoni Booleovy algebry
(viz ¢lanek 6.2), pak substituci vyrazii 5. a 6. do vyrazii 1. az 4. a vyrazd 3. a 4. do vyrazi 7.
az 9. vyfadime z popisu sit¢ vnitin{ prom&nné iy, i, 01, 05 a popis struktury logické sité se tim
transformuje do nésledujici soustavy p&ti Booleovskych vyrazi:
SR SR s s, e ol
sy(t+1) = x. E+ x5, + x_l Z ST
EEACTEIER
V2= (X8, )(%, +5,48,)(X,+ X, 5, +5,),
V3= %, S, 4%, 5,
Fyzické realizace stroje bude zdviset na tom, z jakych logickych &lent chceme obvod

sestavit. Pokud bychom jej sestavovali z tif typti logickych €lenti provadgjicich undrni operaci
negace, bindrn{ operace konjunkce a disjunkce (viz druhy aZ &tvrty modul shora na Obr. 6.9),
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sestavili bychom (podobn& jako na Obr. 6.2) k dané soustavé Booleovskych vyrazi ji
odpovidajici logickou sit’, a stejnym zptisobem, jakym by v ni byly propojeny vstupy a
vystupy jednotlivych moduld, bychom v logickém obvodu propojili vstupy a vystupy jim
odpovidajicich logickych ¢lend.

Pokud bychom pozadovali homogenni logicky obvod (na bazi ¢lent realizujicich bud’
Peirceovu nebo Shefferovu funkci), nahradili bychom nejprve ve vySe zminéné logické siti
bud’ moduly konjunkce nebo moduly disjunkce piislusnym schématem podle Obr. 6.3. Tim
bychom dostali sit’ jen se dvéma typy modulti a jejich substituci schématy podle Obr. 6.5
bychom ziskali vyslednou homogenni logickou sit. Podle schématu zapojeni modult v této
siti bychom pak propojili vstupy a vystupy jednotlivych stejnorodych ¢lent obvodu.

Ve shodé s pozndmkou pod ¢arou 19 ¢lanku 6.3 sestavime nés$ obvod ze samostatnych
relé s vétsim poctem spinacich i rozpinacich kontakt. Konkrétné pouZijeme Ctyfi relé X, Xo,
S; a S, s nasledujicimi pocty kontakti:

X - 3 spinacf a 3 rozpinacf,
X; - 5 spinacich a 4 rozpinaci,
S - 3 spinaci a 4 rozpinact,
S, - 5 spinacich a 4 rozpinaci.

Ctyki civky téchto relé a viech 31 jejich kontaktii pak propojime (tak jak prikazuje
vyse uvedena pétice Booleovskych vyrazii) do obvodu dle schématu na Obr. 7.19. Kontaktovy
obvod bude pracovat v asynchronnim rezimu, doby pfitahu i odpadu vSech &ty relé budou
nastaveny na stejnou hodnotu At a vné&jsi podnéty budou na vstup prichézet s frekvenci 1/At
(¢fmZ pro okamziky diskrétniho ¢asu dostdvame tyy1 = t, + At). Ze se jednd o sekvenéni obvod
(obvod s paméti) je zfejmé z toho, Ze civky relé S; a S, jsou spindny i svymi kontakty

(realizace zpétnych vazeb v Sifenf signalu).
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X1
X2

X3

Obr. 7.19

7.3. Kanonicka sit’ automatu

Logicka sit’ na Obr. 7.4, reflektujici funk&ni schéma implementovaného automatu, je
siti bindrni. Logické moduly 8" a B” vni zapojené provddi nad pifsluSnymi binarnmi
proménnymi Booleovské operace (definované algebraickymi vyrazy pod Karnaughovymi
mapami na Obr. 7.10), jejichZ vysledky jsou (v diisledku vémého ptenosu struktury automatu
popsaného v &linku 7.1.) ve shod€ s vysledky obecn&jsich operaci, definovanych v
implementovaném automatu funkcemi & a B. KaZdy spoj v této bindrnf logické siti predstavuje
jednu bindrni proménnou, nabyvajici hodnot z mnoziny {0,1}, a proto lze tuto sit’ ,,usit na
miru jen t&m automatim, v nichZ pocty stavii, vstupnich podnétii i vystupnich podnéti jsou
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mocninami &sla 2.V ostatnich pfipadech musime politat s tim, Ze chovani
implementovaného automatu bude jen segmentem chovani této binrn{ logické sité (viz Obr.
7.11), kterou v pozadovanych mezich drZi jen vstupni a vystupni pievodniky spolu s
nastavenim vychozi (po¢ateéni) hodnoty stavu sité (viz Obr. 7.18).

Alternativou k binérni logické siti na Obr. 7.4 je logicka sit’ na Obr. 7.20, ktera misto
funk&niho schématu reflektuje tabulku pfechodové a vystupni funkce implementovaného
automatu (zadanou na Obr. 7.3):

| A B (@
a | (a) (e0) (ob)
€ (&c) (&b (1.0)
i (@)  (oub) (&)

X1 X2 X3

e
| K1

[
ML

a Y

b Y2

c y3
Obr. 7.20

Kazdy rédek tabulky automatu piislusi jedné hodnoté (o, € ¢i y) stavové proménné S.
V logické siti mu odpovidé vnitin{ stejn& oznaceny vodorovny spoj. Kazdy sloupec tabulky
pislusi jedné hodnotg (A, B ¢&i C) vstupni proménné 1. V logické siti mu odpovida svisly spoj,
vychazejic ze stejn& oznaSeného vstupniho portu. Jednotlivym hodnotdm (a, b &i c) vystupni
proménné O jsou v logické siti pfifazeny shodn& pojmenované vystupni porty. Kazdé vnitin{
pole tabulky je prise¢ikem jednoho fadku a jednoho sloupce. V siti tomuto poli odpovidéd
piislusné prekfiZeni vodorovného a svislého spoje. Situaci implementovaného automatu,
popsanou dvojici (aktudlni stav, aktudlni podn&t) zohlediiujeme v tabulce vybérem
pislusného fadku a sloupce, v siti pak vybérem pifslusné dvojice na sebe kolmych spoji.
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Vybranym spojiim pfitadime hodnotu vyb&ru 1 a nevybranym spojim pfifadime hodnotu
vybéru 0.

Aktudlni vystup a nasledujici stav (naslednika) pro zvaZovanou situaci nalezneme v
poli tabulky leZicim v prise¢iku vybraného fédku a sloupce. Tento fakt je v siti zohledn&n
dvojicemi logickych nasobiéek, operujicich nad hodnotami vybéru kifZicich se spoji. Vystup
z levé nésobicky je vzdy veden k vodorovnému spoji, korespondujicimu s naslednikem.
Vystup z pravé nasobicky je veden k vystupnimu portu, oznafenému aktudlnim vystupem.
Uvedenym zapojenim viech vystupi logickych ndsobigek doslo k vérmému pfenosu struktury
implementovaného automatu do struktury sité.

Na rozdil od sité¢ z Obr. 7.4 se v piipad¢ sit¢ z Obr. 7.20 nejednd o logickou sit’
bin4rnf, ale o logickou sit undrni,' pro niz se vzil nézev kanonicka sit’ automatu. Kanonicka
sit’ funguje nasledovné: Jednotlivé vstupni porty (svislé spoje) oznatené A, B a C, z nichz
v kazdém okamZiku pravé jeden ,,pli“ (m4 hodnotu vyb&ru 1), jsou hodnotami unérn{ vstupni
proménné I = {A, B, C}.2 Stejné tak vnitini vodorovné spoje oznacené o, € a y (resp. vystupni
porty oznacené pismeny a, b, ¢) jsou hodnotami unarn{ stavové proménné S = {q, €, Y} (resp.
vystupni proménné O = {a, b, c}), a proto v kazdém okamZiku také ,,pli* pravé jeden z nich.®
Na danou situaci zareaguje vystupem 1 ta dvojice logickych ndsobidek, kterd ma oba vstupy
pfipojeny k ,.horkym* (tj. vybranym) spojim. Pravd z nich vybere vystupni reakci a levd
ndsledujici stav. Je-li napf. sit’ v aktudlnim stavu o (,,pali“ horni vodorovny spoj) a je-li
aktudlnim vstupem podnét A (,,pali“ levy svisly spoj), zareaguje na tuto situaci dvojice
ndsobicek umisténd v levém hornim rohu sité: pravé z nich vybere reakei ,,a* (pfenese rezim
,»pali*“ na horni vystupni port), levd vybere nasledujici stav ,,y* (pfenese reZim ,,p4li“ na vnitin{
spodni vodorovny spoj). Je zfejmé, Ze kanonickou sit’ lze implementovanému automatu
presné ,,usit na miru®.

Kanonickd sit’ je implementacnim schématem automatu. P¥i jeho realizaci provadime
vybér spoje pfipojenim elektrického napéti a logické nasobicky realizujeme stejné jako v
binarnich logickych obvodech. Schéma realizace kanonické sit¢ z Obr. 7.20 reléovym
kontaktovym obvodem je na Obr. 7.21. Popisuje stejnou situaci (aktudln{ stav o, aktudlni
vstup C) jako schéma na Obr. 7.19. V obou schématech je zapojen stejny pocet kontaktd (31),
kanonicka sit' vyZaduje 2 relé navic. Homogenita obvodu (jen spinaci prvky), stejné dlouhé
vétve (neexistence hazardi) a jednoduchost implementace pfedurduje kanonickou sit' k
realizaci technologii VLSI. I zde je pro spravnou funkci obvodu zapotiebi, aby se frekvence
piichodu vstupnich dat rovnala spinacf frekvenci pouZitych relé.

! Zakladni rozdil mezi bindrni a undrnf logickou sitf je v tom, Ze kazdy port a spoj v bindrni siti predstavuje
bindrni proménnou s hodnotami 0 a 1, zatimco v undrni siti predstavuje jen konkrétni hodnotu n&jaké
prom&nné (nikoli nutn& bindrni); pfifazeni symbolii 1 & O informuje, zda byla &i nebyla tato hodnota vybréna
(tj. zda je & neni aktudlni hodnotou). Prom&nnd je v undrni siti reprezentovdna svazkem spojii &i portil
(mnoZinou vech svych moznych hodnot).

% Pokud vstupni proménnd I pfichdzi v jiném neZ undrnim k6du, je tieba ji do undrniho kédu nejprve prevést.
Prevodem hodnot z bindrniho do undrniho kédu jsme se zabyvali v Ptikladu 6.3 cviteni k lekci 6.

3 Pokud bychom si préli, aby vystupni prom&nnd O odchézela v jiném ne? undrnim kédu, museli bychom ji do
tohoto kédu vystupnim prevodnfkem prevést.
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7.4. Jiné moznosti impl tace a realizace automatu

V predchozich dvou &lancich jsme v zdvére¢né fizi procesu realizace automatu
logickou sit' popsanou vyslednym systémem Booleovskych vyrazi & kanonickou siti
znézomnili schématem zapojeni civek a kontaktii elektromagnetickych relé. S reléovymi
systémy tohoto typu se vSak v moderni automatiza¢ni, fidici, telekomunikaéni a vypocetni
technice prakticky jiz nesetkdme. Reléové obvody sehrély vyznamnou roli jen v samych
potdtcich rozvoje téchto obori, a v prib&hu technologické revoluce byly postupné
nahrazovény obvody elektronkovymi, tranzistorovymi, obvody na bazi VLSI a obvody
optoelektronickymi. Tim ale vyvoj jesté zdaleka neskongil. Soucasny jeho trend sméfujici k
extrémni miniaturizaci, k dalsfmu sniZeni reakénich dob logickych &lenti a k redukci
energetickych ztrdt spojenych s prekldpénim fyzikdlnich systémi je usmériiovdn zejména
pokrokem v rozvoji tzv. nanotechnologif.*

1 kdy? ptechod na modern&jsi technologii je pfechodem do kvalitativn€ odlisného
prostiedi kladouctho vy3§f naroky zejména na technické vybaveni vyrobce obvodd, principy
implementace se jim nijak zdsadn& neméni. Pouze komponenty logické sité (logické moduly)
tam mohou byt komplexn&j$i. Vzhledem k tomu, Ze pfedmétem zkouméni teorie automatii
jsou obecné principy konstrukce a chovéni automatd, nezévislé na jejich konkrétnim
provedeni, zaméfeni praktické &4sti vykladu na reléové obvody, nevyZadujici Zadné specidlni
fyzikélni ani technické znalosti, je didakticky nejvhodn&jii. A proto u ngj i v dal§im setrvdme.

Naproti tomu k podstatnému zjednoduSeni implementa¢ni i realiza¢ni faze dochdzi v
piipadé simulace automatu &islicovym poéitatem. Pocital je mnohem sofistikovangjsi
prostfedek ne¥ elektromagnetické relé. Je to stroj na modelovéni (interpretaci) algoritmu.
Proto se zde pieneseni struktury automatu do struktury pocitate realizuje softwarové (tj.
vhodnym programem). Implementadnim modelem je vyvojovy diagram pfislusného
algoritmu, v némZ jsou prvky kone¢nych mnoZin automatu reprezentovény hodnotami
proménnych typu INTEGER. Piechodovou a vystupni funkci reprezentuji proménné typu
POLE. Je zad4na potate¢ni hodnota stavové prom&nné, aktudlni hodnoty vstupni proménné
zaddv4 vstupnf zafizeni. V zdvislosti na okamZitych hodnotéch vstupni a stavové proménné se
vyhledd hodnota prechodové funkce (novy aktudlni stav), a vystupni funkce (aktudln{ vystup).
Pak se aktualnim stavem pfepiSe zaddvany pocatecni stav.

