
Komprese dat

Cvičení

4. dubna 2006

Obsah

1 Základní pojmy, entropie, redundance 2
1.1 RLE komprese . 8
1.2 Příklady na cvičení . 9
1.3 Další příklady . 11

2 Reprezenatce celých čísel 13
2.1 Blokový kód . 13
2.2 Kódování s oddělovačem . 13
2.3 Fibonacciho kódy . 14
2.4 Fibonacciho kódy vyšších řád̊u 15
2.5 Unarní kód . 18
2.6 Golombovo kódování . 18
2.7 Riceovo kódování . 19
2.8 Eliasovy kódy . 19
2.9 Trojkový kód s oddělovačem 22
2.10 Porovnání kód̊u . 23
2.11 Příklady na cvičení . 24
2.12 Další příklady . 25

4 Statistické metody komprese dat 26
4.1 Shannon-Fanovo kódování . 26
4.2 Statické Huffmanovo kódování 27
4.3 Modelování komprese dat . 30

4.3.1 Uložení Huffmanova stromu 30
4.4 Adaptivní Huffmanovo kódování 31
4.5 Příklady na cvičení . 34
4.6 Další příklady . 35

5 Aritmetické kódování 37
5.1 Statické aritmetické kódování 37
5.2 Adaptivní aritmetické kódování 40
5.3 Příklady na cvičení . 41
5.4 Další příklady . 42

6 Slovníkové metody komprese dat 43
6.1 LZ77 . 43
6.2 LZ78 . 45
6.3 LZW . 48
6.4 Příklady na cvičení . 50
6.5 Další příklady . 52

1

1 Základní pojmy, entropie, redundance

Se stále rostoucím množstvím ukládaných a přenášených dat roste potřeba
komprese těchto dat, tedy zp̊usobu jak zmenšit prostor, který zabírají. Me-
tody komprese dat dělíme na ztrátové a bezeztrátové. Ztrátové kompresní
metody nezachovávají všechnu informaci uloženou v datech, jsou vhodné
pro kompresi obrázk̊u, zvuku a videa. Toto skriptum se zaměřuje na beze-
ztrátovou kompresi.

Definice 1.1 (Kód)

Kód K je uspořádaná trojice (S,C, f), kde S je množina zdrojových jed-
notek, C je množina kódových slov a f je zobrazení z S do C. Zobrazení f
přiřazuje každé zdrojové jednotce z množiny S právě jedno kódové slovo z
množiny C. Toto zobrazení musí být prosté, to znamená každé dvě r̊uzné
zdrojové jednotky jsou zobrazovány na dvě r̊uzná kódová slova. Toto je nut-
nou nikoli dostačující podmínkou pro jednoznačnou dekódovatelnost kódu
K.
Zdrojová jednotka je tedy definována jako prvek nějaké množiny. Nej-

častěji jsou jako zdrojové jednotky brány symboly nějaké abecedy (textové
soubory), ale tato definice připouští použití složitějších zdrojových jednotek,
např. slov.
Zobrazení f může být zobecněno na řetězce zdrojových jednotek (zdro-

jová data, vstupní data):

f(S1S2 . . . Sk) = f(S1)f(S2) . . . f(Sk).

Zakódovaná vstupní data budeme označovat pojmem výstupní data.
Prvky množiny C označujeme jako kódy nebo kódová slova. Jestliže vý-

stupní data obsazují méně místa než vstupní data, pak proces kódování
označujeme pojmem komprese a výstupní data označujeme jako komprimo-
vaná.

Opačný proces ke kompresi dat označujeme jako dekompresi. Oba pro-
cesy jsou názorně zobrazeny na obrázku 1.1.

Definice 1.2 (Jednoznačně dekódovatelný kód)
Mějme nějaký kód K = (S,C, f). Řetězec x ∈ C+ je jednoznačně dekódo-
vatelný vzhledem k zobrazení f, jestliže existuje právě jeden řetězec y ∈ S+

takový, že f(y) = x. Kód (S,C, f) je jednoznačně dekódovatelný kód právě
tehdy když všechny možné řetězce z C+ jsou jednoznačně dekódovatelné.
Symbolem C+ označujeme množinu všech řetězc̊u nenulových délek vznik-
lých ze symbol̊u z C.

Příklad 1.3
Mějme kód K = (S,C, f), kde S = {a, b, c, d}, C = {12, 122, 1211, 2121} a
zobrazení f je definováno následující tabulkou:

2

aabbasbaba 00000101001101000100compression

aabbasbaba 00000101001101000100decompression

Obrázek 1.1: Grafické znázornění procesu komprese a dekomprese. Mno-
žina zdrojových jednotek je S = {a, b, s}, množina kódových slov C je
{00, 01, 11}.

zdrojová jednotka kódové slovo

a 122
b 21211
c 12
d 1211

Jeden z možných výstupních řetězc̊u je řetězec 12221211212111221211.
Tento kódový řetězec je jednoznačně dekódovatelný, zdrojový text byl abbad.
Jiným výstupním kódovým slovem je 12111221211. Tento řetězec není

jednoznačně dekódovatelný, protože možné zdrojové texty, které zobrazení
f převede na naše kódové slovo jsou dad a dcb.

Příklad 1.4
Mějme kód K = (S,C, f), kde S = {a, b, c, d}, C = {121, 122, 12211, 2222}
a zobrazení f je definováno následující tabulkou:

zdrojová jednotka kódové slovo

a 122
b 122111
c 121
d 2222

Jeden z možných výstupních řetězc̊u je řetězec 122122111122121122111.
Tento kódový řetězec je jednoznačně dekódovatelný, zdrojový text byl abacb.
Určení, zda libovolný kód je jednoznačně dekódovatelný je algoritmicky

neřešitelný problém, nicméně existují třídy kód̊u, které jsou jednoznačně
dekódovatelné, mezi ně patří prefixové, afixové a blokové kódy.

Definice 1.5 (Prefixový, afixový a blokový kód)
Kód (S,C, f) je prefixový kód jestliže žádné kódové slovo z C+ není před-
ponou jiného kódového slova z C+. Zdrojová data zakódována prefixovým

3

kódem jsou jednoznačně dekódovatelná dekódováním jednotlivých kódových
slov během čtení zleva doprava. To nám umožní začít s dekódováním aniž
bychom znali celý kódový text. Mezi prefixové kódy patří například kód
UTF-8.
Pro afixový kód platí, že žádné kódové slovo není příponou jiného kó-

dového slova. Afixový kód je dekódovatelný znak po znaku během čtení
zprava doleva. Kód z příkladu 1.4 je afixovým kódem, proto je jednoznačně
dekódovatelný.
Pokud mají všechna kódová slova stejnou délku, pak tento kód ozna-

čujeme jako blokový. Jedním z kód̊u pro kódování znak̊u je ASCII 1 kód.
Základní ASCII kód používá 7 bit̊u pro 95 grafických (znaky anglické abe-
cedy, číslice, apod.) a 33 řídících znak̊u, rozšířený ASCII kód je 8-bitový
dovolující kódovat 256 znak̊u.
Je si nutné uvědomit, že neexistuje jednoznačná bezeztrátová komprese,

která by každý vstupní řetězec zkomprimovala na nějaký kratší řetězec.
Důvodem je rozdíl v mohutnosti množin vstupních řetězc̊u (delší řetězce)
a komprimovaných řetězc̊u (kratší řetězce).

Definice 1.6 (Kompresní poměr)
Mějme kód (S,C, f), x ∈ S+, y ∈ C+ : y = f(x). Řetězec x je komprimován
na řetězec y. Kompresní poměr cr je:

cr =
|y|

|x|
.

Definice 1.7 (Optimální kód)
Mějme kód (S,C, f). Pravděpodobnostní rozložení jednotlivých prvk̊u z S je
p,

∑

i∈S p(i) = 1. Kód (S,C, f) je optimální, pokud neexistuje kód (S,C
′

, f
′

)
takový, že

∑

i∈S p(i)|f
′

(i)| <
∑

i∈S p(i)|f(i)|.

S kompresí dat úzce souvisí pojmy entropie (neuspořádanost, neurčitost,
nejistota) a redundance (nadbytečnost). Claude Elwood Shannon označo-
vaný jako otec teorie informace v roce 1948 definoval entropii2 (střední hod-
notu informace na jeden symbol zprávy) takto:

Definice 1.8 (Entropie)
Předpokládejme existenci nějakého systému. Dále předpokládejme samostat-
nou událost (nezávislou na předchozích událostech), která zp̊usobí přechod

1American Standard Code for Information Interchange - americký standardní kód pro
výměnu informací

2Vypráví se, že když Shannon uvažoval o pojmenování této veličiny (pojem informace
byl již přetížený), řekl mu John von Neumann přibližně toto:„You should call it entropy,
for two reasons. In the first place your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the second place, and more
important, no one really knows what entropy really is, so in a debate you will always have
the advantage.ÿ

4

systému do nového stavu. Předpokládejme n vzájemně se vylučujících stav̊u
x, pravděpodobnost stavu i je p(i), entropie stavu x je

H(x) = −
n∑

i=1

p(i) log2 p(i).

Jednotkou entropie je jeden bit3. Jeden bit je použit pro zprávu, která
byla vybrána ze dvou stejně pravděpodobných možností4.
Tato definice předpokládá, že pravděpodobnost jednoho symbolu v textu

je nezávislá na pravděpodobnosti předcházejících symbol̊u. Tato vlastnost
pro texty v přirozeném jazyce není splněna, například v jazyce anglickém je
pravděpodobnost znaku ’u’ po symbolu ’q’ větší než 99%.
Pokud není tato podmínka splněna, je nutné definovat entropii odlišným

zp̊usobem. Tato definice bude uvedena u kontextových metod komprese dat.
Pro definici entropie se zavádí statistický model dat. Pro zjednodušení

budeme pro účely klasifikace statistických model̊u uvažovat, že zdrojovými
jednotkami jsou znaky. Pak můžeme zavést tyto modely:

• Statistický model nultého stupně. Každý znak vstupního textu je sta-
tisticky nezávislý na jiném znaku, pravděpodobnosti výskytu všech
znak̊u jsou stejné. Tomuto modelu odpovídá náhodně generovaný text
a přibližují se mu DNA sekvence.

• Statistický model prvního stupně. Každý znak vstupního textu je sta-
tisticky nezávislý na jiném znaku, pravděpodobnosti výskytu všech
znak̊u jsou r̊uzné.

• Statistický model druhého stupně. Tento model zohledňuje pravděpo-
dobnosti výskytu dvojic znak̊u. Jednotlivé pravděpodobnosti se nepři-
řazují jednotlivým znak̊um, ale jejich dvojicím.

• Statistický model n-tého stupně. Tento model pracuje s pravděpodob-
nostmi n-tic znak̊u.

Entropie zprávy vyjadřuje míru informace, která je v ní uložená. Po-
kud mají znaky ve zprávě r̊uzný počet výskyt̊u, nevede použití statistického
modelu nultého stupně k přesnému odhadu entropie. Pokud je text kontex-
tově závislý, je nutné použít statistický model vyššího stupně, který lépe
odhadne entropii zprávy. Pro anglický text s mezerou statistický model nul-
tého stupně odhaduje entropii na 4,75 bit̊u na znak, model třetího stupně
již tento odhad zpřesňuje na 2,77 bit̊u na znak.

3bit - zkratka z anglických slov binary digit
4Počet možností ovlivňuje základ logaritmu, pro základ 2 je jednotka jeden bit, pro

přirozený logaritmus (základ e) je jednotkou jeden nat a pro základ 10 jeden Hartley. Pro
převod logaritmů se používá následující vztah log2 x = log10 x

log10 2

5

Definice 1.9 (Redundance)
Předpokládejme kódování zdrojové jednotky x a značme ji jako C(x). Délku
kódového slova C(x) označme L(x). Tato délka se měří v bitech. Teorie
informace ukazuje, že H(x) ≤ L(x). Rozdíl mezi délkou kódu a entropií x je
redundance (nadbytečnost) kódu C(x), značíme ji R(x). Formálně:

R(x) = L(x)−H(x).

