Komprese dat

Cviceni

4. dubna 2006

Obsah

1

Zakladni pojmy, entropie, redundance

1.1 RLE komprese
1.2 Piiklady nacviCenio
1.3 Dalsipriklady o
Reprezenatce celych cisel
2.1 Blokovy kéd
2.2 Koédovéani s oddélovacem
2.3 Fibonaccihokodyo
2.4 Fibonacciho kédy vyssich frada
25 Unarnikéd
2.6 Golombovo kédovani
2.7 Riceovo kédovani L
2.8 Eliasovy kody oo
2.9 Trojkovy kod s oddé€lovacem
2.10 Porovndni kédao
2.11 Priklady nacvieni oL L L.
2.12 Dalsi piiklady
Statistické metody komprese dat
4.1 Shannon-Fanovo kédovani
4.2 Statické Huffmanovo kédovéani
4.3 Modelovani komprese dat
4.3.1 Ulozeni Huffmanova stromu
4.4 Adaptivni Huffmanovo kédovani
4.5 Priklady nacvideni
4.6 Dalsipiikladyo
Aritmetické kédovani
5.1 Statické aritmetické kédovani
5.2 Adaptivni aritmetické kédovéani
5.3 Priklady nacvidenio L.
54 Dalsiprikladyo
Slovnikové metody komprese dat
6.1 LZ7T7 e
6.2 LZT8
6.3 LZW
6.4 Priklady nacvideni L.
6.5 Dalsiprikladyo

11

13
13
13
14
15
18
18
19
19
22
23
24
25

26
26
27
30
30
31
34
35

37
37
40
41
42

1 Zakladni pojmy, entropie, redundance

Se stéle rostoucim mnozstvim uklddanych a pfenasenych dat roste potfeba
komprese téchto dat, tedy zpusobu jak zmensit prostor, ktery zabiraji. Me-
tody komprese dat délime na ztratové a bezeztratové. Ztratové kompresni
metody nezachovavaji vSechnu informaci ulozenou v datech, jsou vhodné
pro kompresi obrazku, zvuku a videa. Toto skriptum se zaméfuje na beze-
ztratovou kompresi.

Definice 1.1 (Kéd)

Kéd K je uspotfadana trojice (S, C, f), kde S je mnozina zdrojovych jed-
notek, C' je mnozina kédovych slov a f je zobrazeni z S do C. Zobrazeni f
pfifazuje kazdé zdrojové jednotce z mnoziny S pravé jedno kddové slovo z
mnoziny C. Toto zobrazeni musi byt prosté, to znamena kazdé dvé ruzné
zdrojové jednotky jsou zobrazovany na dvé ruznd kédova slova. Toto je nut-
nou nikoli dostacujici podminkou pro jednozna¢nou dekédovatelnost kddu
K.

Zdrojova jednotka je tedy definovana jako prvek néjaké mnoziny. Nej-
Castéji jsou jako zdrojové jednotky brany symboly néjaké abecedy (textové
napf. slov.

Zobrazeni f muze byt zobecnéno na fetézce zdrojovych jednotek (zdro-
jovd data, vstupni data):

f(S152....S) = f(51)f(S2) - f(Sk)-

Zakoédovana vstupni data budeme oznacovat pojmem vystupni data.

Prvky mnoziny C' oznacujeme jako kddy nebo kodovd slova. Jestlize vy-
stupni data obsazuji méné mista nez vstupni data, pak proces kédovani
oznacujeme pojmem komprese a vystupni data oznacujeme jako komprimo-
vand.

Opacny proces ke kompresi dat oznacujeme jako dekompresi. Oba pro-
cesy jsou nazorné zobrazeny na obrazku 1.1.

Definice 1.2 (Jednozna¢né dekédovatelny kéd)

Méjme néjaky kéd K = (S, C, f). Retézec x € CT je jednoznacné dekodo-
vatelny vzhledem k zobrazeni f, jestlize existuje pravé jeden fetézec y € ST
takovy, ze f(y) = z. Kéd (S, C, f) je jednoznacné dekodovatelny kod pravé
tehdy kdyZ vSechny mo7né fetézce z C* jsou jednoznacné dekédovatelné.
Symbolem CT ozna¢ujeme mnozinu vsech fetézcti nenulovych délek vznik-
Ijch ze symboll z C.

Priklad 1.3
Méjme kéd K = (S,C, f), kde S = {a,b,c,d}, C = {12,122,1211,2121} a
zobrazeni f je definovano nasledujici tabulkou:

aabbasbaba compression 00000101001101000100

aabbasbaba decompression 00000101001101000100

Obrazek 1.1: Grafické znézornéni procesu komprese a dekomprese. Mno-
Zina zdrojovych jednotek je S = {a,b, s}, mnozina kédovych slov C je
{00,01,11}.