Na mikroprocesor uréeny k simulaci automatu mikroprocesorem lze pohliZet jako
na jisté torzo &islicového poditade, obsahujici jen obvody k simulaci automatu nezbytné.
Zikladem je pamétf typu EPROM. Do paméti jsou ve vhodném kédu zapsdny tabulky
prechodové a vystupni funkce simulovaného automatu. Algoritmus ¢teni hodnot paméti
popsany v predchozim piipadé zde byva realizovan hardwarové. Precteny vystup byvé preddn
fadigi procesoru, ktery podle ného sestavuje a Fdf sviij systém ovladanych vystupnich modult.
Provést zménu & inovaci automatu je v tomto piipadé jednoduché, statf jen prepsat pamé&t
EPROM.

nano - 10™°; nanotechnologie je obor zabyvajici se jevy v obj o h 107° m, tj. Jjen
nekolik vrstev atomti. Uzndvanym ,,0tcem hnologie** je lauredt Nobelovy ceny za fyziku Richard P.
Feynman. Jeji zdklady formuloval ve slavné predndsce proslovené 29.12.1959 na zasedéni Americké fyzikdlni
spolegnosti, v niZz predb&hl dobu o celd desetileti (viz jeji pfeklad ,,Tam dole je spousta mista“ ve [4]).
Principidlnimi moZnostmi redukce rozméril, redukce reak&nich dob a energetickych ztrdt v obvodech potitagii
se Feynman zabyval v pfedn4Sce proslovené kritce nato v Japonsku (viz jeji pfeklad ,,Potitace v budoucnosti
tamtéz).
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7.5. Analyza schémat

V ¢lancich 7.1 az 7.3 jsme k obrazu abstrakiniho stroje, jehoZ dynamicka struktura
byla popsdna zadanym koneénym automatem, konstruovali rediny stroj. Vysledkem tohoto
Gsili bylo schéma zapojeni logickych ¢lenti nebo schéma zapojeni civek a kontakti
elektromagnetickych relé. V tomto ¢lanku budeme fesit Glohu opagnou: Budeme mit za tkol
ze schématu zapojeni zjistit, co dany stroj ,,d€l4“, a vysledek zjisténi prezentovat ve formé
kone¢ného automatu.

Obecny postup fesenf této tGlohy je mozno rozlozit do nasledujicich tif kroku:

e Ze schématu zapojeni odstranime synchroniza¢ni obvody nebo opakovade (vyrovnévaci
zpozd'ovacf ¢leny) a zrestaurujeme torzo schématu, se kterym budeme déle pracovat.

e Ve schématu vyznadime vstupni, vystupni a vnitin{ binarni proménné a z jeho struktury
odvodime soustavu Booleovskych vyrazii popisujicich zévislost vnitinich a vystupnich
proménnych na vstupnich a vnitfnich proménnych. Sestavime vektory vstupnich, vnittnich
a vystupnich bindrnich proménnych a s ohledem na zavislost jejich sloZek uréfme mnoziny
I, S a O kone¢ného automatu.

e Z vypottenych hodnot Booleovskych vyrazii pro relevantni kombinace prvkia mnoZin S a I
sestavime tabulku prechodové a vystupni funkce automatu.

Posledni dva kroky postupu jsou ilustrovany jak prikladem analyzy jednoduché logické sité,
tak pifkladem analyzy jednoduchého kontaktového obvodu.

Priklad analyzy logické sité

V logické siti na Obr. 7.22 vlevo jsou bindrni proménné x;, X, slozkami vstupniho
vektoru (x1,X2), vnitin{ bindrni proménnd y je stavovou proménnou, a bindrni proménné z,, z,
jsou slozkami vystupniho vektoru (zi,z).

X1
& S\[|00 o1 10 11]00 01 10 11
0 |o 0 0 1 loo 00 10 10

0 0 0 1|10 10 11 11

y
& '_4:|,> Y=Xi%o, 21 = X1+ Y, 2= Xy
S ={0,1},1={00,01,10,11}, O = {00,10,11}
2
_:v 00/00 11/10 /11
@ 00/10, 01/10
10/11

10/10, 01/00

Obr. 7.22

Zévislost vnitinich a vystupnich proménnych na vstupnich a vnitinich proménnych je popsina
trojici Booleovskych vyrazli y = xi-Xp, z1 = X1 +Y, Z2 = Xi-y. Z nich vyplyv4, Ze je-li z; =0, je
i zo = 0, a tak kombinace (z1,22) = (0,1) nemiiZe nastat. Proto také 01¢ O. Pro pfechodovou a
vystupni funkei plati:
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3(y,(x1,%2)) = X1X2, a B(y,(x1,X2)) = (21,22) = (x1+y, X1-Y).
Napt. 8(0,(1,1)) = 1-1 = 1 a B(0,(1,1)) = (140, 1-0) = (1,0); takto byly vypoéteny hodnoty v
polich tabulky na Obr. 7.22 vpravo nahofe, které je ptedlohou pro sestrojeni prechodového
grafu umisténého vpravo dole.

Priklad analyzy kontaktového obvodu

V kontaktovém obvodu na Obr. 7.23 jsou vstupnimi bindrnfmi podnéty stavy tlagitek P
a Q, jejichZ spinaci a rozpinaci kontakty jsou do obvodu zapojeny. Vnitini binarni proménnou
je stav relé S (s hodnotami sepnuto, nesepnuto), vystupnimi bindrnfmi prom&nnymi jsou
proménné u a v.

-
' S
==a9. =)
+—0
s=p-q+(P+q)-s
P u=(p-q+p-q)-s
P L, L Spatp 7)
—Qlo———0 v=(p:q+p-q)s
’ L q s
= O——u
2 L p
Gt~ = v
q s
S ={0,1}, I={00,01,10,11}, O = {00,10,01}
3 ) 00/00 01/10 00/00
S\I[00 OI 10 11|00 O1 10 11
0 0 i 0 0 (00 10 10 00
I |1 1 0 1]00 01 01 00 1001
10/10, 11/00 11/00, 01/01

Obr. 7.23

Prifadime-li podnétu ,stisknuté tlagitko“ a stavu ,sepnuté relé“ hodnotu 1 (,nestisknuté
tlagitko” a ,,nesepnuté relé“ - hodnoty 0), je vstupnim vektorem dvojice (p.g), stavovym
vektorem proménnd s a vystupnim vektorem dvojice (u,v). Ze schématu odvodime
Booleovské vyrazy uvedené na Obr. 7.23 vpravo.’ Z nich (a stejné tak ze schématu) je
okamZité zfejmé, Ze 11¢ O. Pro pfechodovou a vystupnf funkci plati:

s.p.9) =P a+(P+q)-s,
Bs.p.g) = wv)=((F-q+p-q)-s, (P-q+p-q)-5).
Napt. §(0,(1,1)) = 0-1+(0+1)-0 = 0 a B(0,(1,1)) = ((0-1+1-0)-0, (0-1+1:0)-1) = (0,0).
Z tabulky i grafu vysledného automatu vidime, Ze analyzovany kontaktovy obvod jic

reléovou realizact posuvného registru, ktery reaguje jen na neshodu podnéti na vstupnich
tlagitkdch a shodu podnéti ignoruje (dévé na vystupu klidovy signal 00). Neshodu podnéti

3 Symbol = k4, ze nisledujici hodnotou proménné na levé stran& bude aktudln{ hodnota vyrazu na strané pravé.
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Cviceni k lekci 7.

Piiklad 7.1 (bistabilni klopné obvody ovlddané dvéma tla&itky):

Na Obr. 6.25 vpravo a na Obr. 6.26 byly uvedeny piklady zapojeni bistabilnich
klopnych obvodii ovlddangch bistabilnimi ovladacimi prvky (spinadi a piepinaci).
V sérii nédsledujicich &tyF obrazkd vidime pifklady zapojeni bistabilnich klopnych
obvodii ovlddanych dvéma monostabilnimi ovlddactmi prvky (zapinacim
tlacxtkem P a vypinacim tlatitkem Q). V nich si relé ,,pamatuje* posledni stisk
tladitek."" Jednotlivé varianty zapojeni se lif jen reakci na soudasny stisk obou
tlagitek: V prvnim piipad® obvod sviij stav neméni, ve druhém méni (a jsou-li
tlagitka soucasn& tisknuta del3i dobu, funguje jako astabilni multivibrator), ve
tfetim je preferovan stav 1, ve &tvrtém stav 0.

P
Obr. 7.24

00, 01 10 11

5(5(174))
%ﬂ

Obr. 7.25
00, 01 10, 11 00, 10 +
S
O | s
==
q =
Obr. 7.26

"'V odborném Zargonu se takto zapojenym relé Fika ,,pam&tovi relé*.
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00,01 00, 10
S
O CD | EZ
L Ssipa)=
TR % =

p

Obr. 7.27

Ptiklad 7.2 (bistabilni klopny obvod ovladany jednim tlagitkem):
Zaménime-li v Obr. 7.25 vypinaci kontakt tlatitka Q vypinacim kontaktem
tlacitka P a pouzijeme-li relé S s dostate¢né dlouhymi reakénimi dobami, ziskdme
bistabilni klopny obvod ovladany jen jednim tlacitkem - viz Obr. 7.28, na némz je
obvod vyuzit k zapinini a vypinani Zdrovky. Ke spravné funkci obvodu je
zapotiebi uvolnit stisk tlacitka bezprostfedné poté, co usly§ime charakteristické
,.cvaknuti kotvy relé.

0 1 0 +
—_—
COCD L
1
= —
[0] S(xlp)=_ P
B -

Obr. 7.28

Piiklad 7.3 (ndvrh schématu zapojeni fidictho obvodu dvojice stykadi pro reverzaci chodu
tiifazového asynchronniho indukéniho elektromotoru).

Zaddni:

Pro zapojeni silovych obvodii styka¢t dle Obr. 6.27 navrhnout adekvétni zapojeni
tidiciho obvodu, v némzZ jsou stykace S a T ovlddany tfemi tlacitky A, B a C tak, Ze:

o tlacitko C je vypinaci a po jeho stisknuti stykace motor odpoji od sité (vypnou), a to
bez ohledu na to, je-li tlagitko C stisknuto samostatné ¢i v kombinaci s tladitky A,
B;

tlacitka A a B jsou zapinaci, kazdé pro jiny smér chodu motoru; na zapinaci tladitka
stykace reaguji jen jsou-li oba ve vypnutém stavu (a tedy i motor je od sité odpojen
- viz Obr. 6.27), pfi¢emz soucasny stisk obou zapinacich tlagitek stykade ignoruji.
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V souladu s vy8e uvedenymi poZadavky je moZno systém ovladani styka&i formulovat
jako stavovy automat s prechodovym grafem podle Obr. 7.29."> V n&m dvojice Cisel
oznatujici stavy tohoto automatu udavaji aktualni kombinace stavii dvojice stykadi
(S,T), a trojice ¢isel v oznadeni hran ud4vaji aktudln{ kombinace vstupnich podnétl z

Resent:

tlagitek ABC: sepnutému stykadi ¢i stisknutému tlaitku je pitazena hodnota 1.

000, 010
100, 110

001, 011

101

5 Ul

000, 001, 011
101, 111, 110

001, 011
101, 111

000, 010

100, 110

Obr. 7.29
b
C
©.0) | (1,0) [ (0,0) | ©.1) | (0.0) | (0,0) | (0,0) | (0,0)
OO O | ©1)]©0) | (©0) | (0.0 | (0.0
s| @O | (1L,0) | (1,0) | (1,0) | (0,0) | (0,0) | (0,0) | (0,0)
a
b b
C
oj1]ojo|ofofofo ojlof1]ofo]ofo
ojojojo|o|o|o]|oO 15 %) | E1Y [ foh [0k (Xod(Xo
L|1|1]|1]0]0o|o]|o]]|t 1|1|1]|0|0]|0]|0
Sl it e]le || e s ojojojofo]ofo
a a
Obr. 7.30

? Aktudlnim vystupem systému je vzdy jen jeden ze tif Zidanych stavii motoru: Motor miize byt bud’ od sité
odpojen, nebo miize byt k siti pfipojen tak aby béZel jednim &i druhym smérem. Vystupni funkce je definovana
na stavech naSeho automatu (jde o Mooreiv automat 2. druhu), a je zajisténa uvedenym zapojenim silovych

kontakti stykacii do obvodu el. napdjeni motoru - viz Obr.6.27. Proto nenf tieba se ji zde zabyvat.
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V horni &sti Obr. 7.30 je uveden piepis prechodového grafu z Obr. 7.29 do
Karnaughovy mapy. Z ni jsou odvozeny niZe polozené dil¢i Karnaughovy mapy, leva
pro styka¢ S, pravd pro styka¢ T. Tlusté¢ a proloZené je v nich vyznadena volba
piechodii ze stavu (1,1), do néhoZ se v normdlnim provoznim reZimu nelze dostat.
Tato volba podstatné zjednoduSuje nasledujici logické vyrazy odvozené z map. Pro
stykac S:
s'=C-(s+7-a-b),
pro styka¢ T:

t'=¢c-(t+5-a-b),
kde s™ a t" jsou nédsledné stavy styka&i S a T. Realizacf téchto vyrazii vzniklo schéma
zapojeni kontakti a civek stykaci na Obr. 7.31.

e

c e b f
—0 o—QLo—Gumd

Obr. 7.31

Z doplnéni dil¢ich Karnaughovych map je ziejmé, Ze kontaktovy obvod z Obr. 7.31
realizuje stavovy automat s pfechodovym grafem na Obr. 7.32

000, 001, 011
101, 111, 110

001, 011
101, 111

001, 011
101, 111

000, 010 010 | 100 000, 010
100, 110 100, 110
001, 011
101, 111

000, 010
100, 110

Obr.7.32
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Uloha 7.1: Porovnénim schématu na Obr. 7.31 se schématem na Obr. 7.27 zjistime, Ze obvod
na Obr. 7.31 sestdvd ze dvou paméfovych relé doplnénych o vzdjemné se
blokujici rozpinaci kontakty zafazené v hlavni v&tvi (tzv. pamétové relé se
vz4jemnou blokacf). Obvod si ,,pamatuje*, které z tlagitek A &i B bylo v klidovém
stavu stisknuto jako prvni a tento pamé&fovy zéznam je vymazén aZ stiskem
vypinaciho tladitka C. VyuZijte tento poznatek k nédvrhu obvodu pro ovladdni N
relé N zapinacimi tlacitky (jedno pro kazdé relé) a jednim (spole¢nym) vypinacim
tla¢itkem tak, aby manipulaci s tlacitky nikdy nemohlo dojit k soutasnému sepnuti
dvou a vice relé.