Příklad 1.10
V tomto příkladu si ukážeme vztah mezi pr̊uměrnou entropií symbolu a prav-
děpodobnostním rozložením symbol̊u. Mějme tři typy zpráv X1, X2, X3 nad
abecedou Σ = {a, b, c, d}. Rozložení pravděpodobností jednotlivých symbol̊u
pro jednotlivé typy řetězc̊u definuje následující tabulka:

symbol P1 P2 P3

a 0,25 0,5 1
b 0,25 0,25 0
c 0,25 0,125 0
d 0,25 0,125 0

První typ zpráv odpovídá rovnoměrnému rozložení všech symbol̊u, re-
prezentant by mohl vypadat například takto abacdcbd. Druhou třídu zpráv
reprezentuje řetězec aabaabcd a poslední typ zprávy má jediného reprezen-
tanta aaaaaaaa. Následující tabulka ukazuje hodnoty entropií jednotlivých
symbol̊u pro tři r̊uzné distribuce pravděpodobností.

symbol P1 H1 P2 H2 P3 H3

a 0,25 2 0,5 1 1 0
b 0,25 2 0,25 2 0 ∞
c 0,25 2 0,125 3 0 ∞
d 0,25 2 0,125 3 0 ∞

Havg 2 1,75 0

Vztah Havg(S) = −
∑

i∈S p(i) log2 p(i) definuje pr̊uměrnou entropii. Z
tabulky je vidět, že entropie jednoho symbolu roste pokud klesá počet jeho
výskyt̊u (∼ pravděpodobnost). Pr̊uměrná entropie je maximální pro rovno-
měrné rozložení výskyt̊u symbol̊u a naopak nejmenší (nulová) pro řetězce
obsahující pouze jeden symbol.

Příklad 1.11
Mějme text dlouhý 160 znak̊u. V tomto textu se 80 krát opakuje symbol ’a’,
40 krát symbol ’e’, 20 krát symbol ’c’. Dále tento text obsahuje po deseti
symbolech ’g’ a ’b’. Předpokládejme, že výskyty jednotlivých symbol̊u jsou

6

nezávislé na předcházejících symbolech. Určete entropii každého symbolu a
entropii celé zprávy.
Pro výpočet entropie zdrojových jednotek nejprve vypočítáme jejich

pravděpodobnosti a poté určíme entropii podle vztahu:

H(xi) = − log2 p(i), xi ∈ S

Výsledné entropie shrnuje následující tabulka:

symbol počet pravděpodobnost entropie (bit)

a 80 0,5 1
b 10 0,0625 4
c 20 0,125 3
e 40 0,25 2
g 10 0,0625 4

Je vidět, že čím výjimečnější symbol (malá pravděpodobnost) tím nese
více informace (větší redundance). Pokud je pravděpodobnost nějakého sym-
bolu zápornou mocninou čísla dvě, vychází entropie celočíselná a odpovídá
počtu bit̊u potřebných pro uložení jednotlivých symbol̊u.
Pr̊uměrná entropie jednoho symbolu z S je definována vztahem:

Havg(S) = −
∑

i∈S p(i) log2 p(i) =
∑

i∈S p(i)H(xi) = 1·0, 5 + 4·0, 0625 +
3·0, 125 + 2·0, 25 + 4·0, 0625 = 1, 875 bitu
Entropie této zprávy X délky k znak̊u je definována vztahem:

H(X) = −
∑k

i=1 log2 p(i) =
∑k

i=1H(xi) = k·Havg(S) = 300 bit̊u.

Příklad 1.12
Mějme zprávu s pravděpodobnostním rozložením definovaným v příkladu
1.11. Uvažujme dva kódy definované následující tabulkou.

symbol, Si kód, C1i kód, C2i
a 0 01
b 1110 00
c 110 100
e 10 11
g 1111 101

Vypočtěte pr̊uměrnou redundanci obou kód̊u. Určete redundanci pro ty-
pickou zprávu délky 160 znak̊u. Typická zpráva má frekvence výskytu jed-
notlivých znak̊u odpovídající jejich pravděpodobnosti výskytu. Pro výpočet
redundance kódu musíme zjistit délku zakódované zprávy. Pro její výpočet
využijeme četností z příkladu 1.11. Délka kódu zprávy délky k symbol̊u lze
vypočítat podle vztahu

L(x) =
k∑

j=1

dij ,

7

kde i ∈ S a f(xi) má di bit̊u. Výsledné délky kód̊u pro C1 a C2 jsou
L1 = 300 bit̊u a L2 = 350 bit̊u. Redundance kódu je R(X) = L(X)−H(X).
Typická zpráva v prvním kódu má nulovou redundanci a typická zpráva ve
druhém kódu obsahuje 50 redundantních bit̊u na 160 bit̊u zprávy. Pr̊uměrná
redundance druhého kódu je tedy 0,3125 bitu na znak.

Příklad 1.13
Mějme typickou zprávu odpovídající pravděpodobnostnímu rozložení z pří-
kladu 1.11. Dále uvažujme dva kódy definované v příkladu 1.12. Předpoklá-
dejme, že typická zpráva byla zakódována v rozšířeném ASCII kódování (8
bit̊u na znak). Určete kompresní poměr pro oba kódy.

1.1 RLE komprese

Mezi nejjednodušší metody komprese dat patří metoda označovaná RLE
(z anglického Run-length encoding). Tato metoda využívá skutečnosti, že
některá data obsahují dlouhé posloupnosti (řada ∼ run) stejných znak̊u.
Typickým příkladem použití jsou obrázky v nízkém barevném rozlišení. Tato
metoda je využita například ve formátu obrázk̊u PCX a může být použita
ve formátu TIFF.
Základní varianta RLE komprese kóduje každou posloupnost dvojicí (po-

čet opakování, znak). Tato metoda je výhodná pro černobílé obrázky. Před-
pokládejme, část obrázku

X = bbbbbbbwwwwwwwwwwwwwwwwwwwwbbbbbbbbbbbbbbbbbbwwwww,

symbolem b značíme černou barvu, symbolem w barvu bílou. RLE komprese
by tento řetězec zakódovala do posloupnosti

7b20w18b5w.

Tento kód je nevhodný pro texty, které obsahují vedle dlouhých posloup-
ností i jednoznakové posloupnosti. Pro tyto texty vznikla varianta, která pro
neopakující se symboly (či krátké posloupnosti, např. dvou znak̊u) nepro-
vádí kódování počtu, ale přímo přepisuje vstup. Pak je nutné použít nějaký
speciální symbol, který „přepneÿ do módu dvojic, (počet, znak).

Příklad 1.14
Nyní se pokusíme vypočítat kompresní poměr pro kompresi části obrázku z
úvodu této kapitoly. V obrázku mohou být pouze dvě hodnoty, {b, w}. Pro
zakódování jednoho znaku použijeme jeden bit, délka nezakódované zprávy
je pak 50 bit̊u.
Délku zakódovaného obrázku výrazně ovlivní použité kódování na repre-

zentaci počtu opakování. Pro jednoduchost budeme uvažovat, že nejdelší po-
sloupnost nepřekročí 256 symbol̊u, pak použijeme binární kód pevné délky,
8 bit̊u.

8

1.2 Příklady na cvičení

Příklad 1.15
Mějme kód definovaný následující tabulkou.

zdrojová jednotka kódové slovo

a 123
b 321
c 12
d 312

Mějme kódové řetězce:

1. 31212321,

2. 1232112123,

3. 32131212312,

4. 3211212,

5. 12321.

Pokuste se dekódovat jednotlivé řetězce. Rozhodněte, který kódový řetě-
zec je jednoznačně dekódovatelný. Je tento kód jednoznačně dekódovatelný?
Je tento kód prefixový, blokový či afixový?

Příklad 1.16
Mějme kód definovaný následující tabulkou.

zdrojová jednotka kódové slovo

a 01
b 111
c 0
d 011

Mějme kódové řetězce:

1. 01001111101,

2. 010110111011,

3. 0111101101,

4. 111001010,

5. 0011000.

9

Pokuste se dekódovat jednotlivé řetězce. Rozhodněte, který kódový řetě-
zec je jednoznačně dekódovatelný. Je tento kód jednoznačně dekódovatelný?
Je jednoznačně dekódovatelný po znacích? Je tento kód prefixový, blokový
či afixový?

Příklad 1.17
Mějme tři typy zpráv s četnostmi znak̊u definovanými následující tabulkou.

zdrojová jednotka četnost 1 četnost 2 četnost 3

a 40 80 160
b 40 40 0
c 40 20 0
d 40 20 0

Určete entropii jednotlivých symbol̊u a pr̊uměrnou entropii pro oba typy
zpráv.

Příklad 1.18
Předpokládejme zprávu s pravděpodobnostním rozdělením četností symbol̊u
definovaným následující tabulkou.

zdrojová jednotka pravděpodobnost

a 1
4

b 1
16

c 1
8

d 1
8

e 1
4

f 1
16

g 1
16

h 1
16

Určete entropii jednotlivých symbol̊u a pr̊uměrnou entropii jednoho sym-
bolu. Jaká je entropie typické zprávy o délce 16 znak̊u. Jak taková zpráva
vypadá?
Jaké jsou redundance (absolutní pro zprávu délky 160 znak̊u a relativní

redundance) blokového kódu kódujícím jeden znak 8 bity a blokového kódu
kódujícím jeden znak 3 bity.
Navrhněte kód s minimální redundancí.

Příklad 1.19
Mějme část černobílého obrázku:

X = bbbbwwwwwwbbbbbbbwwwwwwwwwwwbbbbbbbbbbbbwbbbbbwbbwbbbbb

Zakódujte jej pomocí RLE komprese. Zhodnoťte dosažený kompresní poměr.
Diskutujte r̊uzné typy RLE.

10

1.3 Další příklady

Příklad 1.20
Dokažte, že každý prefixový kód je jednoznačně dekódovatelný.

Příklad 1.21
Mějme zprávu nad abecedou o pěti symbolech. Pro jaké pravděpodobnostní
rozdělení symbol̊u nad touto abecedou je blokový kód délky 3 optimální?

Příklad 1.22
Dokažte, že neexistuje bezeztrátová komprese, která by každý řetězec zakó-
dovala kratším kódem, než byla p̊uvodní zpráva.

Příklad 1.23
Pro kódování znak̊u národních abeced se používá standard Unicode. Verze
Unicode 4.0 obsahuje 96 382 znak̊u, mezi kterými jsou interpunkční zna-
ménka, matematické a technické symboly, geometrické obrazce, apod. Stan-
dard Unicode je možné rozšiřovat o nové znaky, např. symbol pro měnu Euro
byl přidán ve verzi 2.1. Významnou vlastností Unicode je možnost skládání
složitějších symbol̊u z jednotlivých částí (háček + c = č), nebo z jednotlivých
znak̊u (české ch = c+h).
Tento standard definuje symboly na základě jejich významu, nerozlišuje

mezi jejich r̊uznými zápisy - grafickými reprezentacemi. Definice znak̊u jsou
obohaceny o další vlastnosti, např. lexikografické uspořádání, proto nejde
pouze o kódování.
Mezi základní reprezentace Unicode patří kódování UCS-45 a UCS-2,

který obsahuje pouze prvních 64K znak̊u6. Protože ani nové nástroje ne-
dokáží efektivně pracovat s UCS-4 (Java používá UCS-2) byly definovány
kódy pro transformaci UCS, nazvané UTF7 Mezi významné patří UTF-8,
UTF-16 a UTF-32.
Následující tabulka ukazuje převodní vztah mezi UCS-4 (∼ UTF-32) a

kódováním UTF-8.

UCS-4 kód od - do Binární zápis znaku v UTF-8
0000 0000 - 0000 007F8 0xxxxxxx
0000 0080 - 0000 07FF 9 110xxxxx 10xxxxxx
0000 0800 - 0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx
0001 0000 - 001F FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
0020 0000 - 03FF FFFF 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
0400 0000 - 7FFF FFFF 1111110x 10xxxxxx . . . 10xxxxxx

5Universal Character Set (UCS), definováno normou ISO/IEC 10646-1
6Kóduje základní sadu - Basic Multilingual Plane (BMP)
7UCS transformation formats (UTF).

11

Kódování UTF-8 je „zpětně kompatibilníÿ, tedy všechny znaky, které
byly obsaženy v sadě ASCII mají tentýž kód, ve starších editorech jsou tedy
zobrazeny korektně. České znaky jsou reprezentovány pomocí 16 bit̊u.
Předpokládejme existenci zprávy X = Žába leze do bezu, já tam za ní

polezu.
Kolik bit̊u obsadí tato zpráva v UCS-4, kolik v UTF-8 a kolik v roz-

šířeném ASCII (např. ISO 8859-2, osm bit̊u). Sedmibitový ASCII nemůže
reprezentovat „nabodeníčkaÿ. Některé systémy umožňují přepis takových
symbol̊u pomocí speciálních sekvencí. LATEX by tuto zprávu přepsal do tvaru
X = \v{Z}{\’a}ba leze do bezu, j{\’a} tam za n{\’\i{}} polezu.
Kolik bit̊u spotřebuje tento přepis s použitím ASCII(7 bit̊u)? Jaký je

kompresní poměr mezi nejúspornější a nejhorší reprezentací této zprávy?