Uloha 7.2 (navrh ovlddéni motoru vytahu):

Uvazujte vytah pro Ctyfi podlazi. V kazdém podlaZi je jedno pfivolavaci tlagitko
(oznageni T;" aZ T4") a koncovy spina& (K; aZ K4) rozpinany kabinou v okamZiku
jejtho pifjezdu (a zlistdva rozepnut po celou dobu jeji pfitomnosti v podlazi). V
kabin€ jsou umisténa Ctyfi cilova tladitka (oznadeni Ty aZ T4) a zat&Zovy spinad
(Z), ktery po vstupu do kabiny vyrazuje ze hry venkovni tlatitka. VyuZijte schéma
pro reverzaci chodu motoru (Obr. 7.31), ve kterém provedete nasledujici zmény
(viz Obr. 7.33):

o
= A
O—+—0
== —
0
= ©
O——= —0©
—n = f
(e O O—

Obr. 7.33

Styka¢ S je ur€en pro jizdu nahoru, styka¢ T pro jizdu dold. Vypinaci tlagitko je

zaménéno spinacimi kontakty &tyf pamétovych relé ze vzdjemnou blokaci

spinanych cilovymi tladitky v kabing, pfipadné pfivoldvacimi tlagitky v

jednotlivych podlazich. Vypnuti sepnutého pamé&tového relé (a tim i zastaven{

vytahu) provede pifslusny koncovy spinag cilového podlazi po dojezdu kabiny.

Ukoly:

o Nakreslete kontaktové schéma obvodu ovlddéni pamé&tovych relé.

e Navrhnéte kontaktové obvody, které je tfeba pfipojit ke svorkém A-B a C-D,
aby vytah spravné fungoval, a zapojte je do obvodu.

o Posudte své fefeni zhlediska moZnosti vyskytu hazardd. Pokud takové
moznost hrozi, zméfite schéma tak, aby systém fungoval spolehlivé.

Piklad 7.4 (kanonickd sit automatu M paralelni s¢itacky bindrnich Cisel z Obr. 5.10 a jeji
realizace): Varianta paralelni s¢itatky pfedstavend v Ptikladu 5.4 je na Obr. 5.10
zndzornéna sériovou kombinaci pfevodniku P (funkce prevodniku je zadéna
tabulkou pod schématem v Obr. 5.10) a automatu M. Tabulka prechodové a

vystupni funkce Mealyho verze (ME) automatu M je uvedena na Obr, 5.11,
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tabulka pfechodové a vystupni funkce Mooreovy verze 2. typu (MO2) automatu
M je uvedena na Obr. 5.12. Realizaci ptevodniku P jsme se uZ zabyvali v Piikladu
6.4 a jejim vysledkem je reléovy kontaktovy obvod na Obr. 6.21. Pfi realizaci ME
vyjdeme z nésledujici modifikace tabulky z Obr. 5.11, do niZ jsme dosadili 1000 =
fo, 0100 = f;, 0010 = f5, 0001 = f;, 100 = go, 010 = g;, 001 = gy. Z ni odvodime
kanonickou sit’ automatu ME (Obr. 7.34) a relevantni reléovy kontaktovy obvod
(Obr. 7.35).

S\I fo fy f fx

S0 | (s0.80) | (S0.81) | (51.80) | (50.8%)
st | (s0.8) | (s1.80) | (51,81) | (s0.81)

R

A

e

fo fy f fx

0C.
D Sy
stav

S1

unarni
vystup

'Izsl?ﬂz;%
R E

o B &
o &l &

go

g1

&

Obr. 7.34
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-

So
= =150
=0
I:Ib
0
l:ld
+—0
[==: =3
¢

=d
——0

S
==1C —%0 !
+—0 O0——0
= b —
3 ©
==1C
s—O
T T -
== b =3
+—0 0———0 &
c—a —%
—o0 Zj
=1|C =51 g
AJBJ)CJ)D e '
=) —%o
0

= —5 g
9 -0 01

Obr. 7.35

Piiklad 7.5 (totéZ co v Prikladu 7.4, ale pro verzi MO2): Pii realizaci MO2 vyjdeme z
nésledujicf modifikace tabulky z Obr. 5.12, do niZ jsme dosadili 1000 = f,, 0100 =
f1, 0010 = f,, 0001 = f,, 100 = g0, 010 = gy, 001 = g,. Z ni odvodime kanonickou
sit’ automatu MO2 (Obr. 7.36) a relevantn{ reléovy kontaktovy obvod (Obr. 7.37).

U MO2 je aktudlni hodnota vystupu uréena vyhradng stavem, do n&ho? automat
pfechdzi. Pfi undmé& kédovaném vystupu a shodnjch drovnich vnitinich i
vystupnich signali lze funkci A v kanonické siti realizovat jednosmérnym
pfipojenim vodorovnych spojii (stavit) k vystupnim portim (viz Obr. 7.36).
Jednosmémost pipojeni je ve schématu znizornéna diodami, zabratiujicimi
zp&tnému Sifeni signdld. Pfi reléové realizaci (viz Obr. 7.37) jsou vnéjsi obvody
od vnittnich galvanicky oddgleny, proto z4dné diody nejsou zapotiebi.
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S\I fo fi f, fe A

(50,20) | (50,80) | (s0,81) | (51,80) | (50,8 | go
(s0,81) | (80,20) | (s0,81) | (s1,80) | (50.8x) | &1
(50,2 | (50,20) | (50,81) | (51,80) | (S0.8x) | 8«
(s1,80) | (s0,81) | (s1,80) | (s1,81) | (S0.81) | 8o
(s1,81) | (s0,21) | (s1,80) | (s1,81) | (s0,81) | &1

R
A
) P

B —_—
COTTR 1 1 1€ i
(50,81) _&/ ’_&/ _&/ ’_&/ B

st‘;f/ (50,20) ﬁ _& _[g/ _[g/ g
(s1,20) &/ ’_& 4&/ [§ &
(s1,81) g 5 4&‘ _&‘ _lg/
fo fi f fx

Obr. 7.36
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Obr. 7.37

Piiklad 7.6 (reléovd realizace Booleovského kalkuldtoru z iilohy 4.4): V feSeni tlohy 4.4 jsme
tladitka na ovlddacim panelu (Obr. 4.17) oznagili pfsmeny A az F. Jednou z
moZnych reléovych realizaci uvedeného feSen je nasledujici kontaktovy obvod:
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=L X

A (=]

=
|
k]

—l
9 e————illG—30

ovladani displeje

+—0 0—0 0—0 O0——lo

Obr. 7.38
Je zfejmé, Ze u dvojice vystupt k displeji miZe byt napéti nejvyse na jednom z
nich. Napéti na hornim vystupu rozsviti na displeji jedni¢ku, napéti na dolnim

vystupu rozsviti na displeji nulu.

Uloha 7.3: Ke kontaktovému schématu na Obr. 7.38 sestrojte Karnaughovu mapu komponenty
vystupni funkce pro ovladani displeje.
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8. Strukturalni podobnost automati
8.1. Uvod

V ¢lanku 7.1. predchozi lekce jsme uvedli konkrétni piiklad dvou riiznych zpracovéni
vstupniho podnétu se stejnym vysledkem (viz levé schéma na Obr. 8.1):

8°(pxE) = ¢°8
o°B(ex) = B

Podnét z mnoZiny I miZe byt:
e bud pfeddn na vstup automatu ME (nachézejictho se v aktudlnim vnitinfm stavu s € S)a
pfetvofen v reakci z mnoZiny O vnitinim mechanismem automatu ME, nebo

pies vstupni kodér s kédovaci funkei & veden na vstup automatu ME” (nachazejiciho se v
aktudlnim vnitinfm stavu @(s) € S°), zpracovan vnitinim mechanismem automatu ME’, a
nésledné prohnan vystupnim dekodérem s dekédovaci funkef '3

v obou piipadech bude vysledek tyz.

Je tomu tak proto, Ze algebraicky diagram relevantnich zobrazeni (na Obr. 8.1
uprostfed), podrobné zdiivodnény v pozndmkéch pod arou 3 a 4 v lekci 7., komutuje (tj.
splije dvojici podminek na Obr. 8.1 vpravo). Vécné je tato komutace disledkem dvojice
spolu souvisejicich faktort:

e existence fundamentalni analogie ve vnitinich mechanismech automatii ME a ME’, a
 znalosti dvojic podobné fungujicich prvkii v jejich dynamickych strukturach.

V naSem piipad¢ je zminéna fundamentdln{ analogie diisledkem vémého pienosu struktury, a
dvojice podobné& fungujicich prvki jsou ptitom vdzany prostymi zobrazenimi (injekcemi) @
(definuje dvojice ekvivalentnich stavii), i (ukazuje na analogicky piisobici podnéty) a @
(uvédi do souvislosti odpovidajici reakce)."

Zatimco injektivnost zobrazeni o je nezbytn& nutnd (bez ni by podminka o '°w = il
nebyla splnitelnd a vystupn{ dekodér zajistujici komutaci levého okna v diagramu na Obr. 8.1
by nebylo mozno sestrojit), injektivnost zobrazeni @ a & nezbytné nutn4 neni. Budou-li pag
kontraktivni, pak vSechny situace (s, 1) € SxI automatu ME, spadajici do stejné tifdy rozkladu
indukovaného jddrem zobrazeni @xE,” budou pro automat ME” jedna od druhé nerozlisitelné a
Jjeho mechanismus na né bude reagovat shodng. Komutace algebraického diagramu nim pak
tikd, Ze na tyto situace shodné reaguje i mechanismus automatu ME (jinak by totiZ diagram

! Naproti tomu lransformaém funkce @™ injektivni nebyla a v najem pi‘1(]adu ani injektivni byti nemohla (viz
Obr. 7.12). Podminka @ '°0 = il vyzaduje Jen Jjeji surjektivitu (tj. byn ,»na‘“ - nebo-li pokryt cely obor hodnot) a
tento poZadavek je spolu s i #adavky na funkci o™ "B °(@xE) = B ndlezitd zohlednen.
% Jednd se o ekvivalenci ker(px&) na S><I v niZ pro kazdé dva prvky (s1,i1) a (s2,12) ze stejné t¥idy rozkladu plati:

9(s1) = 9(s2) a &(ir) = &(in).
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komutovat nemohl), a proto niz§{ rozliSovaci schopnost automatu ME" existenci
fundamentélni analogie mezi mechanismy v cesté nestojl’.3 Fundamentéln{ analogie existovat
bude, i kdyz nebude tak o€ividnd jako po vérném pienosu struktury, protoZe ,,stejné fungujici
podstruktura“ v automatu ME” jiZ nebude izomorfn{ se strukturou automatu ME.

Takto obecnéji pojatou fundamentélni analogii mezi vnitfnimi mechanismy automatd
nazgvéime strukturalni podobnosti automatti.* Vémy ptenos struktury, ktery provadime pi
implementaci, je pro ni podminkou postadujici, nikoli v8ak nutnou. Existence strukturdlni
podobnosti nenf vdzana na existenci podstruktury H” v automatu ME” izomorfn{ se strukturou
automatu ME (zndzornéné na Obr. 7.1). Nutnd a postadujici zdroveil je jen existence trojice
(@,E,w") libovolngch zobrazeni mezi definiénimi mnoZinami obou automatil, zajistujici
komutaci vySe uvedeného algebraického diagramu. Vécnym disledkem toho je fakt, Ze
sérioparalelni kompozice automatti a pfevodnikii (na Obr. 8.1 vlevo) ddva na obou vystupech
shodné reakce.

8.2. Strukturalni podobnost jako podobnost ke vzoru®

V nasem konkrétnim piipadé automatit ME a ME” (viz piiklad v textu lekce 7) tvoii
jednu z moZnych trojic (@60, zajistujicich komutaci algebraického diagramu, zobrazeni
0:S—> S, &I, 0" 0" — O, definované napt. takto:

s |alBly| ilAa|B|C] o |oofot]10]11]
o) |00]or]10] “E@for[10f11] @@ [a[b[b|c]|

Kdybychom ve schématu v Obr. 8.1 zaménili vzor za obraz a naopak, dostali bychom
Obr. 8.2:

o o= =t
v e l"”
B

O «——Ssd —— S

Obr. 8.2

V ném Z4dnd trojice zobrazeni (¢’,&,w ') nemiZe zajistit komutaci zde uvedeného
algebraického diagramu u jen proto, Ze neexistuje zobrazeni ™ '(a tudiZ ani jej realizujici
dekodér), které by pfevadélo tfi hodnoty na Ctyfi. Znamend to, Ze vnitfni mechanismus
automatu ME je soudasti vnitiniho mechanismu automatu ME’, ale vnitini mechanismus

* V ditkazu ekvivalentnosti stavii vazanych zobrazenim ¢ (viz poznimka pod &arou 5 v lekei 7) Zadné specidlni
vlastnosti zobrazeni @, & o' predpokladény nebyly.

* Mluvime-li o strukturdlni podobnosti, méme na mysli suukluru dynamickou, nikoli morfologickou. Jen z
podobnosti morfologickych struktur nelze usuzovat na p ickych celkii.

2 Logika znd dva typy podobnosti: Symemckou, Vi mz je-li A podobno B, pak také B je podobno A; a tzv.
podobnost ke vzoru, kterd symetrick4 neni. Reknu-li napf. o n&jakém malém chlapci, Ze hraje na housle jak
Paganini, nechci tim fici, Ze Paganini hrdl podobng jako tento chlapec. Reknu-li o n&jakém mraku, Ze se
podobd velrybé€, nechci tim fici, Ze velryba se podobd mraku. Paganini i velryba jsou v tomto pfipad€ vzory a
jsou svym zplisobem obsazngjsi: Co zahraje chlapec, jist¢ by zahrél i Paganini (a pravdépodobng i Iépe),
opa¢né to platit nemusi.
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automatu ME” nenf sou¢ésti vnitiniho mechanismu automatu ME. Strukturdlni podobnost tak
neni typem symetrické podobnosti, ale typem nesymetrické podobnosti, tzv. podobnosti ke
vzoru, kde vzorem podobnosti je automat ME"°

Nicméné i zde zjistovat podobnost znamena zjistovat stupeii shody. A podle stupné
shody méfime i stuperi podobnosti. V matematice nejvy$§imu stupni podobnosti ffkdme
identita neboli rovnost. Dva automaty ME; = (S, I, Oy, 81, B1) a ME; = (Sz, I, 02, 82, B2)
jsou identické, tj. ME; = ME,, pravé kdyZ S; = S5, I; =Ip, 01 = 05, & = &, B1 = B2. Ze v
tomto piipadé se jednd o symetrickou strukturdlni podobnost, a Ze identické automaty jsou
také ekvivalentnimi automaty (z hlediska chovani), jisté nepiekvapi. Pfesnéji jsou rtizné
stupné strukturdlni podobnosti vymezeny v nasledujicim ¢lanku.

8.3. Vstup-vystupni homomorfismus

Necht M; a M, jsou automaty. V piipadé Mealyho automati M; = (Sy, Ij, Oy, &;, B1) a
M, = (S, I, 02, 85, B2). Pak trojice ¢ = (¢.&,0 "), kde @: S; = S, & I} = L, @ Q== (O),
jsou zobrazent splitujici podminky 8,°(px€) = @°8; a w '°B,°(@xE) = B; komutace obou oken
algebraického diagramu

0O, ‘_L SixIy L Sy

o’ oxE [ 8.2(x8) = 9°5,
I o'B,2(9x0) = By
0, ‘_—El—“ SZXIZ'L’ S,

Obr. 8.3

se nazyva vstup-vystupnim homomorfismem (zkratka VVH) z M, do M. Existenci VVH ¢
z M, do M, v obecném piipadé zapisujeme vyrazem ¢: M; — M,.

Specidlni VVH:
Je-li ve VVH ¢ = (@,£,0") zobrazeni ¢: S; — S, injektivni, fikdme, Ze M, realizuje M, a
piseme ¢: M; < Mo.
Jsou-li ve VVH ¢ = (9,£,0") vSechna zobrazeni bijektivni, jde o izomorfismus automati
o: M; = M,. V pfipadé identit (¢ = (1,1,1)) jde o rovnost automati M; = M,.
Specidlni VVH ¢ = (9,1,1), kde ¢: S; — S, je surjektivni a & o' jsou identity, nazyvime
redukénim VVH neboli redukei.

.

Specidlni VVH popisuji rtizné stupné strukturdlni podobnosti. Nejvyssim stupném
podobnosti je rovnost automati. Tésné pod ni je izomorfismus, neboli identita s
pfejmenovanim prvki. V obou piipadech jde o symetrickou podobnost, nebot’ z existence ¢ =
(@.E0™"): M; = M, bezprostiedng plyne 0" = (",&,0"): My — My, kde ¢°, &, a @' jsou
zobrazeni inverzni k @, &, a @ '. V ostatnich pfipadech jde o nesymetrickou podobnost ke
vzoru. Pfi ¢: M; < M, jsme blizko tomu, co jsme pfi implementaci nazyvali vérnym pienosem
struktury. Naproti tomu existence redukce s kontraktivni funkci @ signalizuje moZnost snizen{
poctu stavii automatu M;.

© Implementace a teorie podobnosti posuzuji funkei systému z opagnych Ghlii. Proto pro implementaci je vzorem
ME, pro podobnost je vzorem ME’.
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VVH ¢ = (¢.£,0"): M; — M, mit¥e existovat i mezi riznymi modely automatéi. Tomu
pak odpovidajf riizné algebraické diagramy a komutaén{ podminky, napf.:

a) M;=MO2; = (S, I;, 01, 81, A1), Mo =MO2; = (Sy, I, 05, 85, 1)

Sixly = 5 —M (o)
oxE © ! 8:°(pxE) = ¢°3,
oM =2
A

Spxh,———=——+ S, —2 >0,
Obr. 8.4
b) M;=MO2= (S, 1;, 04,81, A), My =ME = (S5, I, 05, 8, B)
S g [}
oxE [ 8,°(9xE) = ¢°8;

ERGRCER
0, . SxL, — S,

Obr. 8.5

¢) Mi=ME=(Sy,I;, 01,81, B), Ma=MO2 =(Sy, I, 02, &, 1)

o ol s i,

oxE 0 8,°(ex¢) = ¢°8;
: oA = b
W S g g
Obr. 8.6

d) M;=MO1; = (S, 1;, Oy, 81, A1), My =MOI1; = (S,, I, 0y, 8, A2)

o ey e T g )

o [ oxE o &°(px8) = ¢°5,
|
0, A S 2 — SyxI, & S,

Obr. 8.7

V poslednim piipad€ prostfedni okno diagramu komutuje z definice, nebot’ 7t °(px&) =
@°m, a proto se zde podminky komutace shoduji s podminkami v pfpadg a).
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Cviéeni k lekci 8.

Ptiklad 8.1: Dany automaty M; a M, (Obr. 8.8),

1%% AP
M; M.
*/Q
0/
oix =
0/x
*/P
AR
1y #/R, AIQ
Obr. 8.8

a trojice zobrazeni ¢ = ((p,i,m"), kde @: S; — S5, & I} = L, o 03— 0; ve
tvaru

si |a|b]|ec i | o1 o |P|Q|R
o) [ VIVv]z ENNE o) x [ x [y
Obr. 8.9

Mi se dokézat, Ze ¢: M; — M, je homomorfismus. Vzhledem k tomu, Ze v obou
ptipadech se jednd o Mealyho automaty, k diikazu sta¢i ovéfit platnost podminek
8,°(pxE) = ©°8) a @ "°B,°(pxE) = By (viz Obr. 8.3). Vysledek tiplné kontroly obou
podminek (pro viechny kombinace vstupnich hodnot z mnoZiny SixI;) uvéadf
nésledujici tabulka:

8:°(9xE) 9°3, 0 %P2 (xE) By
(a,0) )\ \ 5 X
(a,1) \ v y y
(b,0) Vv \Y X X
(b,1) \% \% y
(c,0) V4 Z y y
(c,1) Z Z X X

Z vysledku kontroly je zfejmé, Ze homomorfismem je i ¢: M; — Mj, kde M; je
komponenta automatu My, definovand na stavech V a Z (viz nésledujicf graf):

Ms:

*/R, AQ #/P, AIR
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Piiklad 8.2 (dikaz, Ze kompozici VVH je také VVH):
Diény Mealyho automaty ME; = (S;, Ii, O;, &, Bi), i=1,2,3a VVH
12 = (@1.61,01): MEr — ME; a 03 = (92,€2,02™'): ME; — MEs. M se dokizat,
e kompozice 023°012 = 013 = (@2°01, £2°&1, @, "°0;™"): ME; — ME; (viz Obr.
8.10) je také VVH.
012 02

ME,— " ME;——— " ME;

Obr. 8.10

Nejprve dokdZeme platnost vztahu

(@2E2)°(@1xE1) = (02°01)x(&°1); (A)
Z definice symbolt operaci (viz ¢lanek 3.1.) totiZ postupné plyne:
[(@2xE)°(@rxED](s:1) = [(@2xE)N(@1(8).61(1) = (@2(01(5)), Eo&i(D)) =

= ([@2°@11($),[E2°E11(D) = [(@2°@D)X(EED](s.0).-

Existence diléich VVH ¢, a ¢,3 signalizuje komutaci vyznacenych oken v levém
diagramu na Obr. 8.11:

@y e g e LI (o} &s.xl,L S
Tml-‘ 8 lq)‘xt;, 1L lq,, Iw,"“w{‘ l«oz“w.)ﬂéz"éolwz°q>.
0, &szszL S, (o} &S;xl,——'a"—> S3
T(D{‘ 1L l(PzX'r;z v. lq’z
[} 4¢ng13—]’ S5
Obr. 8.11
Proto plati:

L o °Bo(@ixE) = B1.
IL 8:°(eixE1) = 91°8),
L 0, '°Bs°(02xE2) = B,
IV. 3:°(92x&2) = 92°8,.

Je tieba dokézat, Ze pak komutuje i pravy diagram na Obr. 8.11, tj. Ze plati:
B1 = 070y B (@)X (EE),
@2°01°81 = 85°((02°01)X(&2°€1)).-
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Diikaz (horn{ index u rovnitka odkazuje na pouZity piedpoklad pro substituci):

o Br=" 0 OB (@ixEn) =" o Py OB (@xEn) (i) =N
o1 %0y Bs (02" )X(EEN),

o 0220198 =" 298,°(1xE)) =" 85°(02xE2) *(@rxEr) =Y 85°((@29)X(E°E ).

Uloha 8.1: Doka’te, Ze trojice (@,£,07") z piikladu implementace v lekci 7 je VVH bez
ohledu na to, jakou hodnotu 0)"(10) zvolime.
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9. Funkéni podobnost automatii

Na rozdil od strukturélni podobnosti automatil, kter je podobnosti v jejich vnitinich
mechanismech, funkéni podobnost automatd je podobnosti v jejich vn&jsich projevech, tedy
podobnosti v chovéni. Zde se ptame, do jaké miry mohou srovnavané automaty vykondvat
tutéz funkei, tj. do jaké miry mohou byt funkéng zaménitelné v systémech, do kterych jsou
zapojeny pouze svymi vstupy a vystupy. Lze tento automat nahradit timto, &i je dokonce
mozno bez problémi kterykoli z nich zaménit druhym? To jsou otdzky, které si Kklademe."

9.1. Zaménitelnost a simulovatelnost

V &lénku 5.2. jsme chovani kone&ného automatu M definovali jako mnoZinu dvojic

{(y, B*Gs, y)): s € S, y € I'}. V &lénku 5.3. jsme pak nesymetrickou funkéni podobnost dvou
kompatibilnich automatd, (tj. automatii definovanych na shodnych prostorech podnétl a
shodnych prostorech reakef) nazvali simulaci, a v piipadé simulace automatu M, automatem
M, jsme tento typ funkénf podobnostiz definovali vztahem

{(y, Bi"(s, y)): s € Si,y€ I'} € {(x, B2'(s, X)): s € S, x € T}
Symetrickou funkéni podobnost automatt M; a M, jsme nazvali zaménitelnosti a definovali
ji vztahem

{(y, Bi'(s, y)): s € S,y € '} = {(x, B2"(5, x)): s € Sp, x € I'}.
Z Slanku 5.3. je téZ ziejmé, Ze zaménitelnymi mohou byt jen ekvivalentn{ automaty.

Ptedpokladem ~ simulovatelnosti ~automatu  M; se stavovym  prostorem  S;

kompatibilnim automatem M se stavovym prostorem S je splnéni podminky:
Vsi€S13s,€ SHVXeL: Br(s1, X) = B2 (52, %)
Tato podminka uvadi do zvlastniho vztahu (relace) siRs, stavy automatu M, se stavy
automatu M, (R € S;xSy). Defini¢n{ obor relace R - dom(R) = Sy, obor hodnot relace R -
range(R) Sz,3 V disledku symetrie, reflexivity a tranzitivnosti dvojic ekvivalentnich stavit
je relace R ekvivalenci mezi mnoZinami S; a range(R) - jednd se o ekvivalenci pfislusnych
stavovych podprostord. MiiZeme psat:
{(y, Br*(s, y)): s € S1, y € ') = {(x, B2'(5, X)): s € range(R), x € I'}.

Odtud je okamZité ziejmé, Ze simulovatelnost automatu M; vyZaduje existenci subautomatu
M automatu M, ekvivalentniho s automatem M;. MnoZinou stavii subautomatu M je mnozina
S = range(R) C S. K zaménitelnosti obou automati je navic tfeba aby range(R) = Ss.

! Existence strukturdlni podobnosti automati M; a M, je vdzdna na existenci VVH ¢ = (@,w™). V pripad& ¢ =
(@.£0™"): M; — M, je automat M, (na Obr. 9.1 vlevo) nahraditelny automatem M, se vstupnim kodérem & a
vystupnim dekodérem @ (na Obr. 9.1 vpravo). Naproti tomu u funk&ni podobnosti automatii se ptime na

moznost jejich zém&ny bez kodéri a dekodérd, tedy tak, jak naznacuje tento obrazek:
. -

Nutnym (ale ne postatujicim) predpokladem funk&nf podobnosti je proto kompatibilita obou automatii ve
smyslu shody jak mnozin vstupnich podnétii (I, = I, = I) tak i mnoZin vystupnich reakef (O = O, = O) obou
automatil.