12

2 Reprezenatce celých čísel

V metodách komprese dat je častou úlohou reprezentace celých čísel, která
reprezentují počet opakování, index ve slovníku, apod.

2.1 Blokový kód

Pro počítače je přirozená reprezentace celých čísel pomocí pevně dané délky,
která je většinou násobkem délky jednoho bytu. V současné době (přelom
dvacátého a dvacátého prvního století) je pro reprezentaci celého čísla pou-
žíváno 32 nebo 64 bit̊u. To nám umožní reprezentovat 232 = 4294967296 '
4·109 (nebo 264 ' 1, 8·1019) r̊uzných hodnot.

Příklad 2.1
Mějme zprávu obsahující nezáporná celá čísla. Určete, kolik bit̊u by mu-
sel mít blokový kód, aby mohl reprezentovat tuto zprávu, pokud víme, že
největší číslo ve zprávě je

1. 8,

2. 127,

3. 2 500 000.

Počet bit̊u lze určit pomocí následujícího vztahu:

b = dlog2 ne,

kde n odpovídá počtu možných hodnot. Protože nezáporná celá čísla menší
nebo rovna 8 připouští hodnoty {0, 1, 2, 3, 4, 5, 6, 7, 8}, tedy devět hodnot je
pro první případ potřeba 4 bity. Obdobně pro druhý případ 7 bit̊u a pro
třetí 22 bit̊u.
Blokový kód je optimální pro reprezentaci hodnot, které mají ve zprávě

stejnou pravděpodobnost a jejichž počet je celočíselnou mocninou čísla 2.

2.2 Kódování s oddělovačem

Kódování s oddělovačem (byte coding, comma coding) rozděluje každý blok
(obvykle 8 nebo 16 bit̊u) kódového slova na dvě části, část, která nese infor-
maci. Druhou částí je jeden bit označující konec kódového slova. Původní
číslo vznikne zřetězením významových částí.

Příklad 2.2
Pomocí kódování s oddělovačem zakódujte čísla:

1. 0,

13

2. 203,

3. 2 500 000.

Pro kódování použijte blok o délce jeden byte, bitem 1 označte poslední
blok.
Nejprve musíme kódované číslo vyjádřit pomocí binární reprezentace,

poté jej rozdělíme po 7 bitech a zakódujeme. Celý proces shrnuje následující
tabulka:

číslo binární reprezentace kód s oddělovačem

0 0 00000001
203 11001011 00000010 10010111

2 500 000 1001100010010110100000 00000010 00110000 10010110 01000001

Tento kód umožňuje přirozeným zp̊usobem zakódování čísla 0. Obdobně
je tomu i pro jiné kódy, např. Golombovy, ale protože budeme uvažovat
kódování přirozených čísel (celá čísla větší než nula), nebudeme nulu kódovat
a celý kód o jedničku posuneme.

2.3 Fibonacciho kódy

Fibonacciho kódy jsou prefixové kódy, které umožňují kódovat celá kladná
čísla. Apostolico a Fraenkel v roce 1987 představili kód založený na Fibonna-
ciho číslech druhého řádu. Fibonacciho čísla jsou pojmenovány po italském
matematikovi Leonardu z Pisy10 (1175 - 1250), známém též jako Fibonacci
(filius Bonacci, syn Bonacciho). První zmínka o těchto číslech (maatraa-
meru) však spadá do 5 století před naším letopočtem11, tato čísla zavedl
indický matematik Pingala ve svém díle Chhandah-shastra12.
Tento kód zobrazuje malá čísla na krátká kódová slova. Každé Fibo-

nacciho číslo končí řetězcem „11ÿ. Tento řetězec se nevyskytuje nikde v
kódovém slově. 2.1.
Fibonacciho kód se vytváří pomocí Fibonacciho čísel, která jsou defino-

vána rekurzívně:

• F1 = 1;

• F2 = 1;

• Fi = Fi−1 + Fi−2; for i > 2

Posloupnost Fibonacciho čísel začíná čísly 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, 377, 610, 987

10Zasloužil o zavedení p̊uvodem arabské desítkové soustavy.
11V roce 509 př. n. l. byla v Římě svržena monarchie a založena republika.
12V tomto díle je mimo jiné i první zmínka o čísle nula (označované .), o Pascalově
trojúhelníku a zavedení binární číselné soustavy.

14

Fibonacci zavedl tuto posloupnost jako ideální řadu pro množení králík̊u.
Limita Fn

Fn−1
pro n jdoucí do nekonečna je číslo označované jako zlatý řez

(1+
√
5

2), číslo významné v umění, biologii a výpočetní technice.
Každé přirozené číslo n může být kódováno binární reprezentací:

RF (n) =
k∑

i=1

biFi+1,

kde bi ∈ {0, 1}, k < n, Fi, 2 ≤ i ≤ k je i−té Fibonacciho číslo. Tato re-
prezentace neobsahuje dvě jedničky vedle sebe (jsou nahrazeny jednou na
vyšším „řáduÿ).
Fibonacciho kód13 čísla n je:

F 2(n) = b0b1b2b3 . . . bk1,

kde b0b1b2b3 . . . bk je reverzí reprezentace RF (n).
Pro dekódování p̊uvodního čísla se odtrhne poslední jednička a p̊uvodní

číslo se vypočte podle vzorce:

|cw|
∑

i=1

biFi+1,

kde Fi je i−té Fibonacciho číslo a bi je i−tý bit v kódovém slově cw.

2.4 Fibonacciho kódy vyšších řád̊u

Pro urychlení r̊ustu Fibonacciho posloupnosti může být definice Fibonacciho
čísel rozšířena použitím delší posloupnosti čísel (k předchozích čísel) pro
výpočet Fibonacciho čísla. Tato čísla jsou nazývána Fibonacciho čísla k-
tého řádu. Tato čísla byla intenzivně studována V. Schlegelem.
Posloupnost Fibonacciho čísel třetího řádu (též nazývána Tribonacci

numbers) začíná 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705
Yamamoto a Ochi (1991) odvodili Fibonacciho kódy vyšších řád̊u. Pro

jejich odvození je potřeba nejprve definovat Fibonacciho čísla vyšších řád̊u:

• F r
i = 0, jestliže i ≤ 0,

• F r
i = 1, jestliže i = 1,

• F r
i =

∑i−1
j=i−r F r

j , jestliže i ≥ 2.

Dále označme Sr
i i-tý součet Fibonacciho čísel stupně r:

Sr
i =

i∑

j=1

F r
j , i ≥ 1

13Budeme jej označovat F
2(n), protože dále zavedeme Fibonacciho kódy založené na

Fibonacciho číslech vyšších řád̊u

15

n RF (n) Fib2(n) |Fib2(n)|
1 1 11 2
2 1 0 011 3
3 1 0 0 0011 4
4 1 0 1 1011 4
5 1 0 0 0 00011 5
6 1 0 0 1 10011 5
7 1 0 1 0 01011 5
8 1 0 0 0 0 000011 6
50 1 0 1 0 0 1 0 0 001001011 9
...
...
...
...
...
...
...
...
...

...
...

1 000 000 . . . 081010111010312 30
34 21 13 8 5 3 2 1

Tabulka 2.1: Fibonacciho kódy pro malá čísla. Číslo n vznikne součtem RF
koeficient̊u násobených příslušným Fibonacciho číslem, jak je zobrazeno na
posledním řádku. Výsledný kód Fib2(n) vznikne otočením kódu RF (n) a
jeho prodloužením jedničkou.

Dále označme M r
i i-tý součet součt̊u Fibonacciho čísel stupně r:

M r
i =

i∑

j=1

Sr
j , i ≥ 1

Výsledný binární kód stupně r je:

• Fibr(n) = 01r−1, jestliže n = 1

• Fibr(n) = 0Fibr(n− Sr−1
i−1), jestliže M r−1

i−1 < n ≤M r−1
i−1 + F r−1

i

• Fibr(n) = 1Fibr(n− Sr−1
i), jestliže M r−1

i−1 + F r−1
i < n ≤M r−1

i

Příklad 2.3
Určete Fib3(31). Pro určení Fibonacciho kódu třetího řádu jsou d̊uležité Fi-
bonacciho čísla druhého řádu, jejich součty a součty těchto součt̊u (tzv. mega
součty). Nejbližší nižší mega součet M 2

i−1 je číslo 26. Příslušné Fibonacciho
číslo (F 2i) se nachází na dalším řádku a je to číslo 8. Protože 26 + 8 ≥ 31
bude výsledný kód začínat nulou a zbytek kódu bude Fib3(31−12), protože
S2i−1 = 12. Bereme tedy součet ze stejného řádku jako mega součet. Pokud
bychom kódovali jedničku, odečítali bychom součet z následujícího řádku.
Lze tedy psát: Fib3(31) = 0Fib3(31 − 12) = 0Fib3(19).

16

n S2n M2
n Fib3(n)

1 1 1 011
2 2 3 0 011
3 4 7 1 011
4 7 14 0 0 011
5 12 26 0 1 011
6 20 46 1 0 011
7 33 79 1 1 011
8 54 133 0 0 0 011
50 32951280098 86267571219 0 0 0 1 0 0 011

↓ ↓ ↓↙ ↓ ↓
20 12 7 4 2 1

Tabulka 2.2: Fibonacciho kódy třetího řádu pro malá čísla. Významové nuly
značí, že do výsledného součtu se započítává částečný součet S2x, jedničky
značí, že do výsledného součtu se započítává částečný součet z vyšší úrovně.

n F 2n S2n M2
n F 3n S3n M3

n Fib3(n) Fib4(n)
1 1 1 1 1 1 1 011 0111
2 1 2 3 1 2 3 0 011 0 0111
3 2 4 7 2 4 7 1 011 1 0111
4 3 7 14 4 8 15 00 011 00 0111
5 5 12 26 7 15 30 01 011 01 0111
6 8 20 46 13 28 58 10 011 10 0111
7 13 33 79 24 52 110 11 011 11 0111
8 21 54 133 44 96 206 000 011 000 0111

Tabulka 2.3: Fibonacciho čísla, jejich součty a Fibonacci kódy třetího a
čtvrtého stupně pro malá čísla

Číslo 19 je větší než 14 = M 2
4 a zároveň je menší či rovno číslu 19 =

M2
4 + F 25 , proto bude další bit opět 0 a budeme odečítat S24 = 7. Tedy

Fib3(31) = 0Fib3(19) = 00Fib3(19 − 7) = 00Fib3(12).
Pro zakódování čísla 12 jsou rozhodující čísla 7 =M 2

3 a 10 =M2
3 + F 24 .

Protože 12 je více než 10, bude dalším bitem 1 a od čísla 12 se bude odečítat
S24 = 7. Stejným postupem získáme výsledný kód:

Fib3(31) = 0Fib3(19) = 00Fib3(12) = 001Fib3(12 − 7) = 001Fib3(5) =

= 0010Fib3(3=5−2) = 00101Fib3(1=3−2) = 00101 011

Příklad 2.4
Fib3(50) = 000100 011.

17

číslo unární kód délka unárního kódu
1 1 1
2 01 2
3 001 3
4 0001 4
5 00001 5
...

...
...

1 000 001 01 000 0001 1 000 001

Tabulka 2.4: Příklad unárního kódu

Délka Fibonacciho kódu stupně r je LFibr(n) = i+ r − 1, M r−1
i−1 < n ≤

M r−1
i .
Z Fibonacciho kódu Fibr(n) = bmbm−1 . . . b2b101r−1 lze číslo n dekódo-

vat pomocí:

n = 1 +
m∑

i=1

Sr−1
i+bi

.

Příklad 2.5
000100 011 −→ 1 + (S21=1+0 + S22 + S24=3+1 + S24=4+0 + S25 + S26) = 1 + (1 +
2+7+7+12+20) = 50. Tabulka 2.3 ukazuje příklady čísel potřebných pro
výpočet Fibonacciho čísel r-tého stupně.

2.5 Unarní kód

Unární kód kóduje nezáporné celé číslo i pomocí bitového řetězce 0i−11.
Tento kód je optimální pro pravděpodobnostní rozdělení splňující

p(i) = 2−(i+1).

Příklady unárního kódu pro malá čísla ukazuje tabulka 2.4.

2.6 Golombovo kódování

Golombovo kódování je pojmenováno po svém tv̊urci Solomonu Wolfu Go-
lombovi, který toto kódování představil v roce 1966. Toto kódování je opti-
mální pro zdrojové jednotky s geometrickým rozložením, tedy malé hodnoty
jsou mnohem více pravděpodobnější než vyšší hodnoty.
Používá nastavitelný parametr b pro rozdělení vstupní hodnoty na dvě

části: výsledek po dělení číslem b, a zbytek po tomto dělení.

q = b
n− 1

b
c, r = n− qb− 1

18

číslo b = 3 b = 5
1 0|0 0|00
2 0|10 0|01
3 0|11 0|10
4 10|0 0|110
5 10|10 0|111
6 10|11 10|00
7 110|0 10|01
8 110|10 10|10
...

...
...

1 000 000 1333 3330|0 1199 9990|111

Tabulka 2.5: Příklady Golombových kód̊u pro dva r̊uzné parametry b = 3 a
b = 5

První částí kódu je unární kód čísla q + 1 (zde jsou zaměněny jedničky a
nuly). Následuje zbytek po dělení v zkráceném binárním kódování. Výběr
b = 3 generuje tři možné zbytky od 0 do 2, které jsou zakódovány pomocí
řetězc̊u 0, 10 a 11. Pro volbu zbytku 5 vznikají zbytky od 0 do 4, které jsou
postupně kódovány řetězci 00, 01, 10, 110 a 111.
Tabulka 2.5 ukazuje Golombovo kódování pro dvě r̊uzné hodnoty koefi-

cientu b (3 a 5). Obě části kódu jsou v tabulce 2.5 odděleny symbolem |. Je
vidět, že tento kód je nepoužitelný pro velká čísla.

2.7 Riceovo kódování

Toto kódování poprvé popsal Robert Rice v 1979. Jde o speciální případ
Golombova kódování, kde je koeficient b volen jako mocnina dvou. Tento
kód je velice rychle kódovatelný a dekódovatelý na počítačích. Pro uložení
zbytku lze s výhodou použít blokový kód.

Příklad 2.6
Pomocí Riceových kód̊u s parametry 4 a 16 zakódujte číslo 50. Číslo 50 lze
zapsat jako 1+ 12·4 + 1, výsledný kód je Rice4(50) = 1111111111110|01.
Obdobně pro koeficient 16 dostáváme 50 = 1 + 3·16 + 1, Rice16(50) =

1110|0001.

2.8 Eliasovy kódy

Tyto kódy jako první popsal sovětský vědec Levenstein (1968), ale pozdější,
Elias̊uv (1975) popis je zejména v anglické literatuře citován.
Elias̊uv α(i) kód je unární kód.

19

číslo i γ(i) γ ′(i) δ′

1 1 1 1
2 001 01 0 001 0
3 011 01 1 001 1
4 00001 001 00 011 00
5 00011 001 01 011 01
6 01001 001 10 011 10
7 01011 001 11 011 11
8 0000001 0001 000 00001 000
...

...
...

...
1 000 000 39bits 0191 130104102106 000010011 130104102106

Tabulka 2.6: Příklady Eliasových γ, γ ′ a δ′ kód̊u pro malá čísla

Příklad 2.7
Elias̊uv α(i) kód čísla 50 je 0491. Jeho délka je 50 bit̊u.

Elias̊uv β(i) kód přirozená binární reprezentace čísla i začínající první
významnou jedničkou. Tento kód není jednoznačně dekódovatelný, např.
β(6) = 110 = β(1)β(2).

Příklad 2.8
Elias̊uv β(i) kód čísla 50 je 110010. Jeho délka je 6 bit̊u. Tento kód neumí
reprezentovat číslo 0.
Elias̊uv β ′(i) kód vznikne z Eliasova β(i) kódu odtržením nejvýznam-

nější jedničky. Formálněji:

• β′(0) = ε

• β′(2i) = β′(i)0

• β′(2i+ 1) = β ′(i)1

Elias̊uv β ′(i) kód je nejednoznačný stejně jako β(i) kód.

Příklad 2.9
Elias̊uv β ′(i) kód pro číslo 50 je 10010. Jeho délka je 5 bit̊u.

Elias̊uv γ(i) kód zapisuje jednotlivé bity β ′(i) kódu a každý uvede
bitovým příznakem. Poslední příznak je jednička, ostatní jsou nuly. Na tento
kód se dá nahlížet jako na blokový kód s oddělovačem, kde délka bloku je
jedna.
Elias̊uv γ ′(i) kód vznikne permutací γ(i) kódu, s bitovými příznaky

tvořícími unární kód umístěnými před datové bity (β ′(i) kód).
Formálně:

20

γ′(i) = α(|β(i)|)β ′(i)

Příklad 2.10
Pomocí Eliasova γ ′(i) kódu zakódujte číslo 38.

1. Nejprve převedeme číslo 38 do dvojkové soustavy a odtrhneme první
jedničku, čímž vytvoříme Elias̊uv β ′(38) kód, tedy 00110.

2. Počet bit̊u tohoto kódu je 5, α(5) = 00001. Výsledný Elias̊uv γ ′(i) kód
vznikne zřetězením obou kód̊u. Výsledný kód je:

︷ ︸︸ ︷

00000100110
︸ ︷︷ ︸

Všimněte si, že výsledný kód má lichou délku, uprostřed se nachází
jednička, která uzavírá unární kód délky druhé části a zároveň může
být považována za první bit dvojkového zápisu p̊uvodního čísla.

Příklad 2.11
Mějme binární řetězec 000000100100101110001. . . . Předpokládejme, že re-
prezentuje posloupnost čísel v γ ′ kódu. Dekódujte první číslo.

1. Kdyby řetězec začínal jedničkou, pak je tato jednička celým kódem a
reprezentuje číslo 1.

2. V našem případě kód začíná číslicí 0, proto spočteme počet nul před
první jedničkou, zde jich je šest.

3. Tento počet zvětšíme o jedna (zde 7) a tolik bit̊u vyjmeme(1001001) a
převedeme z dvojkové soustavy. Původní číslo bylo 73 a jeho kód byl
0000001001001.

Další příklady γ a γ ′ kód̊u ukazuje tabulka 2.6. Tyto kódy reprezentují
číslo i pomocí 2dlog(i)e bit̊u.
Elias̊uv γ(i) kód je dlouhý pro velká čísla, což je zp̊usobeno reprezentací

délky β′ kódu pomocí α (unárního) kódu. Elias̊uv δ(i) kód používá pro
délku β kódu γ kód. Formálně:

δ(i) = γ(|β(i)|)β ′(i)

Obdobně Elias̊uv δ′(i) kód používá pro délku β kódu γ ′ kód. Formálně:

δ′(i) = γ(|β(i)|)β ′(i)

Příklad 2.12
Elias̊uv γ ′(i) kód pro číslo 50 je 000001 10010. Jeho permutací vznikne
Elias̊uv γ(50) kód, 01000001001. Délka každého tohoto kódu je 11 bit̊u.

21

číslo i ω(i) ω′(i)
1 0 0
2 10 0 010 0
3 11 0 011 0
4 10 100 0 100 0
7 10 111 0 111 0
8 11 1000 0 011 1000 0
15 11 1111 0 011 1111 0
16 10 100 10000 0 100 10000 0
...

...
...

1 000 000 10 101 10011 140104102106 0 101 10100 140104102106 0

Tabulka 2.7: Příklady Eliasových ω a ω ′ kód̊u

Elias̊uv δ′(1 000 000) je 000010011 1110100001001000000 a má délku 28
bit̊u místo 39 bit̊u γ(1 000 000).
Dalšími Eliasovými kódy jsou Elias̊uv ω a ω ′ kód. Příklady těchto kód̊u

ukazuje tabulka 2.7. ω(i) kód je ukončen nulou. Tuto nulu předchází β(i)
kód čísla i. Další části výsledného kódu jsou β kódy reprezentující délku
následujících částí. Tato rekurze končí první (nejkratší) částí, která je dlouhá
2 bity (ω) popřípadě 3 bity (ω′). Tyto reprezentace jsou pro velká čísla
úspornější než ostatní Eliasovy kódy, např. ω(1 000 000) zabírá 30 bit̊u a
ω′(1 000 000) pouze 28 bit̊u.

Příklad 2.13
Elias̊uv ω(i) kód čísla 50 je 10 101 110010 0. Elias̊uv ω ′(50) je 101 110010 0.
Elias̊uv ω(50) zabírá 12 bit̊u, délka ω ′(50) kódu je 10 bit̊u.

Příklad 2.14
Dekódujte posloupnost čísel uloženou v řetězci

2.9 Trojkový kód s oddělovačem

Všechny prezentované kódy používaly binární kódování. Použijme páry bit̊u
pro reprezentaci čtyř hodnot, prvk̊u množiny {0, 1, 2, oddělovač}. Pak po-
mocí binárního kódu můžeme lehce reprezentovat posloupnost trojkových
čísel oddělených oddělovačem. Tento kód je označován trojkový kód s od-
dělovačem (ternary comma code). S touto myšlenkou přišel v roce 1993
Australan Peter Fenwick. Tabulka 2.8 ukazuje příklady trojkových kód̊u s
oddělovačem.

Příklad 2.15
Pomocí trojkového kódu s oddělovačem zakódujte číslo 52. Trojkový kód

22

číslo i trojkový kód(i) s oddělovačem bit̊u
1 , 2
2 0, 4
3 1, 4
4 2, 4
5 10, 6
6 11, 6
7 12, 6
8 21, 6
...

...
...

1 000 000 1212210201222, 28

Tabulka 2.8: Příklady trojkových kód̊u s oddělovačem

kód c 1 2 5 10 102 103 104 105 106

binární 1 2 3 4 7 10 14 17 20
Golomb̊uvb=3 2 3 4 5 35 335 3 335 33 335 333 335
Golomb̊uvb=5 3 3 4 5 23 203 2 003 20 003 200 003
Fibonacciho 2 3 5 6 11 16 18 23 30

unární 2 3 6 11 101 1 001 10 001 100 001 1 000 001
Elias̊uv γ 1 3 5 7 13 19 27 33 39
Elias̊uv δ′ 1 4 5 8 11 16 20 25 28
Elias̊uv ω 1 3 6 7 13 17 21 28 31

Fib3 3 4 5 6 10 15 19 24 29
Fib4 4 5 6 7 10 14 18 22 25

trojk. s odd. 4 4 6 8 12 16 20 24 28

Tabulka 2.9: Délky kódových slov pro vybraná čísla

s oddělovačem je posunutý o 2, proto nejprve převedeme číslo 50 (50 =
52 - 2) do trojkové soustavy (1212) a přidáme oddělovač Délka výsled-
ného kódu je 10 bit̊u, protože pro kódování jednotlivých symbol̊u abecedy
{0, 1, 2,oddělovač} musíme použít dvou bit̊u.

2.10 Porovnání kód̊u

Tabulka 2.9 ukazuje délky kód̊u pro reprezentaci celých nezáporných čísel.
Nejlepší je samozřejmě binární kód, ale není jednoznačně dekódovatelný.
Unární a Golombovy kódy jsou použitelné pro malá čísla, jejich délka vý-
razně roste s rostoucí zdrojovou jednotkou.

23

2.11 Příklady na cvičení

Příklad 2.16
Mějme zprávu obsahující kladná celá čísla. Určete, kolik bit̊u by musel mít
blokový kód, aby mohl reprezentovat tuto zprávu, pokud víme, že největší
číslo ve zprávě je

1. 1,

2. 16,

3. 524,

4. 3 333 333.

Příklad 2.17
Odhad počtu částic ve známém vesmíru je po několik málo posledních de-
setiletí 1082. Kolik bit̊u by musel mít blokový kód, abychom mohli očíslovat
každou částici?

Příklad 2.18
Vyplňte tabulky v příloze.

Příklad 2.19
Mějme tyto zprávy obsahující posloupnosti čísel:

1. 0, 1, 1, 0, 2, 0, 0, 0, 0, 2, 0, 1, 3, 1

2. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

3. 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Zjistěte kolik bit̊u zabere zakódování těchto zpráv pomocí těchto kódo-
vání:

1. unárního,

2. blokového,

3. trojkového s oddělovačem,

4. Fibonacciho,

5. Fibonacciho třetího řádu,

6. Fibonacciho čtvrtého řádu,

7. Eliasova γ,

24

8. Eliasova δ′,

9. Eliasova ω,

10. Eliasova ω′.

Které kódování je nejlepší pro jednotlivé zprávy?

2.12 Další příklady

Příklad 2.20
Princip kódování čísel pomocí jiné číselné soustavy uplatněný u trojkového
kódu s oddělovačem lze použít i pro další číselné soustavy. Jako základ pou-
žijte soustavu o základu 7. Pro zakódování jednotlivých číslic a oddělovače
použijte tento kód:

hodnota kód hodnota kód

0 000 4 100
1 001 5 101
2 010 6 110
3 011 odd. 111

Zakódujte čísla od nuly do 20 a dále čísla 100, 1000 a 1000 000.