2 Podobné jako u strukturalni podobnosti i zde se jednd o podobnost ke vzoru (vzorem podobnosti je chovani
automatu My).

IR = {(s51,82): $1€ S, € S5, 81 2 8 jsou ekvivalentnimi stavy}.

105



Lekee zékladniho kurzu TEORIE AUTOMATU

9.2. Vztah mezi strukturalni a funkéni podobnosti

Existence VVH ¢ = (¢,&,0™"): M; — M, zajistuje simulovatelnost chovén{ automatu
M; kompatibilnim systémem &érkovan& vyznacenym v Obr. 9.1:

Obr. 9.1

K tomu je nutné a stadf bezprostiedng pred za¢4tkem simulace uvést do synchronismu vnittn{
mechanismy automati M; a M, tim, Ze automat M, nastavime do stavu @(s) ekvivalentniho s
aktualnim stavem s automatu M;. UdrZen{ synchronismu obou mechanismu je pak pfi spravné
funkei vstupniho kodéru* zajisténo komutacf tohoto okna algebraického diagramu,

Sot—2—> s,
oxE lq) 8,°(9x8) = 9%,
SZXIZ—L’ Sz
Obr. 9.2

které ma ve viech variantdch modelti automati M a M, stéle stejny tvar (viz Obr. 8.3 az Obr.
8.7), a proto v nich generuje také stejnou podminku.

Ptime-li se na to, jakd strukturdlni podobnost bude mit za nésledek i podobnost
funkéni, pak dodate¢ny poZzadavek kompatibility srovndvanych automatii a nepotiebnosti
obou zakreslenych prevodnikil ponechévé ze vSech moznych typt strukturdlni podobnosti ve
hie pouze VVH ¢ = (¢,1,1): M; — M,. V ni funkce ¢ hraje roli relace R a plati: dom(@) =
dom(R) = S a s;Rs; & @(s1) = 2, neboli R = {(s,0(s)): s€ S }. Jedna-li se o redukéni VVH (v
némz ¢: S; — S, je surjektivni, neboli range(9) = Sy), pak pifslusnou funkénf podobnosti je
zaménitelnost automati.” Neni-li ¢ surjektivni, pak automat M, automat M, pouze simuluje.

Opatni otdzka, zda z existence funk&ni podobnosti automatii 1ze usuzovat i na jejich
strukturdlni podobnost, je zodpovézena negativng. Divodem je nejednoznalnost syntézy
systémii (moZnost existence vice struktur schopnych vykazovat dané chovén{) zminénd jiz v
&lanku 4.4.°

* Spravnou funkei zde rozumime poZadavek, aby vstupni pfevodnik & I; > I, také transformoval viechny
podnéty nepatfici do mnoziny I) na podnéty nepatfici do mnoZiny I,. V opa¢ném piipadé by na n&jaky podnét
(nepatfici do I;) automat M, nereagoval, ale &irkovany systém s automatem M ano. Historie obou automatti by
pak méla nestejnou délku, &fmz by mohlo dojit k vypadku jejich vnitfnich mechanismil ze synchronismu a
néslednému odli¥nému chovéni. K tomu nemize dojit u kompatibilnich automatii (I, = L) s pfevodnikem & = 1.
7Z hlediska realizace nejlep§im takovym prevodnikem je Zddny prevodnik (4. stejny podnét pfichdzi na oba
vstupy).

5 pokud redukce nenf izomorfismem (¢ neni bijektivni), pak z nesymetrické strukturdlni podobnosti zde plyne
symetrickd funk&ni podobnost.

6§ Kladnd odpovéd’ na predchozi otizku byla naopak umoZngna jednozna¢nosti analyzy systému (chovéni ze
struktury jednozna¢n& vyplyvd).
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Cviceni k lekci 9.
Priklad 9.1: Ddny kompatibilni automaty ME; = (Sy, I, O, 81, B1) a ME; = (S5, I, O, &, Ba):

‘—. =0
0/0, 1/1

0/0, 1/1 0/0
Obr. 9.3

Oba automaty v kazdém stavu na vystup vraci vstupni podnét, coZ je ¢&inf
vzdjemné zastupitelnymi. Pfesto mezi nimi Z4dny redukéni VVH neexistuje.
Z4dna z nasledujicich &tyr trojic zobrazeni

0= (¢1,1,1): ME, — MEy, ¢ = (9,1,1): ME; — MEy, i = 1,2, kde

¢

o _a|b a|b o _c | d ¢2_c | d
c|d d | c al|ib b | a
totiz VVH neni, nebot’
0131(5,0)) # 82(91(b),0), 92(81(2,0)) # 8x(2(2),0),

071(82(d,0)) # 81(91(d).0), 9 2(B2(c, 1)) # 81(@ (), 1).

Piiklad 9.2: V ¢lanku 5.4. byl uveden obecny postup konstrukce ekvivalentniho Mooreova
automatu 2. druhu (MO2) k danému Mealyho automatu (ME). Ukézali jsme tam,
Ze automaty ME = (S, I, O, 3, B) a MO2 = (SxO, I, O, (8,8)°m3, ), kde
zobrazeni Ti3: SXOXI — SxI a m: SXO — O jsou projekce (viz Obr. 9.4), jsou
ekvivalentni a tudiZ zaménitelné.

T3 6.8) A=m,
SXOxI SxI SxO ©
&= (5,[3)°7m
Obr. 9.4

Zde ukédZeme, Ze ¢ = (m;,1,1): MO2 — ME, kde MO2 a ME jsou zminéné
automaty a zobrazeni 7;: SXO — S je projekce, je redukéni VVH. K tomu sta&f
dokazat komutaci algebraického diagramu uvedeného na Obr. 9.5

107



Lekce zdkladniho kurzu TEORIE AUTOMATU

3,)°mis T
SxOxI SxO O
T3 st
o 1
SXI ————* S =
B
(0}
Obr19.5

Komutace malého okna diagramu vyZaduje aby 8°mi; = m;°(8,8)°m;3. Komutace
velkého okna diagramu vyZaduje aby B°mi3 = m,°(8,8)°m3. Z definice piislugnych
projekef a vektorové funkce bezprostfedné plyne & = 1;°(8,8) a B = m,°(5,B). Tim
je komutace diagramu zajisténa.
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10. Minimalizace automatu

V piedchozi lekci jsme prozkoumali vztah mezi strukturdlni a funkéni podobnosti
kompatibilnich automati a dosli jsme k zavéru, Ze existence redukéntho VVH ¢ = (9,1,1):
M; — M, mi za nasledek funkéni ekvivalenci nebo-li zaménitelnost automatii M; a M.
Zv1aSt zajimavy je piipad, kdy redukéni VVH neni izomorfismem, tj. kdyZ funkce ¢ je
kontraktivni (tzv. kontraktivni redukce). Pak automat M, mé méné stavii neZ automat My, a
proto miZe byt ekonomi&t&ji{ &i jinak vyhodngjsf realizovat M, misto M. Vznika tak otdzka:
Jaky nejmensi polet stavil viibec miZe mit automat My, strukturdlné podobny a funkéné
zaménitelny s automatem M;? Touto otdzkou se ptdme na (z hlediska poctu stavil) miniméln{
automat nebo-li na tzv. redukt.

10.1. Vlastnosti kontraktivni redukce

V souladu s vy$e uvedenym nazveme reduktem kazdy automat, k némuZ neexistuje
automat strukturdlng podobny, funk&n& zaménitelny a s mensim poétem stavi. Proces, kterym
z automatu, ktery reduktem neni, dostaneme jeho redukt, nazjvéme redukci automatu.
Terminy redukce automatu (proces), kontraktivni redukce (specidlni VVH) a redukt (dale
neredukovatelny automat) obsahuji slivko redukce & redukt ve smyslu zmenSeni &
zmen3enina. A to signalizuje existenci jisté spojitosti mezi nimi. O jakou spojitost jde pomiZe
pochopit piiklad uvedeny na Obr. 10.1:

M;: $ Bi

SiMl |a b cla b ¢

ASSITHEENEH 0SS 18I0

B |[DJ C|1 01

@ || A @)l ab ol

D [DHF|0 0O

E ([ABG|0O 1O

ESNIDEBNGH RIS OB

@ |I» g @)l 1 il

H |KJ G010 :

TN DEERE B Ol v

IR UG IO |ABCDEFGH ] K|
®: UV Xxyuvzxuvul
Obr. 10.1

V ném M, a M, jsou kompatibilni Mealyho automaty zadané tabulkami svych ptechodovych a
vystupnich funkei. V diisledku kompatibility na vstupu maji ob& tabulky stejny po&et sloupct
(tj. v obou tabulkdch m4 fadkovy vektor tyZ rozmér). Kontraktivni a surjektivni funkce

@: S1 — S, zadand tfeti tabulkou je slozkou redukéntho VVH ¢ = (¢,L1): M; — M,
definovaného nsledujicim algebraickym diagramem:'

! Vyznatend tiprava algebraického diagramu je diisledkem platnosti vztahu 1°8; = Bo. e
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? 4—13‘— SixI L’ Sy
i B |ox o ReD=0¢%
: B2°(pxD) = By

Obr. 10.2

Dvojice podminek &,°(¢x1) = ¢°8; a B2°(px1) = B definuje pravidla, podle nichZ se
fadkové vektory tabulky automatu M; na Obr. 10.1 transformuji na fadkové vektory tabulky
automatu M,.2 Transformace se provadi tak, 7e viechny stavy nachazejici se v levé &asti
vychoziho vektoru (tj. aktudlni stav a jeho néslednici - tzv. subvektor stavii) se piekéduji
funkei @ na stavy cilového vektoru, a hodnoty vystupnich reakci (prava &ast fadkového
vektoru - tzv. subvektor reakci) se ponechaji beze zmény. Napf. osmy fadek prvni tabulky
(pro aktudlni stav H automatu M,) je takto transformovan do prvniho fadku tabulky druhé
(pro aktudlni stav # automatu M,). V Obr. 10.1 je toto znizornéno ¢arkovanymi Sipkami a
jejich priichod tabulkou funkce ¢ zndzorfiuje pfejmenovavéni aktudlniho stavu automatu M;.

Snadno lze nahlédnout, Ze do prvniho fadku druhé tabulky se takto transformuje nejen
osmy, ale i prvni, paty a desity fadek tabulky prvni - tj. vSechny fadky, jejichz aktudlnim
staviim je funkef @ piifazena funkéni hodnota u. A zcela analogicky se podle tychZ pravidel
do druhého, resp. tietiho, ¢i étvrtého fadku druhé tabulky transformuji ty fadky prvni tabulky,
jejichZ aktudlnim staviim je funkcf @ pfifazena funkéni hodnota v, resp. x, €i y.

V Zargonu modern{ algebry to Ize vyjadfit tak, Ze funkce @: S; — S5, definuje na svém

defini&nim oboru binarn{ relaci Ker(@) C S1xS1, zvanou jadro redukéniho VVH, takto:
'
Vs,s'eSi: ((s,8)eKer(p)) & (9(s) = 9(s9).”
Tato relace je reflexivni ((s) = @(s)), symetrickd (Q(s)=0(s") = @(s)=¢(s)) a tranzitivni
(@(s)=0(s") & Q(s)=0(s”)) = @(s)=¢(s”)). Jednd se tudiz o ekvivalenci, a ta vytvaii na
mnoZiné S; rozklad
Si/Ker() = {¢"(a): ac o}, kde ¢(a) = {se S1: ¢(s) = a}.

V nasem piikladu na Obr. 10.1 Si/Ker(p) = {{A,E;H,K}, {B,F,J}, {C,G}, {D}}, nebot ¢"(u)
={AEHK]}, ¢(v) = {BFJ}, ¢'(x) = {C,G}, ¢"(y) = {D}. Na Obr. 10.3 jsme mnoZinu S; v
tabulce funkce @ uspofadali podle hodnot @(s), s€ S; (spodni tabulka), ¢fmZ se tento rozklad
stal o¢ividnym.

2 Jedni se o modifikaci pongkud obecn&jiich pravidel podrobn& popsanych uZ v pozndmce pod arou 3 v &ldnku
7.1. Tabulka automatu M; tam definovala vektorovou funkci [3,], tabulka automatu M, se tam nachizela ve
form& Karnaughovy mapy.

3 Jadro redukéniho VVH uvédi do korespondence prvky z defini¢niho oboru funkce ¢ majici stejnou funkéni
hodnotu.
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Obr. 10.3

Stejnym uspofddanim mnoZiny S; i v tabulce ptechodové a vystupni funkce automatu
M, jsme dostali i levou tabulku na Obr. 10.3. Z nf je okamzite zfejmé, Ze ve vech stavech z
teze tndy rozkladu Si/Ker(g) automat M; reaguje shodng.* Této vlastnosti rozkladu fkdme
rozkladu. Konzi e rozkladu Si/Ker(¢) je disledkem komutace levého okna

diagramu na Obr. 10.2, tj. diisledkem platnosti vztahu B,°(ox1) = B1.

Prava tabulka na Obr. 10.3 vznikla zémé&nou naslednych stavi levé tabulky za
oznadeni tifd rozkladu Si/Ker(¢), v nichZ se nésledné stavy nachdzi. Z ni je zfejmé, Ze
viechny stavy z jedné ti{dy rozkladu Si/Ker(¢) na dany podnét piechazi opét do n&jaké jedné
ti{dy rozkladu Si/Ker(¢). Tuto vlastnost rozkladu nazyvdme substituéni vlastnosti, zkracené
té2 SV vlastnosti rozkladu. SV vlastnost rozkladu Si/Ker(¢) je disledkem komutace pravého
okna diagramu na Obr. 10.2, tj. disledkem platnosti vztahu 8,°(x1) = ¢°;.