Příklad 2.21
Výše zmíněný princip lze použít pro binární abecedu rozšířenou o oddělovač.
Porovnejte následující kódy:

hodnota kód1 kód2

0 0 01
1 10 00

oddělovač 11 1

Zakódujte čísla od nuly do 20 a dále čísla 100, 1000 a 1000 000.

Příklad 2.22
Ve cvičení 1.19 jsme měli část černobílého obrázku:

X = bbbbwwwwwwbbbbbbbwwwwwwwwwwwbbbbbbbbbbbbwbbbbbwbbwbbbbb.

Protože se pravidelně střídají části černé a bílé, lze použít RLE kompresi,
která bude kódovat pouze délky jednotlivých úsek̊u. Výsledná posloupnost
bude X ′ = 4, 6, 7, 11, 12, 1, 5, 1, 2, 1, 5. Jaké kódování čísel je pro tuto zprávu
nejvhodnější a jakého kompresního poměru tímto kódováním dosáhneme?

25

4 Statistické metody komprese dat

Statistické metody komprese dat vycházejí z modelu první úrovně, který
předpokládá, že pravděpodobnosti zdrojových jednotek ve zprávě jsou r̊uzné
a nezávislé na výskytu okolních symbol̊u.

4.1 Shannon-Fanovo kódování

V roce 1949 publikovali na sobě nezávisle Claude Elwood Shannon s Warre-
nem Weaverem a Robert Mario Fano metodu na vytvoření prefixového kódu
proměnné délky pro množinu symbol̊u a jejich četností. Tato metoda je ozna-
čována jako Shannon-Fanovo kódování. Zp̊usob vytvoření Shannon-Fanova
kódu popisuje algoritmus 4.1.

Algoritmus 4.1 Shannon-Fanovo kódování
Vstup: vstupní text nad abecedou zdrojových jednotek S;
Výstup: kód K = (S,C, f), kódové slovo pro každý symbol ze vstupního
textu;

1: pro každé x ∈ S : f(x)← ε;
2: zjisti četnosti jednotlivých symbol̊u;
3: symboly seřaď do neklesající posloupnosti s podle jejich četností;
4: Split(s);

Procedura Split(s):

1: if |s| > 1 then
2: rozděl s na s1 a s2 se součtem četností nejbližšími polovině;
3: for all x ∈ s1 do
4: f(x)← f(x)0
5: end for
6: for all x ∈ s2 do
7: f(x)← f(x)1
8: end for
9: Split(s1);
10: Split(s2);
11: end if

Příklad 4.1
Pomocí Shannon-Fanova kódování zakódujte zprávu X = abcdefafaaacaa.
Shannon-Fan̊uv kód je reprezentován stromem vybudovaným nad symboly
vstupní abecedy seřazenými do neklesající posloupnosti podle jejich četností.
Tento strom vznikne rekurzivním dělením této posloupnosti na dvě části s
četnostmi nejbližšími polovině. Výsledný strom je zobrazen na obrázku 4.1.
Jednotlivé kroky dělení jsou znázorněny pomocí tečkovaných čar.

26

Dělení číslo tři a čtyři mohla být provedena v opačném pořadí, na délku
výsledného kódu nemá toto pořadí vliv.

0

5

14

7

e cd fb a

7

43

2

1

11

1

0

0

0

0

221 11

1

134 2

Obrázek 4.1: Shannon-Fan̊uv kód pro vstupní text z příkladu 4.1

Tento strom je vhodný pro dekódování, není však příliš vhodný pro kó-
dování, pro které je lepší převodní tabulka zobrazená v tabulce 4.1.

Symbol, x ∈ S počet Shannon-Fan̊uv kód, f(x)

a 7 1
b 1 0000
c 2 010
d 1 0001
e 1 001
f 2 011

Tabulka 4.1: Převodní tabulka pro Shannon-Fan̊uv z příkladu 4.1

Vstupní text X = abcdefafaaacaa je zakódován do posloupnosti Y =
1 0000 010 0001 001 011 1 011 1 1 1 010 1 1. Délka výsledného kódu je 30
bit̊u. K této délce by bylo nutné přidat režii vzniklou při ukládání kódového
stromu, popřípadě informací nutných k jeho vytvoření.

4.2 Statické Huffmanovo kódování

David A. Huffman v roce 1952 publikoval metodu na vytvoření kód̊u s mi-
nimální redundancí. Tato metoda vytváří kódovací strom opačným směrem
než Shannon-Fanova metoda, tedy směrem od spoda nahoru. Tento strom je
nazýván Huffmanovým stromem. Algoritmus 4.2 popisuje vytváření tohoto
stromu.

27

Algoritmus 4.2 Statické Huffmanovo kódování
Vstup: n zdrojových jednotek s pravděpodobnostmi p(i), 1 ≤ i ≤ n,

∑n
i=1 p(i) = 1.

Výstup: n kódových slov, automat M = (Q, {0, 1}, δ, q0, F).
1: Q← ∅; F ← ∅;
2: for i = 1 to n do
3: vytvoř nový stav qi;
4: Q← Q ∪ {qi}; F ← F ∪ {qi}; p(qi)← p(i);
5: end for
{Stav (list Huffmanova stromu) qi zdrojové jednotky i je označen svou
pravděpodobností p(i).}

6: k ← n;
7: while k ≥ 2 do
8: najdi dva stavy r, s; r 6= s s nejmenšími pravděpodobnostmi p(r),

p(s);
9: vytvoř nový stav q;
10: Q← Q ∪ {q}; p(q)← p(r) + p(s);
11: δ ← δ ∪ {δ(q,0) → r, δ(q,1)→ s};
12: p(r)← 0; p(s)← 0;
13: if k=2 then
14: označ stav q jako počáteční;
15: end if
16: k ← k − 1;
17: end while
18: kódové slovo f(i) pro každou zdrojovou jednotku i je označení přechod̊u
na cestě od počátečního stavu do stavu qi, 1 ≤ i ≤ n;

Místo pravděpodobností zdrojových jednotek lze použít počty opakování
zdrojových jednotek. Výsledek bude stejný.

Příklad 4.2

Mějme textX = strč prst skrz krk. Zakódujte jej s použitím statického
Huffmanova kódování. Zhodnoťte kompresi. Následující tabulka ukazuje shr-
nutí zdrojových jednotek s jejich frekvencemi ve zdrojovém textu.

28

Zdrojová jednotka frekvence Huffman̊uv kód

s 3 101
t 2 100
r 4 01
č 1 0000

3 0001
p 1 0010
z 1 110
k 3 111
. 1 0011

Tato tabulka je využita při konstrukci Huffmanova stromu. Prvním kro-
kem konstrukce je vytvoření stav̊u pro zdrojové jednotky. Tyto stavy jsou
ohodnoceny příslušnými počty opakování.Výsledný Huffman̊uv strom uka-
zuje obrázek 4.2. Počty opakování jsou znázorněny pomocí malých, podtr-
žených čísel. Výsledné kódy vzniknou přečtením cesty od počátečního stavu
do listu odpovídajícího zdrojové jednotce.

qc

c

qp

p z .

t s k

r

qz

0

1

0

0

0

0

0

0

0

1

1 1

1

1

1

1

q.

qkqs

q0

q

qr

4

3332

5 6

8

19

4

11

22

1 1 1 1

qt

Obrázek 4.2: Huffman̊uv strom vzniklý algoritmem 4.2. Množina zdrojových
jednotek je S = {s, t, r,č , , p, z, k, .}

Zdrojová zpráva X = strč prst skrz krk bude s použitím kódovací ta-
bulky převedeno na zprávu Y = 1011000100001110001011011001111011100
10010111110011100011.
Délka tohoto kódu je 57 bit̊u. Předpokládejme, že pro p̊uvodní zprávu

byl použit standardní osmibitový kód. Potom je délka p̊uvodní zprávy 19

29

byt̊u, 152 bit̊u. Zanedbejme potřebu uložení Huffmanova stromu, pak bude
kompresní poměr cr = 57

152 = 0, 375.

4.3 Modelování komprese dat

Statický model komprese dat předpokládá, že kodér i dekodér používají
stejný model dat, v našem případě Huffman̊uv strom. Toho lze dosáhnout v
případě, že je tento model pro velké množství dat neměnný, například pro
české texty ve velké knihovně.
Častějším případem je nutnost přizp̊usobení modelu vstupním dat̊um.

Pak je nutné provést jeden pr̊uchod vstupním textem, abychom napočítali
četnosti jednotlivých symbol̊u, které slouží pro konstrukci modelu - Huffma-
nova stromu. Druhým pr̊uchodem se provede komprese dat. Tento model je
označován jako semiadaptivní.
Porovnání obou typ̊u modelování znázorňuje obrázek 4.3

model

datové úložǐstě,

komunikačńı kanál
kodér dekodérdata data

Semiadaptivńı modelováńı

model

datové úložǐstě,

komunikačńı kanál
kodér dekodérdata data

Statické modelováńı

model

Obrázek 4.3: Statické a semiadaptivní modelování

Další možností je vytváření modelu během čtení vstupních dat, model
se během komprese vyvíjí. Dekodér vytváří model na základě dekódovaných
dat. Tento model je adaptivní. Adaptivní variantou Huffmanova kódu se
zabývá následující kapitola.

4.3.1 Uložení Huffmanova stromu

Příklad 4.3
Předpokládejme semiadaptivní verzi statického Huffmanova kódování z pří-
kladu 4.2. Zakódujte příslušný Huffman̊uv strom.

1. První možností pro přenesení Huffmanova stromu je přenesení zdrojo-
vých jednotek spolu s jejich četnostmi. Dekodér by měl dostatek infor-
mací pro jeho vytvoření. Výsledný kód by začínal počtem zdrojových

30

jednotek následovaný páry (zdrojová jednotka, počet opakování). Pro
kódování čísel použijme Fib3 kód. Výsledek bude Fib3(9) čFib3(1)
p F ib3(1) z F ib3(1) . F ib3(1) r F ib3(4) t F ib3(2) s F ib3(3) k F ib3(3)

Fib3(3). Při použití osmi bit̊u na jednu zdrojovou jednotku bude
délka kódu pro Huffman̊uv strom 9·8 + 39 = 111 bit̊u. Tento zp̊usob
je velmi neefektivní pro velké hodnoty četností jednotlivých symbol̊u.

2. Prostorově výhodnější je metoda využívající výpis Huffmanova stromu
do bitového proudu bez potřeby ukládání počt̊u opakování. Implemen-
tace začíná počtem zdrojových jednotek následovaných jejich výčtem.
Pořadí musí odpovídat jejich umístění v Huffmanově stromu, zleva do-
prava. Dále následuje rekuzivní výpis ohodnocení hran stromu, kdy se
nejprve vypisuje levý podstrom a potom pravý. Náš příklad produkuje
následující výstup Fib3(9)č p z . r t s k 0000110111001101. Vlastní
struktura stromu zabírá pouze 16 bit̊u. Celková délka kódu pro strom
je 5 + 9·8 + 16 = 93 bit̊u. Výsledný kompresní poměr je 57+93152

∼= 0.99.
S rostoucí délkou kódované zprávy klesá neblahý vliv nutnosti uložení
Huffmanova stromu na výsledný kompresní poměr.

4.4 Adaptivní Huffmanovo kódování

Adaptivní verzi Huffmanova kódování poprvé na sobě nezávisle navrhli Faller
(1973) a Robert G. Gallager (1978). Donald E. Knuth v roce 1985 tento al-
goritmus vylepšil, výsledná varianta adaptivního Huffmanova kódování je
nazývána FGK algoritmem.
Jeff Vitter tuto metodu v roce 1987 vylepšil (po zakódování jednoho

symbolu dojde nejvýše k jedné úpravě kódového stromu oproti až log2n).
Tato metoda je složitější.
FGK algoritmus adaptivního Huffmanova kódování popisuje algoritmus

4.1. Celý algoritmus se opírá o významnou vlastnost Huffmanových stromů,
kterou je sourozenecká vlastnost. Tato vlastnost je pro binární stromy defi-
nována takto:

• každý uzel kromě kořene má sourozence,

• existuje uspořádání uzl̊u v pořadí neklesajícího ohodnocení tak, že
každý uzel sousedící v seznamu s nějakým uzlem je jeho sourozenec
(leví synové na lichých místech a praví synové na sudých místech v
seznamu).

Takové uspořádání je na obrázku 4.4 v části III zobrazeno lomenou teč-
kovanou šipkou.

Příklad 4.4
Text X = abbaacddc zakódujte pomocí adaptivního Huffmanova kódování.

31

Algoritmus 4.3 Adaptivní Huffmanovo kódování
Vstup: vstupní text nad abecedou zdrojových jednotek S;
Výstup: zakódovaný text;
1: vytvoř strom obsahující pouze uzel zero;
2: while není zakódován celý text do
3: c← další symbol vstupního textu;
4: if první výskyt symbolu c then
5: kód prodluž o kód uzlu zero;
6: zakóduj c;
7: uzel zero nahraď novým uzlem s následníky zero a novým uzlem u

pro symbol c, ohodnocení u← 0;
8: aktualizujStrom(u);
9: else
10: kód prodluž o kód uzlu c;
11: aktualizujStrom(c)
12: end if
13: end while

Procedura aktualizujStrom(uzel u):

1: while u není kořen do
2: if ∃ uzel u′ se stejným ohodnocením výše v pořadí sourozenc̊u, pokud

jich je více, vyber ten nejvýše položený then
3: prohoď uzly u a u′;
4: zvyš ohodnocení u o 1;
5: u← předek(u);
6: aktualizujStrom(u);
7: end if
8: zvyš ohodnocení u o 1;
9: end while

Kódovat budeme pomocí FGK varianty popsané algoritmem 4.3. Celé kódo-
vání začíná s Huffmanovým stromem obsahujícím pouze uzel zero. Nejprve
je do výstupu poslán kód prvního znaku, pro který je použit nějaký jedno-
značně dekódovatelný kód, na kterém se dohodne kodér i dekodér. Takovým
kódem je například ASCII kód.
Po odeslání symbolu a je upraven Huffman̊uv strom nahrazením uzlu

zero novým uzlem se dvěma potomky, uzlem zero a novým uzlem odpovída-
jícím symbolu a a s ohodnocením (četností symbol̊u) 1. Situace po zakódo-
vání symbolu a ukazuje obrázek 4.4, část II. Ohodnocení uzlu je zobrazeno
pomocí podtrženého čísla u uzlu.
Dalším symbolem vstupního tetu je symbol b. I toto je zatím nezakódo-

vaný symbol, proto je do výstupu poslán kód uzlu zero následovaný kódem
nového symbolu. Opět dojde k rozdělení uzlu zero.

32

a

0 1

1

0 1

a

a

0 1

1

0 1

01

3

2

b

b

0 1

1

0 1

0b

0 1

2

1

a

I II III
IV

0 1

zerozero

zero

zero q1

q2

Obrázek 4.4: První čtyři kroky kódování FGK adaptivního Huffmanova kó-
dování řetězce X = abbaacddc z příkladu 4.4

Dalším symbolem ve vstupu je opět b. Tento symbol je již ve stromu
obsažen, do výstupu je poslán jeho kód, tedy 01. V této fázi kódování do-
jde k prohození uzl̊u. Jelikož jsme kódovali symbol b, budeme u tohoto uzlu
zvyšovat ohodnocení, ale musíme zajistit, že výsledný strom neporuší souro-
zeneckou vlastnost. Uspořádání uzl̊u do neklesající posloupnosti je zobrazeno
v části III obrázku 4.4 tečkovanou lomenou čarou. Toto uspořádání včetně
četností je zero0, b1, q11, a1, q22. Poslední vkládaný symbol je b, jeho čet-
nost je 1. V této posloupnosti napravo od symbolu b jsou dva uzly s četností
1, uzel q1 a a. Vybereme ten bližší kořeni, tedy a a oba uzly prohodíme.
Navýšíme ohodnocení uzlu b a přesuneme se k jeho předkovi. Tím je kořen
stromu, aktualizace stromu končí navýšením jeho četnosti.

b

0 1

2

2

01

5

3
a

VI

0 1

zeroa

0 1

2

2

01

4

2

b

V

0 1

zero

b

0 1

3

2

00c

6

3
a

VII

0 1

0 1

1

1

zero c

Obrázek 4.5: Další kroky kódování FGK adaptivního Huffmanova kódování
řetězce X = abbaacddc z příkladu 4.4

Obdobným zp̊usobem jsou zakódovány další tři symboly vstupního ře-
tězce. Modifikace Huffmanova stromu během těchto krok̊u ukazuje obrá-
zek 4.5. Závěr kódování shrnuje obrázek 4.6. Všimněte si, že ve fázi IX dojde
během kódování jednoho symbolu k dvěma záměnám podstromů. Varianta
FGK připouští možnost až log2n záměn během kódování jednoho symbolu.

33

b

0 1

5

2

1001

8

IX

0 1

0 1

1

1

zero

d

3
a

0 1

3

2

c

b

0 1

4

2

000d

7

VIII

0 1

0 1

1

1

zero

c

3
a

0 1

2

1

d

b

0 1

5

2

1101

9
X

0 1

0 1

2

2

zero

d
3

a

0 1

4

2

c

Obrázek 4.6: Poslední kroky kódování FGK adaptivního Huffmanova kódo-
vání řetězce X = abbaacddc z příkladu 4.4

Příklad 4.5
Zhodnoťte dosažený kompresní poměr v příkladu 4.4.
Vstupní text je X = abbaacddc, jeho délka 9 symbol̊u. Při použití rozší-

řeného ASCII kódu s osmi bity na symbol je výsledná délka vstupního textu
9·8 = 72 bit̊u.
Zakódovaná zpráva je Y = a0b01010100c000d10011101. Pokud pro kódo-

vání symbol̊u použijeme stejný kód jako pro vstupní text, bude délka zakó-
dované zprávy 4·8 + 20 = 52 bit̊u. Výsledný kompresní poměr je 5272

.
= 0, 72.

4.5 Příklady na cvičení

Příklad 4.6
Mějme zprávu s následujícími četnostmi jednotlivých symbol̊u:

Symbol, x ∈ S počet

a 105
b 49
c 42
d 42
e 35

Vypočtěte entropii jednotlivých symbol̊u.
Pro danou zprávu vytvořte Shannon-Fan̊uv a Huffman̊uv kód. Porov-

nejte jejich redundanci nad danou zprávou. Jaké jsou kompresní poměry
pro oba kódy. Diskutujte možnosti implementace obou stromů.

Příklad 4.7
Předpokládejme kódy z příkladu 4.6. Dekódujte tento fragment zprávy Y =
01010 01110 10111 00101 10110 11101 00101 00000 01011 . . . Jak se změní
dekódovaná zpráva, pokud zaměníme první bit za jedničku?

34

Příklad 4.8
Mějme zprávu s následujícími pravděpodobnostmi jednotlivých symbol̊u:

Symbol, x ∈ S počet

a 0.35
b 0.17
c 0.17
d 0.16
e 0.15

Vypočtěte entropii jednotlivých symbol̊u.
Pro danou zprávu vytvořte Shannon-Fan̊uv a Huffman̊uv kód. Porov-

nejte jejich redundanci nad danou zprávou. Jaké jsou kompresní poměry
pro oba kódy. Diskutujte možnosti implementace obou stromů.

Příklad 4.9
Zprávu X = mamamelemaso zakódujte pomocí adaptivního Huffmanova
kódování. Zhodnoťte dosaženou kompresi.

Příklad 4.10
Kód Y = b10a0100c110 dekódujte pomocí adaptivního Huffmanova kódo-
vání. Zhodnoťte dosaženou kompresi.

Příklad 4.11
Zprávu X = babaaabba zakódujte pomocí adaptivního Huffmanova kódo-
vání. Zhodnoťte dosaženou kompresi. Stejnou zprávu zakódujte pomocí sta-
tického Huffmanova kódování. Porovnejte kompresní poměry.

Příklad 4.12
Pomocí adaptivního Huffmanova kódování zakódujte zprávu X = a30bbc.
Zhodnoťte dosaženou kompresi. Stejnou zprávu zakódujte pomocí statického
Huffmanova kódování. Porovnejte kompresní poměry.

4.6 Další příklady

Příklad 4.13
Pomocí Huffmanova kódování zakódujte zprávu X = abcdefafaaacaa. Po-
rovnejte délku výsledného kódu s Shannon-Fanovým kódem z příkladu 4.1.

Příklad 4.14
Předpokládejme, že vstupní abeceda má 32 symbol̊u. Jaká je nejmenší délka
vstupní zprávy, aby nad ní vytvořený Huffman̊uv strom měl maximální
hloubku (odpovídá délce nejdelšího kódu):

1. 5,

35

2. 6,

3. 7,

4. 31?

Příklad 4.15
Zprávu X = telemelesele zakódujte pomocí adaptivního Huffmanova kó-
dování. Zhodnoťte dosaženou kompresi. Stejnou zprávu zakódujte pomocí
statického Huffmanova kódování. Porovnejte kompresní poměry.

36

5 Aritmetické kódování

5.1 Statické aritmetické kódování

Huffmanovo statické kódování je optimální pokud pravděpodobnosti jednot-
livých symbol̊u zápornými mocninami čísla dvě. Poté jsou entropie jednotli-
vých symbol̊u celočíselné a odpovídají délce příslušného Huffmanova kódu.
Pokud jsou však pravděpodobnosti jednotlivých symbol̊u nejsou zápor-

nými mocninami čísla dvě, tak dochází při kódování jednotlivých symbol̊u
ke vzniku redundance.

Příklad 5.1
Určete entropii symbolu a s pravděpodobností p(a) = 0, 3.
Tento symbol má entropii H(a) = −log2(p(a))

.
= 1, 74. Pokud bychom

pro tento symbol použili kód o délce 2 bity, byla by redundance vzniklá
tímto symbolem 0, 26 bitu.

Tuto redundanci lze snížit použitím aritmetického kódování, které nekó-
duje jednotlivé symboly, ale používá jeden kód pro zakódování celé zprávy.
Kódem celé zprávy je pak jedno číslo z intervalu < 0; 1). Postup kódování
ukazuje algoritmus 5.1.

Algoritmus 5.1 Aritmetické kódování
Vstup: vstupní text nad abecedou zdrojových jednotek S;
Výstup: zakódovaný text;
1: do výstupu ulož pravděpodobnosti nebo četnosti symbol̊u;
2: nastav interval I ←< 0; 1);
3: while není zakódován celý text do
4: přečti další symbol c;
5: Rozděl interval I na podintervaly, jejichž velikosti jsou úměrné prav-

děpodobnostem symbol̊u;
6: I ← podinterval odpovídající c;
7: end while
8: Výstupem je libovolné číslo z intervalu I;

Přestože výsledkem kódování je libovolné číslo z posledního intervalu, je
ještě potřeba zakódovat informaci o ukončení kódu, protože dekodér musí
vědět, kdy má skončit s dělením intervalu. Existují dvě varianty řešení to-
hoto problému:

1. před vlastním kódem čísla z intervalu je nějakým prefixovým kódem
zakódován počet symbol̊u,

2. použít speciální symbol pro označení konce vstupu. Tento symbol bude
mít nejnižší pravděpodobnost. Pokud na něj dekodér narazí, pozná, že
dekódování končí.

37

Příklad 5.2
Mějme text nad abecedou A = {a, b, c}. Pravděpodobnosti jednotlivých sym-
bol̊u jsou p(a) = 0, 6, p(b) = 0, 1, p(c) = 0, 3. Ukažte jak se vytvářejí aritme-
tické kódy pro r̊uzné řetězce. Obrázek 5.1 ukazuje postupné dělení intervalu
< 0; 1) na podintervaly.

a

c

b

aa

aaa

ac

ab

ca

cc

cb
ba
bc

bb

aac

aab

1

0,4

0,1

0

0, 46

0, 64

0, 13

0, 22

0.676

0, 784

1

0,4

0,1

0

Obrázek 5.1: Dělení intervalu při aritmetickém kódování

Z obrázku je zřejmé, že velikost intervalu je přímo úměrná pravděpodob-
nostem odpovídající zprávy. Symbol a zabírá interval I(a) =< 0, 4; 1), jehož
velikost je 0,6. Oproti tomu symbol b zabírá interval I(a) =< 0; 0, 1) o šířce
0,1. Šířky interval̊u klesají s rostoucí délkou zprávy, I(aaa) =< 0, 784; 1),
velikost 0,216; I(bbb) =< 0; 0, 001), velikost 0,001.
Přestože šířka intervalu odpovídá pravděpodobnosti zprávy, délka čísla

nemusí úplně přesně záviset na šířce intervalu.
Nejkratšími binárními kódy čísel z intervalu < 0; 1) jsou binární čísla

0, 02 = 0 a 0, 12 = 0, 5. Všechna čísla z intervalu < 0; 1) začínají 0, proto
tuto nulu nekódujeme. Jediný bit může kódovat následující zprávy:

bit číslo (dekadicky) p̊uvodní zpráva

0 0 b, bb, bbb, bbbb,. . .
1 0,5 a,ac, acc, acca . . .

38

Na druhou stranu pro zakódování zprávy X = aaa je potřeba třech bit̊u,
111, protože 0, 1112 =

7
8 = 0, 875 ∈< 0, 784; 1).