Zavéry vyvozené z analyzy uvedeného pifkladu nds opraviiuji vyslovit tezi, Ze rozklad,
indukovany jadrem redukéniho VVH je SV a konzistentni. Podaii-li se tuto tezi obecné
dokazat, stane se teorémem. Za tim Gdelem je tfeba nejprve prevést vyse uvedené verbalni
charakteristiky SV vlastnosti a konzistence rozkladu do podoby formélnich definic:

o substituéni vlastnost rozkladu Si/Ker( ) miZeme definovat formulf
Va,beSi: (¢(a) = (b)) = VieL: (9(B1(a,d)) = ¢(81(b.0));
o konzistenci rozkladu Si/Ker(p) miZeme definovat formulf
VabeSi: (¢(a) = ¢(b)) = Vil (Bi(a,i) = Bi(b.i).

¢ Stavy ze tiidy {A,E.H,K} maji subvektor reakei (0,1,0), stavy ze tiidy {B,F,J} maji subvektor reakei (1,0,1), a
stavy ze tiidy {C,G} maji subvektor reakef (1,1.1).
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P¥i dtkazu tvizeni ,rozklad Si/Ker(¢) je SV a konzistentni vyjdeme z podminek
komutace algebraického diagramu na Obr. 10.2:

L. 8x((a).i) = ¢(81(a.)),
2. Ba(@(a).i) = Pu(ai).

Diikaz (horni index u symbolu implikace odkazuje na uZitou podminku komutace:
o (0(@) = 0b) = G:(@()D) = 8:(9b).) =' (9G1(@) = @G (B.)) oo SV Vlastnost,
o (9@ = pb) = Ba(@@)D) = B(@1) D) = (Bi(ai) = Bi(bD) oo konzistence.
Provedenim diikazu jsme se ujistili, Ze to, co vidime v pravé tabulce na Obr. 10.3 nenf

dilem nahody, ale déisledkem robustnf zakonitosti. Grafické vyjadfent této zdkonitosti vidime
na Obr. 10.4:

Obr. 10.4

V ném ti{dy rozkladu Si/Ker(¢) vytvéii jakési ,,makrostavy” zndzornéné &arkovanymi
ovaly, mezi nimiZ automat M; pfi své funkei ptechdzi. Slozky ,;makrostavii* (konkrétnf stavy
z mnoZiny S;) zde nejsou podstatné, chovajf se stejng, a proto lze od nich odhlédnout. V
diisledku toho je automat M; z Obr. 10.1 ekvivalentn{ s automatem M, /Ker(¢) = (S, 1, O, §,
B), v némz S = Si/Ker(¢) a jeho grafické i tabulkové podoba prechodové a vystupni funkce
je uvedena na Obr. 10.5. Je také zfejmé, Ze automat My/Ker(¢) z Obr. 10.5 je izomorfni s
automatem M, v Obr. 10.1. Jednd se o izomorfizmus ¢ = (¢",1,1): Mi/Ker(¢) = Mz v némz
funkce @”: Si/Ker(p) — S; je ve tvaru @(@(s)) =5, SESy.
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Mi/Ker(p) = (S, 1, O, §, B),
S =Si/Ker(p),
8(¢"(s), 1) = 0"(8a(s, 1)),
B@"(s), i) = Bals, ),  s€Sa.

8 i
S\I | a b c |a b ¢
o'W (o'W ¢'(vV) |0 1 0
MO’y oM | 1 0 1
O [0y ¢ 9| 1 1 1
M [0y ¢’ oM |0 0 0
Obr. 10.5

10.2. Podilovy automat

V ¢lanku 10.1 jsme dokdzali, Ze s existenci redukéntho VVH ¢ = (¢,1,1): M; — M, je
tzce spjata i existence SV a konzistentniho rozkladu stavového prostoru automatu M.
Zobrazeni ¢: S; — Sy, které je slozkou redukéntho VVH, umoZiiuje tento rozklad (ktery jsme
oznatili jako Si/Ker(¢)) snadno a rychle nalézt. Vidéli jsme, Ze informace obsaZena v tomto
SV a konzistentnim rozkladu (zviditeln&né tabulkami na Obr. 10.3 & grafem na Obr. 10.4)
postaduje k sestrojeni automatu M,/Ker(¢), jehoZ stavy jsou jednotlivé tifdy rozkladu
Si/Ker(¢). Automat M,/Ker(¢) je kompatibilni a izomorfni s automatem M,, a proto je
funk&n€ zaménitelny i s automatem M. Postup jeho konstrukce je v &lanku 10.1 podrobné&
popsén. Vysledek ilustraéniho piikladu v grafické i tabulkové formé vidime na Obr. 10.5.

Pozorny ¢tendt si jisté viiml, Ze dojit od automatu M; z Obr. 10.1 k automatu na Obr.
10.5 jsme mohli i bez znalosti automatu M, a redukéntho VVH ¢ = (9,1,1): M; — M,. Tato
znalost poslouZila jen k nalezeni SV a konzistentniho rozkladu Si/Ker(¢), pak uz k nidemu
potfebnd nebyla. SV a konzistentni rozklady stavovych prostori automatii je viak moZno
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hledat i jinak.* Pokud né&jaky takovy SV a konzistentni rozklad ziskdme, pak na t¥d4ch tohoto
rozkladu mizeme postupem uvedenym v &lanku 10.1 sestrojit automat s men$im poctem
stavil, zaménitelny s piivodnim automatem. Tento automat nazyvame podilovym automatem
plivodniho automatu.

Obecné lze podilovy automat sestrojit na kazdém SV a konzistentnim rozkladu
stavového prostoru libovolného automatu M = (S, I, O, §, B). Je-li takovym rozkladem rozklad
T = {(s)z: s€S}, v némZ symbol (s); oznacuje tfidu rozkladu 7 obsahujici stav s, je SV
vlastnost rozkladu 7t definovdna podminkou Va,be S: (((a)x = (b)x) = VieL: ((8(a, i))x =
(8(b, 1))z)) a konzistence rozkladu m podminkou Va,be S: (((a)z = (b)x) = VieL: (B(a, i) =
B(b, 1))). K nému piislusnym podilovym automatem je pak automat M/r = (m, I, O, &, Br), v
némz pro 8 mxI — 7t plati 8x((s)z, 1) = (8(s, 1))z a pro Br: XL — O plati Br((s)r, i) = BC(s, i)
Pro funkci ¢: S — 7 definovanou pfedpisem @(s) = (s)» v tom piipadé plati:
8:°(OXD) = Bx((p(8), 1) = 3x((S)m, 1) = (3(s, D)= P(3(s, 1)) = 9°3;

*Ba®(@xD) = Ba(9(s), 1) = Ba((s)r, 1) = (s, 1) = B.

Proto trojice ¢ = (¢, 1, 1): M — M/n s takto definovanou funkei @ je redukénim VVH (viz
diagram na Obr. 10.6 spolu s podminkami komutace jeho oken) a automat M je s automatem
M/n funkéné zaménitelny.

0‘_LSX1L’S

5 ox1 ¢ &(ex)=¢%
5 B=2(xD) =B

AL ==L

Obr. 10.6

Neni-li 7 trividlnim rozkladem s jednoprvkovymi tfidami, jednd se o kontraktivni redukéni
VVH a podilovy automat M/t mé méné stavii neZ ptivodn{ automat M.

10.3. Redukce automatu

Zavér predchoziho ¢lanku fikd, Ze existuje-li néjaky SV a konzistentni rozklad 1
stavového prostoru automatu M, ktery neni trividlnim rozkladem s jednoprvkovymi tffdami,
neni automat M reduktem, nebot’ jeho podilovy automat M/m je automatu M strukturdlné
podobny, je s nim funkéné zaménitelny a ma méné stavi nez automat M. Sestrojeni automatu
M/n pak mize byt prvnim krokem redukce automatu M. Nemé-li stavovy prostor automatu
M/r jiny SV a konzistentni rozklad kromé trividlniho rozkladu s jednoprvkovymi tifdami, je
tento krok i krokem poslednim a automat M/z je redukt. V opaéném piipadg, tj. existuje-li SV
a konzistentni rozklad ¢ stavového prostoru automatu M/m, ktery nenf trividlnim rozkladem s
jednoprvkovymi tifdami, sestrojifme na ném podilovy automat (M/m)/c a opét zkouméme, je-li
uz reduktem ¢i ne.

° Naptiklad tak, Ze se zam&fime jen na netrividlni konzistentni rozklady (do stejné tidy zde lze zafadit jen stavy
shodujici se v subvektoru reakci), u nichZ pak zjistujeme existenci SV vlastnosti. Je zfejmé, Ze stavovy prostor
automatu M, z Obr. 10.1 nemd netrividlni konzistentni rozklad (tfm méné& netrividlni SV a konzistentn{
rozklad), zatimco stavovy prostor automatu M; ma 149 netrividlnich konzistentnich rozkladu, z nichZ jen jediny
(jiz zmin&ny rozklad S,/Ker(¢)) md i SV vlastnost. V lekci 11 se sezndmime s podstatng efektivn&j$imi postupy
ziskdvani SV a konzi; ich rozkladi i vy. ych redukti.
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Uvedeny postup je znézornén vyvojovym diagramem na Obr. 10.7:

ANO

automat je
redukt

KONEC )

Obr. 10.7

Legenda:

A: Zadat redukovany

automat.

: Existuje netrividlni SV a

konzistentni rozklad
stavového prostoru
zkoumaného automatu?

: Sestrojte na tomto SV a

konzistentnim rozkladu
podilovy automat.

Vzhledem k tomu, Ze pocet stavii zadaného automatu je koneény, a pti kazdém priichodu

procesu redukce blokem B se pocet stavii aktudlniho automatu sniZi nejméné o jeden, musi
redukce zadaného automatu po kone¢ném poétu jejich kroki skondit a vysledny automat je

hledanym reduktem.
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Cvident k lekei 10.

Piiklad 10.1: Na Obr. 10.8 je tabulka pfechodové a vystupni funkce automatu M:

M: 3 B
SINIT a b a b
A B © 0 1
B A © 0 1
© D E 1 0
D © B 0 1
E A I8! 1 0
B A E 1 0
Obr. 10.8

Automat M neni reduktem, protoze rozklady © = {{A},{B},{C},{D},{EF}} a &
= {{A,B},{C},{D}{E},{F}} jsou SV a konzistentni. Podflové automaty M/m a
M/o, definované tabulkami na Obr. 10.9,

M/m: & Br M/o: O Ba
oAl a b a | b o\l a b a | b
{A} {B} (@} 0 1 {AB} | {AB}| {C} 0 1
(B} | {A} | {C} |01 {C} | {D} | (E} [ 1] O
{C] N[ ND} S (REESE1S R0 {D} | (C} [{AB}| O | 1
{D} {C} {B} OF(S1 {E} [{AB}| (E} IR0
{E,F} {A} ey || 0 {F} {AB} | {E} 1 0

Obr. 10.9

také nejsou redukty, protoZe rozklady jejich stavovych prostort
p={{{AL{B}LU{C}L{{D}}L.U{EF}}} a

7= {{{A,B}}.{{C}}.{{D}}.{{E},{F}}} jsou SV a konzistentni. Oba podilové
automaty (M/m)/p a (M/6)/t na nich sestrojené (viz Obr. 10.10) jsou izomorfni a
uZ redukty jsou.

(M/m)/p: Orp B (M/o)/t: O Bov

p\I a b T\l a b

({AL(B}} | ({AL(B}) | ({C}} ({AB}} | {{AB}} {{ch
{cy {{D}} ({EF}) {cyy {{D}} {{E},{F}}
{{D}} (C)} | {{AL{B}) {{D}} (e} {{A.B}}
({EF)} | ({AL{B}) | ({EF}) ({EL.{F}} | ({AB}} | ({E}.(F})

—or~o|m®
o~or~| o
—o~o|®
o—~or|o

Obr. 10.10
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11. Algoritmy redukce automatu

V Piikladu 10.1 jsme v prvni fézi redukce automatu M na Obr. 10.8 hledali SV a
konzistentn{ rozklady jeho mnoziny stavii S = {A, B, C, D, E, F}.! Nalezli jsme dva: T =
{(s)n: s€S} = {{A}, {B}, {C}, {D}, {EF}} a 0 = {(s)s: s€S} = {{A,B}, {C}, {D}, {E},
{F}},%a sestrojili na nich podilové automaty M/m a M/c. V dalsf fézi redukce jsme hledali SV
a konzistentn{ rozklady mnoZin 7t a 6. A zde jsme nasli ke kazdé jen jeden: p = {(x)p: xET} =
{{{A}.{B}}, {{C}}, {{D}}, ({EF}}}, a © = {(x)=: xec} = {{{AB}}, {{C}}, {{D}},
{{E},{F}}}. Je zfejmé, Ze p # 7, protoZe {{A},{B}} # {{A,B}} a {{EF}} # {{E},{F}}.

AvSak odhlédneme-li od toho, jak byly rozklady p a T ziskény, a nebudeme-li jejich
tfidy definovat prvky naposled rozkladané mnoZiny, ale prvky piivodni mnoZiny S, bude p =
{(s): s€S} = {{A,B}, {C}, {D}, {EF}} = {(s)x: s€S} = 7. Neshleddme mezi nimi Z4dnych
rozdilli a ztotoZni se s rozkladem M (viz pozn. pod darou 2). Stejné tak po odhlédnuti od
obsahu jednotlivych tfid vyslednych rozkladii neshleddme Zadny rozdil mezi redukty (M/m)/p,
(M/c)/t a M/m. Toto sjednoceni pohledu umoZni porovnat a &dstedn& usporddat rizné
rozklady téZe vychozi mnoZiny, a to bez ohledu na zpiisob a postup, jakym byly ziskany.