Příklad 5.3
Text X = abacaacbc zakódujte statickým aritmetickým kódem.
Text X rozšíříme o ukončovací symbol, X ′ = abacaacbc#. Pro správnou

funkci aritmetického kodéru si spočítáme pravděpodobnosti a kumulativní
pravděpodobnosti jednotlivých symbol̊u. Ty nám poslouží jako základ pro
dělení intervalu. Kumulativní pravděpodobnost zdrojové jednotky x v uspo-
řádání x1, x2, . . . x|S| získáme podle vztahu

cpi =
i−1∑

j=1

pj

Tyto hodnoty zobrazuje následující tabulka.

Symbol četnost pravděpodobnost kumulativní p. interval
xi f(xi) pi cpi I(xi)

a 4 4
10 = 0, 4 0 < 0; 0, 4)

b 2 2
10 = 0, 2 0,4 < 0, 4; 0, 6)

c 3 3
10 = 0, 3 0,6 < 0, 6; 0, 9)

1 1
10 = 0, 1 0,9 < 0, 9; 1)

První kroky komprese řetězce X ′ = abacaacbc# jsou zobrazeny na ob-
rázku 5.1.

a

b

c

#

a

b

c

#

a

b

c

#

a

b

c

#

a

b

c

#

a ab c

0

0,4

0,6

0,9

1

0

0,4

0,16

0,24

0,36

0,16

0,24

0,192

0,208

0,232

0,16

0,192

0,1728

0,1792

0,1888

0,1888

0,1792

0,18304

0,18496

0,18784

Obrázek 5.2: První kroky kódování řetězce X ′ = abacaacbc#

39

krok symbol Low Range

0 0 1
1 a 0 0,4
2 b 0,16 0,8
3 a 0,16 0,032
4 c 0,1792 0,0096
5 a 0,1792 0,00384
6 a 0,1792 0,001536
7 c 0,1801216 0,0004608
8 b 0,18030592 0,00009216
9 c 0,180361216 0,000027648
10 # 0,1803860992 0,0000027648

Tabulka 5.1: Komprese řetězce X ′ = abacaacbc#

Aritmetické kódování nemusí počítat všechny dělící hodnoty intervalu,
stačí si pamatovat pouze dolní mez, označme ji Low a šířku intervalu, Range.
Nové hodnoty se vypočítávají podle vztah̊u:

Low← Low +Range·cpi

Range← Range·pi

Jednotlivé kroky komprese shrnuje tabulka 5.1. Výsledný interval je
I(abacaacbc#) =< 0, 1803860992; 0, 180388864). Vhodným kandidátem se
jeví být číslo

0, 1803874969482421875 =
94575
219

= 0, 00101110001011011112 .

Výsledný kód obsahující ukončovací znak je bez úschovy četností symbol̊u
dlouhý 19 bit̊u.

5.2 Adaptivní aritmetické kódování

Tak jako statická verze Huffmanova kódování musí nejprve určit pravdě-
podobnosti jednotlivých symbol̊u, tyto frekvence předat dekodéru a teprve
pak kódovat, musí toto provést i statická verze aritmetického kódování. Po-
kud opomineme možnost použití připraveného pravděpodobnostního modelu
(např. pro jeden typ dat, knihy v češtině) je řešením adaptivní verze arit-
metického kodéru.
Adaptivní verze aritmetického kodéru na základě pravděpodobností kó-

duje jednotlivé symboly stejně jako statické aritmetické kódování, ale model
- pravděpodobnostní rozdělení se mění po zakódování každého symbolu.

40

metoda 1 metoda 2
Sym. a b c, d, e, f, g # a b c, d, e, f, g #

1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

a 2
9

1
9

1
9

1
9

1
2
·(1 + 1

8
) = 9

16
1
16

1
2
·1
8
= 1
16

1
16

a 3
10

1
10

1
10

1
10

1
3
·(2 + 1

8
) = 17

24
1
24

1
3
·1
8
= 1
24

1
24

b 3
11

2
11

1
11

1
11

1
8

1
8

1
8

1
8

a 4
12

2
12

1
12

1
12

1
8

1
8

1
8

1
8

a 5
13

2
13

1
13

1
13

1
8

1
8

1
8

1
8

b 5
14

3
14

1
14

1
14

1
8

1
8

1
8

1
8

5
15

3
15

1
15

2
15

1
8

1
8

1
8

1
8

Tabulka 5.2: Vývoj pravděpodobností během aritmetického kódování

Příklad 5.4
Mějme text X = aabaab#. Zakódujte jej pomocí adaptivního aritmetického
kódování.
Předpokládejme, že vstupní abeceda obsahuje pouze symboly S = {a, b,

c, d, e, f, g}.
Na začátku kódování mají všechny symboly vstupní abecedy stejnou

pravděpodobnost. V našem případě, každý symbol zabírá 1
|S|+1 =

1
8 , protože

jeden podinterval rezervujeme pro ukončovací znak #. Pokud bude interval
pro symbol a první, tedy < 0; 0, 125 bude tímto intervalem zakódován první
symbol. Po jeho zakódování je nutné vypočítat nové pravděpodobnosti. Pro
tento výpočet existuje mnoho zp̊usob̊u, tady jsou dva základní:

1. Každý symbol měl na začátku četnost rovnu 1. Zakódování jednoho
symbolu jeho četnost zvýší o jedna.

2. Četnost všech symbol̊u dohromady byla na začátku rovna 1. Zakódo-
vání jednoho symbolu jeho četnost zvýší o jedna.

První zp̊usob výpočtu četností je jednodušší, druhý pružněji reaguje na
vstupní text14.
Postupné změny pravděpodobností jednotlivých symbol̊u během kódo-

vání řetězce X = aabaab# ukazuje tabulka 5.2.

5.3 Příklady na cvičení

Příklad 5.5
Text aaab zkomprimujte pomocí aritmetického kódování. Zhodnoťte dosa-
14V praxi je nutné řešit otázky související s implementací v binárním kódu, zejména
omezená přesnost čísel a omezený rozsah

41

ženou kompresi.

Příklad 5.6
Text baaabaa# zkomprimujte pomocí aritmetického kódování. Zhodnoťte
dosaženou kompresi.

Příklad 5.7
Mějme pravděpodobnostní rozdělení symbol̊u z příkladu 5.6. Jaký řetězec
kóduje číslo 0,0110?

Příklad 5.8
Text cabccbabb# zkomprimujte pomocí aritmetického kódování. Zhodnoťte
dosaženou kompresi.

Příklad 5.9
Text aaab zkomprimujte pomocí adaptivního aritmetického kódování. Zhod-
noťte dosaženou kompresi.

Příklad 5.10
Text baaabaa# zkomprimujte pomocí adaptivního aritmetického kódování.
Zhodnoťte dosaženou kompresi.

Příklad 5.11
Mějme text obsahující symboly S = {a, b, c, }. Tento text je zakončen sym-
bolem #. Jaký řetězec kóduje číslo 0,0110?

Příklad 5.12
Text cabccbabb# zkomprimujte pomocí adaptivního aritmetického kódování.
Zhodnoťte dosaženou kompresi.

5.4 Další příklady

42

6 Slovníkové metody komprese dat

6.1 LZ77

Metoda LZ77 je nazývána metodou posuvného okna. Posuvné okno je po-
užito pro zakódování textu. Je rozděleno na dvě části, zakódovanou část a
nezakódovanou část. Dohromady tvoří celkovou velikost okna. Předpony z
nezakódované části jsou kódovány pomocí podřetězc̊u začínajících v zakó-
dované části okna.
Do výstupního proudu je v každém kroku uložena trojice (i, j, a). Před-

pokládejme, že jsme nalezli nejdelší řetězec (označme jej s) začínající v
zakódované části a shodující se s předponou řetězce z nezakódované části
posuvného okna (označme jej p). Pak i je vzdálenost prvního znaku ře-
tězce s od hranice mezi zakódovanou a nezakódovanou částí okna, j je délka
řetězce s a a je první znak za předponou p. Po uložení trojice (i, j, a) je celé
okno posunuto o j + 1 znak̊u doprava.

Příklad 6.1
Metodou LZ77 zakódujte text T = aabaacaaaaaababababbab. Použijte okno
velikosti 10 znak̊u, velikost nezakódované části volte čtyři znaky. Zhodnoťte
dosaženou kompresi.
Kódování začíná s posuvným oknem položeným na text tak, že hranice

mezi zakódovanou a nezakódovanou částí leží na začátku textu. V zakódo-
vané části se nenachází jediný znak, slovník pro vyhledávání je tedy prázdný.
Tuto situaci ukazuje následující obrázek.

- - - - - - a a b a Trojice je (0,0,a), posun okna o jeden
znak doprava.

Jelikož nejdelší předpona z nezakódované části začínající v zakódované
části má délku 0, je do výstupního proudu vložena trojice (0, 0,a), kde a je
první znak kódovaného řetězce. Celé okno je posunuto o jeden znak doprava.
Kódování pokračuje v následujících krocích:

- - - - - a a b a a (1,1,b)

- - - a a b a a c a (3,2,c)

a a b a a c a a a a (3,2,a)

Nejdelší předpona v nezakódované části okna na předcházejícím obrázku
byla aa. Tato předpona se nachází v zakódované části okna na dvou pozicích
a to pozici 3 a pozici 6. Proto jsou dvě možnosti zakódování následující
trojice : (3,2,a) a (6,2,a). Na jednoznačnost dekódování nemá výběr jedné

43

trojice vliv, nicméně volíme trojici (3,2,a), neboť obsahuje nižší čísla a dá se
předpokládat, že budou kódována kratšími kódy.

a a c a a a a a a b (1,3,b)

Připomeňme, že nalezený řetězec nemusí končit v zakódované části okna.
Na základě úmluvy z předcházejícího odstavce použijeme trojici (1,3,b) z
možných trojic (1,3,b),(2,3,b) a (3,3,b).

a a a a a b a b a b (2,3,b)

Zde nastává situace, kdy je celá nezakódovaná část okna ve slovníku -
v zakódované části, ale protože se do výstupního proudu musí dát jeden
symbol (ten by byl právě za oknem), je do výstupního proudu dána trojice
(2,3,b).

a b a b a b a b b a (2,2,b)

b a b a b b a b - - (3,2,b)

Závěr kódování. Nezakódovaná část okna není zcela zaplňena a poslední
znak musí být uveden jako následující znak za nalezeným podřetězcem. Me-
toda LZ77 nepotřebuje ukončovací znak, protože binární kód každé trojice
je delší než jeden byte.
Výsledný kód je tedy:

(0, 0, a)
(1, 1, b)
(3, 2, c)
(3, 2, a)
(1, 3, b)
(2, 3, b)
(2, 2, b)
(3, 1, b)

První číslo v uspořádané trojici adresuje nezakódovanou část okna, in-
terval přípustných hodnot je tedy < 0, 6 >. Při použití binárního kódu bude
potřeba pro uložení této adresy třech bit̊u.
Druhé číslo určuje délku nalezeného podřetězce. Maximální délka je

rovna délce nezakódované části okna zmenšené o jedničku (znak do výstupu),
v našem případě tři znaky. Nejkratší délka je pro případ, kdy již první znak
v nezakódované části okna není obsažen ve slovníku, pak je délka rovna
nule. Tedy interval < 0, 3 >, binární kód délky dva. Pro kódování znak̊u
použijeme standardní ASCII kód, tedy 8 bit̊u.
Celková délka kódu bude 7 ∗ (3 + 2 + 8) = 91 bit̊u. Byl-li p̊uvodní text

v ASCII kódování, byla jeho délka 22 ∗ 8 = 176 bit̊u. Kompresní poměr je
91/176

.
= 0, 52.

44

Příklad 6.2
Proveďte dekódování textu z předchozího příkladu. Postup je obdobný jako
u kódování. Dekodér bude používat stejné okno, na základě index̊u bude do-
plňovat znaky do výstupního proudu. Potom přesune okno tak, aby hranice
mezi zakódovanou a nezakódovanou částí byla za posledním znakem. Vše je
znázorněno na následujících obrázcích.

- - - - - - - - - -
Trojice je (0,0,a), do výstupu vlož symbol a.

- - - - - - a - - - (1,1,b)
Posuň okno o jeden znak (o j+1, zde 0+1).

- - - - - a a b - - (1,1,b) Vlož a a přidej b.

- - - a a b a a c - (3,2,c) Vlož aa a přidej c.

a a b a a c a a a - (3,2,a) Vlož aa a přidej a.

a a c a a a a a a b (1,3,b)

a a a a a b a b a b (2,3,b)

a b a b a b a b b - (2,2,b)

b a b a b b a b - - (3,1,b)

6.2 LZ78

Příklad 6.3
Metodou LZ78 zakódujte text T = aabaacaaaaaababababbab. Zhodnoťte
dosaženou kompresi.
Metoda LZ78 produkuje v každém kroku jednu dvojici (i, a), kde i je

index fráze ve slovníku a a je symbol nacházející se bezprostředně za uklá-
danou frází. Slovník je reprezentován jako strom s očíslovanými uzly, každý
uzel reprezentuje frázi na cestě z kořene do tohoto uzlu. Po vložení jedné
uspořádané dvojice do výstupního proudu je slovník rozšířen o novou frázi,
která vznikne rozšířením ukládané fráze o právě ukládaný symbol. Tato fráze
bude označena nejnižším novým číslem a začleněna do kódovacího stromu.
Kódování začíná se stromem obsahujícím jediný uzel, uzel nula. Nejdelší

předpona nalezená v tomto stromu je ε, do výstupu jde dvojice (0,a) a strom

45

je rozšířen o uzel 1 a hranu ohodnocenou symbolem a. Uzel 1 tedy reprezen-
tuje frázi a. Hranice mezi zakódovanou a neazakódovanou částí vstupního
řetězce je posunuta:

a|abaacaaaaaababababbab

Protože nejdelší předpona nezakódované části řetězce nalezená v kódo-
vacím stromu je a, tj. uzel 1, do výstupu se předá (1,b). Strom je rozšířen o
novou frázi 2 = 1b = ab. Hranice je posunuta za třetí symbol:

aab|aacaaaaaababababbab

c

0
b

b

a

ab

a

6

5

32

841

a b

7 9

Obrázek 6.1: Stromová reprezentace slovníku metody LZ78.

Algoritmus komprese postupně vytvoří strom na obrázku 6.1. Hranice
mezi zakódovanou a nezakódovanou částí budou:

a|ab|aa|c|aaa|aaab|aba|b|abb|ab

Každý podřetězec uzavřený sousedícími hranicemi je kódovací fráze, její
pořadí odpovídá číslu uzlu, jež ji reprezentuje. Výjimku tvoří poslední pod-
řetězec, který zde nevytváří novou frázi a je kódován dvojicí (1,b), protože
algoritmus dekódování vyžaduje vložení symbolu. Výsledný kód je:

46

Kód velikost slovníku počet bit̊u pro index fráze
(0,a) 0 0
(1,b) 1 1
(1,a) 2 2
(0,c) 3 2
(3,a) 4 3
(5,b) 5 3
(2,a) 6 3
(0,b) 7 3
(2,b) 8 4
(1,b) 9 4

Pro výpočet kompresního poměru předpokládejme, že p̊uvodní text používal
8 bit̊u na jeden symbol, d0lka p̊uvodního textu byla 22 ∗ 8 = 176 bit̊u. Jed-
notlivé symboly budeme kódovat také 8 bity. Indexy frází budeme kódovat
binárním kódem jehož délka bude závislá na velikosti slovníku, tj. při kó-
dování první dvojice, je slovník prázdný, není potřeba kódovat index fráze,
po vložení první fráze je potřeba jeden bit (0 . . . nová fráze, 1 . . . fráze a).
Celková délka kódu bude 10∗8+1+2∗2+4∗3+2∗4 = 105 bit̊u. Kompresní
poměr je 105/176

.
= 0, 60.

Příklad 6.4
Dekódujte výstup z předchozího příkladu. Pro reprezentaci slovníku je při
dekódování výhodnější tabulka. Její inicializace je:

Index fráze fráze
0 ε

První dvojice je (0, a), do výstupu je přidán řetězec odpovídající indexu
fráze 0, tedy ε a symbol a. Tabulka frází je rozšířena o frázi vzniklou zře-
tězením fráze 0 a symbolu a, tedy a. Výsledná tabulka včetně dokódování
bude

Index fráze fráze do výstupu
0 ε
1 0a . . . a a
2 1b . . . ab ab
3 1a . . . aa aa
4 0c . . . c c
5 3a . . . aaa aaa
6 5b . . . aaab aaab
7 2a . . . aba aba
8 0b . . . b b
9 2b . . . abb abb
− − ab

47

6.3 LZW

Metoda LZW vymyšlená Welchem vychází z metody LZ78. Jejím výstupem
jsou pouze indexy, slovník je inicializován všemi symboly vstupní abecedy,
poslední symbol posledně vložené fráze je počátečním symbolem vkládané
fráze.

Příklad 6.5
Metodou LZW zakódujte text T = aabaacaaaaaababababbab. Zhodnoťte
dosaženou kompresi.
Metoda LZW předpokládá slovník inicializovaný všemi symboly abecedy.

Pro jednoduchost předpokládejme, že vstupní abeceda obsahuje pouze sym-
boly a, b, c15. Slovník bude obsahovat fráze a, b a c, indexované čísly 1, 2 a
3. Celý slovník je zobrazen na obrázku 6.2.

9 13

12

a

a

11

5

b

0

8

a

6

a

b

14

b

10

a

ac

4

a

3

cb

2

a

1

7

Obrázek 6.2: Stromová reprezentace slovníku metody LZW.

Následující tabulka shrnuje jednotlivé kroky kódování. Symbolem | je
označena nová hranice mezi zakódovanou a nezakódovanou částí textu, fráze
ukládaná do slovníku je zvýrazněna tučně.

15Obecně nevíme jaké symboly budou v textu obsaženy, proto se slovník inicializuje
všemi možnými symboly. Jinou možností by bylo zjišťování pravdy, které by si vyžádalo
jeden pr̊uchod zakódovávaným textem a předání inicializovaného stromu dekodéru.

48

Text index do výstupu index nové fráze
a|abaacaaaaaababababbab 1 4
aa|baacaaaaaababababbab 1 5
aab|aacaaaaaababababbab 2 6
aabaa|caaaaaababababbab 4 7
aabaac|aaaaaababababbab 3 8
aabaacaa|aaaababababbab 4 9
aabaacaaaaa|ababababbab 9 10
aabaacaaaaaab|abababbab 5 11
aabaacaaaaaababa|babbab 11 12
aabaacaaaaaabababa|bbab 6 13
aabaacaaaaaabababab|bab 2 14
aabaacaaaaaababababbab| 13 −

Výsledná posloupnost index̊u je 1,1,2,4,3,4,9,5,11,6,2,13. Pro kódování
jednotlivých index̊u použijeme binární kód, jehož délka bude dlog2(sl)e, kde
sl je velikost slovníku, tj. první a druhý index fráze budou zakódovány dvěma
bity (inicializovaný slovník obsahuje 3 fráze). Délka výsledného kódu bude
2 ∗ 2 + 4 ∗ 3 + 6 ∗ 4 = 40 bit̊u. Pokud byl p̊uvodní text v ASCII kódu, je
kompresní poměr 40/176

.
= 0, 23.

Příklad 6.6
Dekódujte posloupnost z předchozího příkladu. Uvažujte stejný počáteční
slovník. Počáteční slovník obsahuje tři fráze:

Index fráze fráze
1 a
2 b
3 c

Připomeňme, že každá nová fráze má první symbol shodný s posledním
symbolem předchozí fráze.
Pro dekódování si je nutné uchovávat dva odkazy do textu, místo kam

p̊ujde další symbol (vždy za poslední symbol) a poslední symbol v poslední
uložené frázi.
První index je číslo jedna, odpovídající fráze je a. Druhý index je jedna,

odpovídající fráze je a, celý výstup je aa. Nová fráze je aa, číslo 4. Tento
a další kroky shrnuje následující tabulka, nová fráze je zvýrazněna pruhem
nad dekódovaným textem, poslední dekódovaná fráze je zvýrazněna tučným
písmem.

49

Index fráze ze vstupu výstup nová fráze
1 aa 4 . . . aa

2 aab 5 . . . ab
4 aabaa 6 . . . ba
3 aabaac 7 . . . aac
4 aabaacaa 8 . . . ca

V tomto okamžiku je na vstupu index 9, tato fráze ještě nebyla vložena do
slovníku. Tento případ nastává pro fráze typu axa, kde x je libovolný řetězec
a fráze ax je již ve slovníku. Tato fráze je rozšířením posledně dekódované
fráze. V našem případě jde o frázi 4 . . . aa, první a poslední symbol nové
fráze se musí shodovat, fráze 9 bude aaa. Stejný problém bude dekodér řešit
s frází 11.

Index fráze ze vstupu výstup nová fráze
9 aabaacaaaaa 9 . . . aaa
5 aabaacaaaaaaab 10 . . . aaaa

11 aabaacaaaaaababa 11 . . . aba

6 aabaacaaaaaabababa 12 . . . abab
2 aabaacaaaaaabababab 13 . . . bab

13 aabaacaaaaaababababbab 14 . . . bb

6.4 Příklady na cvičení

Příklad 6.7
Text X = aabaabbcabacaabcbaa zakódujte metodou LZ77. Velikost posuv-
ného okna a nezakódované části volte:

velikost zakódované části velikost nezakódované části

5 3
10 4
15 5

Zvolte vhodné kódování použitých čísel a zhodnoťte dosaženou kompresi.

Příklad 6.8
TextX = aaaaaaaaaabaaaaaaaaaa = a10ba10 zakódujte metodou LZ77. Ve-
likost posuvného okna a nezakódované části volte stejně jako v příkladu 6.7.
Zvolte vhodné kódování použitých čísel a zhodnoťte dosaženou kompresi.

Příklad 6.9
Metoda LZ77 s velikostí zakódované části 6 symbol̊u a velikostí výhledu 4
symboly vytvořila výstup Y =(0,0,a)(0,0,b)(2,3,b)(2,1,a)(4,2,b)(4,2,b). Ur-
čete vstupní text.

50

Příklad 6.10
Text X = aabaabbcabacaabcbaa zakódujte metodou LZ78. Zvolte vhodné
kódování použitých čísel a zhodnoťte dosaženou kompresi.

Příklad 6.11
Text X = aaaaaaaaaabaaaaaaaaaa = a10ba10 zakódujte metodou LZ78.
Zvolte vhodné kódování použitých čísel a zhodnoťte dosaženou kompresi.

Příklad 6.12
Metoda LZ78 vytvořila výstup Y =(0,a)(0,b)(1,b)(3,a)(1,a)(2,b)(5,b). Určete
vstupní text.

a b c d e

1 2 3 4 5

Obrázek 6.3: Počáteční strom pro metodu LZW z příklad̊u 6.13, 6.14, 6.15,
6.16 a 6.19

Příklad 6.13
Text X = aabaabbcabacaabcbaa zakódujte metodou LZW. Předpokládejme,
že počáteční strom je stejný jako na obrázku 6.3. Zvolte vhodné kódování
použitých čísel a zhodnoťte dosaženou kompresi.

Příklad 6.14
Text X = aaaaaaaaaabaaaaaaaaaa = a10ba10 zakódujte metodou LZW.
Předpokládejme, že počáteční strom je stejný jako na obrázku 6.3. Zvolte
vhodné kódování použitých čísel a zhodnoťte dosaženou kompresi.

Příklad 6.15
Text X = aaaaaaaaaabaaaaaaaaaa = a10ba10 zakódujte metodou LZW.
Předpokládejme, že počáteční strom je stejný jako na obrázku 6.3. Zvolte
vhodné kódování použitých čísel a zhodnoťte dosaženou kompresi.

Příklad 6.16
Text X = aaaaaaaaaabaaaaaaaaaa = a10ba10 zakódujte metodou LZW.
Předpokládejme, že počáteční strom je stejný jako na obrázku 6.3. Zvolte
vhodné kódování použitých čísel a zhodnoťte dosaženou kompresi.

51

6.5 Další příklady

Příklad 6.17
TextX = abababababababababab = (ab)10 zakódujte metodou LZ77. Velikost
posuvného okna a nezakódované části volte stejně jako v příkladu 6.7. Zvolte
vhodné kódování použitých čísel a zhodnoťte dosaženou kompresi.

Příklad 6.18
Text X = abababababababababab = (ab)10 zakódujte metodou LZ78. Zvolte
vhodné kódování použitých čísel a zhodnoťte dosaženou kompresi.

Příklad 6.19
Text X = abababababababababab = (ab)10 zakódujte metodou LZW. Před-
pokládejme, že počáteční strom je stejný jako na obrázku 6.3. Zvolte vhodné
kódování použitých čísel a zhodnoťte dosaženou kompresi.

Příklad 6.20
Určete, jak se změní kódování a výsledný kompresní poměr v příkladech
6.13, 6.14, 6.15, 6.16 a 6.19 pokud počáteční strom bude obsahovat pouze
symboly, které se vyskytují v kódovaném textu.

52