11.1. Caste&né usporadani rozkladii a Jjeho Hasseovsky diagram

Porovndnim tfd rozklad = {(s)r: s€S} a M = {(s)y: s€S} zjistime, Ze pro VseS
plati: (s)z C (s)y. Vyjddieno slovy: kaZda tfida rozkladu 7 je podmnoZinou né&jaké t¥idy
rozkladu 1. Uvedeny vztah inkluze mezi tfidami generuje vztah T < M mezi rozklady, ktery
interpretujeme jako srovnatelnost rozkladi 7 a 1 (jde o srovnatelné rozklady). Smér symbolu
srovnatelnosti navic tkd, Ze rozklad 7 neni ,hrub§i* (tj. nemd méné tifd) nez rozklad 11.3 Je-li
alespori jedna inkluze mezi tff{dami ostrd, tj. 3s€ S: (s)z C (s)y (jako tomu je v piipadé {A}
{A,B}), md rozklad | méng tfid neZ rozklad m (,n je hrub3i neZ 7 nebo také ,,m je jemng;jsi
neZ M*), coZ zapisujeme 7 < 1. Relaci < je moZno rizné rozklady téze mnoZiny S uspofadat.
Avsak vzhledem k mozné existenci nesrovnatelnych rozkladi (nesrovnatelnymi rozklady jsou
T a 0, protoZe nespliiuji podminku Vse S: (s)r C (s) ani podminku VS€ S: (s)s C (s)z), nemusi
jit o uspofadéni tplné, ale jen o uspofadéani Sdstedné.

Strukturu &dste¢ného uspofddani riznych rozkladii zadané mnoZiny S graficky
znézoriiuje tzv. Hasseovsky diagram. Setkali jsme se s nfm v jeho klasické podobé jiz na Obr.
4.18 a na Obr. 4.20. Rozklady jsou v ném uspofddédny ve vrstvich; kazdou vrstvu tvorf
vzéjemné nesrovnatelné rozklady, spojnice (dsecky) vedené mezi vrstvami spojuji sousedni
srovnatelné rozklady (tj. jen takové, mezi nimiZ Zadny jiny srovnatelny rozklad nelezf). Pfitom

jemngjsi rozklad vzdy leZ{ v niZ§f vrstvé.

! Rozklddénim mnoziny se rozumf seskupovani viech jejich prvki do vzdjemng disjunktnich podmnozin (tfd).
Vysledkem je rozklad - novd mnoZina, jejimiZ prvky jsou vSechny takto vytvorené tidy (vzdjemn disjunktni
podmnoZiny prvkii rozklddané mnozZiny).

* Existuje jeSté teti SV a konzistentni rozklad 1 = {(s)y: s€S} = {{A,B}, {C}, {D}, (EJF}} mnoZiny S, ktery
Jjsme v feSeni Piikladu 10.1 nezvaZovali.

3 Stejn€ ,.hrubé* by oba rozklady byly jen v piipad, kdyby pro VseS platilo (s), = (s)n- Pak by ale m=1. Je
zfejmé, Ze takto zavedend bindrni relace < je reflexivni (a < a), antisymetrickd (a <b,b<a = a=b)a
tranzitivnf (@< b,b<c=>a<c).
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Za Gelem zvySeni srozumitelnosti dal$tho vykladu nahradime v klasické verzi
Hasseovského ~diagramu neorientované spojnice (dsecky) orientovanymi spojnicemi
(Sipkami), vedoucimi od hrubstho k jemné&j§imu rozkladu. Pfiklad této modifikace
Hasseovského diagramu vidime na Obr. 11.1: Jednd se o zndzornéni struktury &aste¢ného
uspotadani vSech konzistentnich rozkladi stavového prostoru S automatu M definovaného
tabulkou na Obr. 10.8.

ABD
CEF

=

lcRoR-N-Re -

Obr. 11.1
Dvojice srovnatelnych rozkladi je v diagramu propojena orientovanou cestou (posloupnosti

sestavajici ze shodné orientovanych spojnic a piipadnych mezilehlych rozkladi). Naopak
nesrovnatelné rozklady pozndme podle toho, Ze mezi nimi Zadn4 orientovana cesta nevede.
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Hasseovsky diagram vSech konzistentnich rozkladi Ize nejsndze sestrojit
systematickym postupem ,,shora doli*. Postup vyuZiva toho, Ze jakymkoli dal§im rozkladem
tiidy konzistentniho rozkladu vznikne opét konzistentni rozklad. Vychozim rozkladem je
nejvySe poloZeny rozklad sdruzujici do stejné tifdy vSechny stavy se shodnym subvektorem
reakcei (viz poznidmka pod Carou 4 v lekci 10, vztahujici se k automatu na Obr. 10.3).
Rozkladem jedné z viceprvkovych tifd vychoziho rozkladu do dvou podtid dostaneme s nim
sousedici jemnéjsi rozklad ve vrstvé bezprostiedné nizsf, a mezi oba rozklady zakreslime
orientovanou spojnici.

Opakovanim téhoZ pro kaZzdou viceprvkovou tf{du vychoziho rozkladu, a kaZdou
moznost jejtho déleni na dvé podtiidy, ziskdme kompletni obsazeni bezprostfedné niZsi
vrstvy. V takto vytvofené vrstvé povazujeme kazdy rozklad za novy vychozi rozklad. Aplikaci
vySe uvedeného postupu na vSechny nové vychozi rozklady vytvoiime dal§i vrstvu jesté
jemngjsich rozkladi. Postupnym generovanim dalSich vrstev dle téhoZ ,,receptu” dosp&jeme k
nejniz§i vrstvé s jedinym trividlnfim rozkladem s jednoprvkovymi tfidami. Hasseovsky
diagram vSech konzistentnich rozkladi je hotov.

11.2. Svaz SV a konzistentnich rozkladi stavového prostoru automatu

V zavéru pozndmky pod Carou 7 jsme v lekci 4 zavedli nad systémem rozkladi
stavového prostoru automatu dvojici bindrnich operaci * (soudin rozkladi) a + (soudet
rozkladt)). Operaci * jsme definovali pfedpisem 6%t = {(s)sN\(s):: s€S}, operaci + jsme
definovali vyvojovym diagramem jejiho algoritmu uvedenym na Obr. 4.5. Ob¢ tyto operace
zachovdvaji konzistenci (jsou-li konzistentni oba operandy, je konzistentni i vysledek), a
proto kazdd mnoZzina vSech konzistentnich rozkladi je vici témto operacim uzaviend
(vysledky operaci nad jejimi libovolnymi dvéma prvky v nf lezi také).

Z Hasseovského diagramu mnoZiny rozkladii uzaviené vii¢i témto operacim je mozno
jejich  vysledky nad libovolnymi operandy snadno a rychle zjistit: Jsou-li operandy
srovnatelnymi rozklady, je vysledkem operace * jemnéjsi z nich, a vysledkem operace + je
hrub§i z nich. V piipadé nesrovnatelnych operandii bude vysledek operace * jemné&jSim
rozkladem obou operandl; bude jim rozklad, v némz se nékterd z orientovanych cest,
vychézejicich z jednoho operandu, potkd s nékterou z orientovanych cest, vychézejicich z
druhého operandu. Naproti tomu vysledek operace + bude hrubs$im srovnatelnym rozkladem k
obéma operandiim; bude jim rozklad, z néhoZ vychézi dvojice orientovanych cest, z nizZ jedna
cesta vede k jednomu a druhd cesta vede ke druhému operandu.

V moderni algebie se ¢asteéné uspofddand mnozina prvki danych vlastnosti, uzaviena
vzhledem k dvojici bindrnich, idempotentnich, komutativnich a asociativnich operaci (bliZe
viz poznidmka pod Carou 7 v lekci 4), souvisejicich s relaci uspofadani tak jak bylo vyse
popsédno (viz souvislost vysledkl operaci s cestami v Hasseovském diagramu), nazyva
svazem. V nami diskutovaném piikladu svazu na Obr. 11.1 se jedna o svaz konzistentnich
rozkladi stavového prostoru S automatu M z Obr. 10.8, formdlné definovany ctvefici KM =
(KM), <, *, +), v niz K(M) je mnoZina vSech konzistentnich rozklad indukovand automatem

* Maji-li tiidy (x)o a (y)< X,y€S dvou riiznych konzistentnich rozkladi G a T neprdzdny prinik, leZi prvky
priniku jak ve tfd& (x)o, tak ve tfid& (y).. Elementdrni chovéni automatu ve stavech z mnoZin (x), a (y): se
proto bude shodovat s jeho elementdrnim chovanim ve stavech leZicich v priniku. Operace * vybere z obou tfid
spole¢ny priinik, operace + obg tfidy sjednoti. V obou pfipadech tak nové vytvorené tidy konzistenci nenarusi.
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M (nosi¢ svazu). Vzhledem k tomu, Ze vSechny prvky této &tvefice jsou zjistitelné z
Hasseovského diagramu na Obr. 11.1, Ize tento diagram povaZovat za grafickou reprezentaci
svazu KM.

Vysledky operaci * a + na konkrétnim automatu nezdvisi, av§ak nosi¢ piislusného
svazu na ném zdvisly je. Napf. ke zjistovéani konzistence rozkladu je tieba védét, ve kterych
stavech dany automat vykazuje shodu v elementdrnim chovéni. Tato informace je beze zbytku
obsazena v jediném nejhrubsim konzistentnim rozkladu. Proto je mozno z tohoto jediného
rozkladu vySe popsanym postupem ,shora doli* zrekonstruovat i ostatni rozklady nosice
svazu konzistentnich rozkladi. Obecné je moZno k rekonstrukei nosi¢e svazu rozkladi danych
vlastnosti z jeho né&jakého ,,pIné informativniho torza* vyuZit i dvojici operaci * a +, pokud
ob¢ tyto operace dané vlastnosti zachovavaji. Pfitom je tfeba respektovat fakt, Ze se jednd o
binarni operace (ke kazdému vysledku je tfeba dvou operandi), a Ze chybgjici rozklad je
mozno ziskat jen jejich aplikaci na nesrovnatelné operandy.

Obecné vhodné ,,pIn¢ informativni torzo“ k tomuto Glelu uZivané sestdvd ze vech
nejmensich rozkladi (s,s”) danych vlastnosti, obsahujicich dvojici s,s’€S v jedné tiidé
rozkladu.® Postup rekonstrukce pifslusného nosice svazu lze pak shrnout do nasledujicich tff
krokui:

Usporadame vsechny rozklady (s,s”) do Hasseovského diagramu.

V Hasseovském diagramu vyhleddme viechny dvojice nesrovnatelnych prvki a aplikujeme
na né€ operace * a +.

Vzniknou-li tim nové rozklady, doplnime je do Hasseovského diagramu a opakujeme
piedchozi krok. Nevznikne-li Zadny novy rozklad, je mnoZina rozkladi usporddanych v
Hasseovském diagramu uzaviend vzhledem k operacim * a +, je tedy hledanym nosi¢em
svazu a Hasseovsky diagram reprezentuje piislusny svaz.

Dal§im vyznamnym svazem rozkladi, vyuZivanym zejména pifi analyze
dekomponovatelnosti automatu (viz pozndmka pod &arou 7 v lekci 4, Uloha 4.5 a Piiklad 4.7)
je svaz SV rozkladi stavového prostoru automatu, definovany &tvefici SVM = (SV(M), <, *,
+). Pii jeho konstrukci vychdzime z nejjemnéj$ich SV rozkladi (s,s”) vytvofenych nad v§emi
dvojicemi s,s°€ S algoritmem zadanym vyvojovym diagramem na Obr. 11.2. Pro automat M z
Obr. 10.8 dostdvame:

(A.B) = {{A,B},{C},{D}.{E}.{F}},
(AC)=(AE)=(AF)=(BD)=(CD)=(CE)=(DE)=(DF) = {{AB,CDEF}},
(AD)=(B,C)=(B,E)=(B,F)=(CF) = {{AD},{B,CEF}},

(EF) = {{EF},{A}{B}{C}.{D}}.

Usporadanim téchto Ctyf rozkladi do vychoziho Hasseovského diagramu a naslednou aplikaci
operaci * a +, které SV vlastnost rozkladti zachovévajf,® vygenerujeme Hasseovsky diagram

3 Sestavime jej takto:
e 7 mnoZiny S stavii automatu se vyberou viechny dvojice stavii, kterym vlastnosti rozkladu zjevn&
nezakazuji vyskyt ve stejné tiidg.
® Pro kazdou takovou dvojici s,s’€S se vytvori rozklad (s,s?), ktery (pokud existuje) je nejjemng&j¥im
rozkladem danych vlastnosti sdruzujicim stavy s a s” do jedné tFidy.
* ,PIn& informativni torzo* sestdva ze viech rozkladii (s,s"), které v pfedchozim kroku vznikly.
Je zfejmé, Ze v pripad€ automatu M z Obr. 10.8 viechny nejjemnéjsi konzistentni rozklady (s,s”) jsou umistény
v pfedposledni vrstvé diagramu na Obr. 11.1 (tj. bezprostfedn& nad nejjemn&jsim trividlnim rozkladem).
¢ Zachovéni SV vlastnosti rozkladu operacemi * a + je tfeba dokézat. Pro soucin SV rozkladii ma o plati:
%0 = {(S)mot SE S}, kde (S)ro = ($)x(S)o
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svazu SV rozkladd na Obr. 11.3. V ném silné vyzna¢ené rozklady se vyskytujf i na Obr. 11.1
(i tam jsou silné vyznaceny), takZe jsou nejen SV, ale i konzistentni a siln& vyznatena
podstruktura (jak v Obr. 11.3, tak v Obr. 11.1) znizoriiuje svaz SV a konzistentnich
rozkladi SVKM = (SVK(M), <, *#, +) automatu M z Obr. 10.8.

Legenda: A: Zadan rozklad m mnoZiny S
obsahujici ~ kromé  samych

jednoprvkovych tiid i jednu
dvouprvkovou tiidu {s,s’}.

A B: 3(a,beS, ieL): (a)x = (bym,
(8(@,i))x # (8(b.))x?
(Existuje v nékteré ze tiid
rozkladu 7 n&akd dvojice
NE riznych stavii (a,b), kterd na
néjaky podnét i nepfechdzi do
(ss)=m téze tiidy rozkladu 11?)

ANO Ci 7= ((3(@))n L (3(bi))n) U
(10 = {(8(a,))s, (8(b.D)x})
KONEC ) (Sjednoceni zjisténé dvojice tiid
(8(a,i))x # (8(b,i))x narusujicich
podminku SV rozkladu tim, Ze
jsou v 7 disjunktni.)

Obr. 11.2

Nosi¢ SVK(M) svazu SV a konzistentnich rozkladi SVKM sestdvd pravé z téch
rozkladd, na nichZ Ize k automatu M konstruovat podilové automaty. A podilovy automat,
sestrojeny na rozkladu nejvySe postaveném v Hasseovském diagramu svazu SVKM, je
reduktem. Zajima-li nds jen Hasseovsky diagram SVKM, miZeme jej vygenerovat piimo
napf. tim, Ze z rozkladu (s,s”) ziskanych algoritmem na Obr. 11.2 pouZijeme jen ty, které jsou
konzistentni. V pifjpad¢ automatu M z Obr. 10.8 existuji takové rozklady dva:
{{AB}{C},{D}{E}.{F}} a {{EF}.{A},{B},{C},{D}}. Jsou nesrovnatelné a vysledky
jejich souctu a soucinu je doplni na nosi¢ SVK(M) svazu SVKM.

(@0 = (D)o = ISES: ,bE (Sho = 3,DE ((8)r N(S)s) = a,bE (s, a,bE () = ViEL: (8(a,i),8(b,i)E (8(5,i))r,
8(a,i),8(b,)e (8(s.1))o) = Vil 8(a,i).8(b,i)e ((8(s.i))x N(B(s:1))e) = ViEL: 8(a,i),8(bD)€ (3(5,i))me = ViEL:
(B(@.))neo = (O(b:))rea:

Soutet SV rozkladii 7 a o sjednocuje tidy rozkladii ma 6 s neprdzdnym priinikem a sestavuje z nich rozklad
T+0. Z algoritmu vypo&tu plyne: (S)z S (S)rso @ (S)o S (S)nso- Proto také ((s)z U(s)s) € (SHrso-

(@so = (DYric = ISES: a,be () U(s)o) = ViEL: 8(a,i),8(b,1)€ ((8(s,1))r U(B(5,1))o) = ViEL:

8(a,1),8(b,1)€ (8(s,i))nso = ViEL: (8(a,))nio = (3(D,1))nsc-
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ABCDEF
AB AD
EF BCEF

EF
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N\

= e g
caw>

HET AW

Obr. 11.3
11.3. Redukce automatu shora a zdola

Zakladnim problémem redukce automatu postupem zndzorn&nym na Obr. 10.7 je
potfeba opakovaného hleddni SV a konzistentnich rozkladii stavového prostoru podilového
automatu, ziskaného jako vysledek predchoziho kroku. V predchozich &lancich této lekce
jsme uvedli tfi postupy, umoZiujici najit viechny SV a konzistentni rozklady stavového
prostoru automatu bezprostfedné z jeho zadéni, aniZ bychom postupné vytvaieli pifslusné
podilové automaty. Pfitom jsme vidéli, Ze mnoZinou stavii reduktu je:
¢ nejvyse poloZeny (nejhrubsi) rozklad v Hasseovském diagramu svazu SVKM,

e nejvySe poloZeny (nejhrubsi) SV rozklad v Hasseovském diagramu svazu KM,

* nejvyse poloZeny (nejhrubsi) konzistentni rozklad v Hasseovském diagramu svazu SVM.

V tomto ¢linku uvedeme dva rizné postupy, kterymi se lze k nejhrub§imu SV a
konzistentnimu rozkladu stavového prostoru redukovaného automatu nejsnaze dostat.

Postup redukce shora
Algoritmus redukce shora (viz vyvojovy diagram na Obr. 11.4) se opird o konstrukei
svazu KM = (K(M), <, *, +) postupem ,shora doli“, popsanym v &lanku 11.1. Prynim

zkoumanym rozkladem je zde (stejné jako tam) nejhrubsi rozklad v nosici K(M), sdruzujici do
stejné tifdy viechny stavy redukovaného automatu se shodnym subvektorem reakef (krok A).
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Navic (stejné jako pak i v kazdém nésledujicim zkoumaném rozkladu) v ném hledédme tf{du,
jejiz prvky podminku SV rozkladu nespliiuji (krok B). Pokud ve zkoumaném rozkladu
(rozklad ) 74dn4 takovi tiida neni, jsme v cili.” Pokud n&jaka takova tiida existuje, rozloZime
ji na podtiidy (rozklad ¢ jedné tiidy rozkladu m) tak, aby v kazdé podtiidé byly pravé vSechny
stavy shodujici se v subvektoru t¥{d svych naslednikii rozkladu 7 (krok C). V poslednim kroku
(krok D) nahradime rozklddanou tfidu jejim rozkladem, &imz ziskdme novy a jemn&jsi
zkoumany rozklad 7. Postup se vraci ke kroku B.®

Legenda: A: 71 = {(s)x: s€S},
(@n=(b)r =

Viel: B(a,i) = B(b,i)
(Sestrojit nejhrubsi konzistentni
rozklad T mnoZiny S.)

A B: 3(a,be S, i€L:): (a)x = (b,

(B # (8(b,i))a?
(Existuje v n&které ze tiid
NE rozkladu 7 n&jakd dvojice
mnoZina stavii riznych stavi (a,b), kterd na
reduktu = 7t n&jaky podnét i nepfechdzi do

téze t¥idy rozkladu m?)
ANO

C: 0 = {(s)s: SE(a)s},
@ (Xa= (o ©
(6] VieL: (8(x,1))r = (8(y,1))n

(Konstrukce rozkladu o zjisténé
1 tiidy (a). podle subvektoru tfid

nasledniki  jejich prvka v
rozkladu 7.)

Din=(m—-(a)y) UG

(Zjemnéni rozkladu 7 zdménou

tiidy (a), rozkladem G.)

Obr. 11.4
Postup redukce zdola

Algoritmus redukce zdola (viz vyvojovy diagram na Obr. 11.5) se opird o konstrukci
svazu SVKM = (SVK(M), <, *, +) postupem popsanym v zdvéru ¢ldnku 11.2. Algoritmus na
Obr. 11.5 vychazi z nejjemnéjsich SV rozkladi (s,s”) vytvofenych nad viemi konzistentnimi
dvojicemi stavii s,s°€ S algoritmem zadanym vyvojovym diagramem na Obr. 11.2. Vzhledem
k tomu, Ze v kroku C algoritmu na Obr. 11.2 dochézi ke slucovéni disjunktnich tfd rozkladu,

U automatu M, na Obr. 10.1 (viz také Obr. 10.3) byl SV uz prvnf zkoumany rozklad.
Sy piipad& automatu M na Obr. 10.8 di ych rozkladii:
{{AB.D}, {CEF}} — {{AB}, {D}, {CEF}} — {{A) B} {D}, {C}, {E.F}}.
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muZe vysledny nejjemné&j$i SV rozklad (s,s”) postradat konzistenci, i kdyZ vychozi rozklad s
jedinou dvouprvkovou tifdou {s,s"} konzistentni byl. Proto v kroku A algoritmu na Obr. 11.5
nejprve z rozkladii (s,s”) (vygenerovanych algoritmem na Obr. 11.2 pro viechny konzistentn{
dvojice (s,87)) vybereme jen ty, které jsou konzistentni a vSechny tyto rozklady sjednotime.
Tim vytvoiime systém mnoZin (s,s’), ktery je pokrytim mnoZiny stavd S,” nikoli viak jejim
rozkladem.

Legenda:

A: Zadan systém mnoZin \U(s,s”),
vznikly  sjednocenim  vSech
konzistentnich rozkladi (s,s”)
mnoZiny S.

=3

Ss,s7) = : 33X, YeU(s,s): XNY # &?
U(s,87) (Je pravda, Ze \U(s,s”) neni
rozkladem mnoziny S?)

ANO

Q

18,8 = (U(s,8) — {X,YDH U
KONEC > (XUY)

(Nédhrada dvojice mnoZin s
neprdzdnym prinikem jejich
sjednocenim.)

Obril1:S

V kroku B hleddme v systému (s,s”) dvojici mnoZin s neprazdnym prinikem. Pokud Zadnou
nenajdeme, je \(s,s”) hledanym rozkladem, coZ vyjadiime jeho pfejmenovdnim na 3(s,s”) a
algoritmus konéi. V opaéném piipadé ob&é mnoZiny s neprazdnym prinikem v systému U(s,s”)
nahradime jejich sjednocenim (krok C) a vracime se nazpét ke kroku B.

Je ziejmé, Ze kazdy prichod algoritmu krokem C sniZuje pocet mnoZin v pokryti
U(s,s") o jednu, takZe po kone¢ném poétu priichodi krokem C ziistanou v pokryti U(s,s’) jen
disjunktni tfidy. Z porovnani s algoritmem na Obr. 4.5 (v pozndmce pod &arou 7 lekce 4) je
také zfejmé, Ze algoritmus na Obr. 11.5 je zobecnénim binérni operace + (soudet rozkladil)
zachovdvajici jak konzistenci tak i SV vlastnost rozkladii (viz pozndmky pod ¢arou 4 a 6 v
této lekci) na vétsi pocet operandi. Vzhledem k tomu, Ze shodny vysledek (jako algoritmem
na Obr. 11.5) ziskdme i postupnym pficitanim SV a konzistentnich rozkladu (s,s”) algoritmem
na Obr. 4.5, je rozklad Y(s,s") také SV a konzistentni.'’

° Prvky systému U(s,s”) Jjsou podmnoZiny mnoZiny S. Jejich sjednocenim bychom dostali pravé mnoZinu S.
1V zavéru Eldnku 11.2 jsme vidéli, Ze v pipadé automatu M z Obr. 10.8 existuji dva konzistentni rozklady
(.87 {{ABL{C}H{D}{E}L{F}} a {{EF},{A},{B},{C},{D}}. Proto v kroku A algoritmu zadané vychozi

124



Lekee zékladniho kurzu TEORIE AUTOMATU

Zbyva tedy uZ jen odpovédét na otazku: ,Jak vime, Ze rozklad ¥(s,s’) je nejvyse
poloZeny SV rozklad v Hasseovském diagramu konzistentnich rozkladi?* Je tomu tak proto,
Ze pro kazdy SV a konzistentni rozklad m plati: 7 < >(s,s”). Toto tvrzeni dokdZeme sporem.
Za tim Géelem budeme predpokladat, Ze tvrzeni ,kazdy SV a konzistentni rozklad 7t < (s,s ")
neplati, tj. Ze bud’ ,existuje SV a konzistentni rozklad m > Y(s,s"), nebo Ze ,.existuje SV a
konzistentn{ rozklad 7 nesrovnatelny s rozkladem Y(s,s")*:

e existuje SV a konzistentni rozklad 70> Y(s,s") = Ja,be S: ((a)y # (b)z, (a)r = (b)r);
(@)n = (b = Ha,b): (ab) < 3(s,s7);
(a,b) < Xs;s) = (a)y = (b)3.
e existuje SV a konzistentni rozklad 7 nesrovnatelny se Y(s,s")“ =
Ja,b,ceS: (@) = (b, (b)s = (C)s5, (@)n # (). (A)5 # (C)5);
(@)= (b)n, (b)z = (c)z) = Hab).(b.c): (a,b) < 3s.s), (b.c) < 3(s,87);
(a.by < 2(s.s7), (b.e)y < (s.s7) = (@)s = (b)s. (b)s = (c)p) = (a)z = (c)x-

V obou piipadech je spor v disledcich zvyraznén tuéné.

pokryti U(s,;s) = {{A,B}.{A}{B}.{C}.{D}.{E},{F}{E,F}}. Po &tyfech priichodech krokem C algoritmu
dostaneme X(s,s") = {{A,B},{C}.{D}.{E.F}}.
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Cviéeni k lekei 11.

Piiklad 11.1: Sestrojte Hasseovsky diagram svazu SV rozkladi stavového prostoru automatu,
jehoZ prechodovi funkce je zadéna tabulkou na Obr. 11.6.

|
Regent:
(1,2) = (34) = (5.6) = (7.8) = {{1,2}, {34}, {5,6}, {7,8}}
(1,4y=(2,3) =(5.8) =(6,7) = {{1.4}, {2,3}, {58}, {6,7}}
(1,3)=(2,4)=(5,7) = (6,8) = {{1,2,34}, {5,6,7.8}}
(1,7)=(1,8) =(2,7) = (2,8) = (3,5) = (3,6) = (4,5) = (4,6) = {{1,2,7,8}, {3,4,5,6} }
(1,5)=(1,6)=(2,5)=(2,6)=(3,7) = (3,8) = (4,7) = (4,8) = {{1,2,3,4,5,6,7,8} }

%)
=

(- I e N N R
0NN WA~ N
P - N e =
WA AWK U6
— WA Lo oA
o J N~ A Wle

Obr. 11.6
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Obr. 11.7
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