‘ zdrojova jednotka ‘ kédové slovo ‘

a 122
b 21211
c 12

d 1211

Jeden z moznych vystupnich Fetézcu je fetézec 12221211212111221211.
Tento kédovy fetézec je jednoznacné dekddovatelny, zdrojovy text byl abbad.

Jinym vystupnim kédovym slovem je 12111221211. Tento fetézec neni
jednoznacné dekddovatelny, protoze mozné zdrojové texty, které zobrazeni
f prevede na nase kdédové slovo jsou dad a dcb.

Priklad 1.4
Méjme kéd K = (S,C, f), kde S = {a,b,¢,d}, C = {121,122, 12211,2222}
a zobrazeni f je definovano nasledujici tabulkou:

‘ zdrojova jednotka ‘ kédové slovo ‘

a 122
b 122111
c 121
d 2222

Jeden z moznych vystupnich Fetézcu je fetézec 122122111122121122111.
Tento kédovy retézec je jednoznac¢né dekédovatelny, zdrojovy text byl abacb.

Urceni, zda libovolny kéd je jednoznacné dekdédovatelny je algoritmicky
nefeSitelny problém, nicméné existuji t¥idy kédu, které jsou jednoznacné
dekdédovatelné, mezi né patii prefixové, afixové a blokové kédy.

Definice 1.5 (Prefixovy, afixovy a blokovy kéd)
Kéd (S,C, f) je prefivovy kod jestlize Zadné kédové slovo z C+ neni pred-
ponou jiného kédového slova z CT. Zdrojova data zakédovéna prefixovym

kédem jsou jednoznacné dekédovatelna dekédovanim jednotlivych kédovych
slov béhem ¢teni zleva doprava. To ndm umozni zacit s dekédovanim aniz
bychom znali cely kédovy text. Mezi prefixové kédy patii napriklad kdéd
UTF-8.

Pro afizovy kdd plati, ze zadné kédové slovo neni priponou jiného ké-
dového slova. Afixovy kdéd je dekdédovatelny znak po znaku béhem Cteni
zprava doleva. Kéd z prikladu 1.4 je afixovym kédem, proto je jednoznacné
dekédovatelny.

Pokud maji vSechna kdédova slova stejnou délku, pak tento kéd ozna-
¢ujeme jako blokovy. Jednim z kédu pro kédovani znakt je ASCII ! kéd.
Zakladni ASCII kéd pouziva 7 bita pro 95 grafickych (znaky anglické abe-
cedy, cislice, apod.) a 33 fidicich znaku, rozsifeny ASCII kéd je 8-bitovy
dovolujici kédovat 256 znakd.

Je si nutné uvédomit, ze neexistuje jednoznacnda bezeztratova komprese,
kterd by kazdy vstupni fetézec zkomprimovala na néjaky kratsi Fetézec.
Duvodem je rozdil v mohutnosti mnozin vstupnich fetézcu (delsi Fetézce)
a komprimovanych fetézcu (kratsi fetézce).

Definice 1.6 (Kompresni pomér)
Mé&jme kéd (S,C, f), x € ST,y € Ot : y = f(x). Retézec x je komprimovan
na Tfetézec y. Kompresni pomér cr je:

cr = M
B

Definice 1.7 (Optimalni kéd)

Méjme kéd (S, C, f). Pravdépodobnostni rozlozeni jednotlivych prvkua z S je

P, > ies (i) = 1. Kéd (S, C, f) je optimalni, pokud neexistuje kod (S, c',

takovy, ze 3 ;e p(i)|f (0)| < Xies (9] (D)]-

S kompresi dat izce souvisi pojmy entropie (neusporadanost, neurcitost,
nejistota) a redundance (nadbytecnost). Claude Elwood Shannon oznaco-
vany jako otec teorie informace v roce 1948 definoval entropii? (stfedni hod-
notu informace na jeden symbol zpravy) takto:

Definice 1.8 (Entropie)
Predpokladejme existenci néjakého systému. Dale predpokladejme samostat-
nou udélost (nezavislou na predchozich udélostech), kterd zpusobi prechod

! American Standard Code for Information Interchange - americky standardni kéd pro
vymeénu informaci

2Vypréavi se, ze kdyz Shannon uvazoval o pojmenovani této veli¢iny (pojem informace
byl jiz pretiZzeny), fekl mu John von Neumann pfiblizné toto:,You should call it entropy,
for two reasons. In the first place your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the second place, and more
important, no one really knows what entropy really is, so in a debate you will always have
the advantage.“

systému do nového stavu. Predpokladejme n vzajemné se vylucujicich stavi
x, pravdépodobnost stavu ¢ je p(i), entropie stavu x je

n
H(z) = =) p(i)logy p(i).
=1

Jednotkou entropie je jeden bit3. Jeden bit je pouzit pro zpravu, ktera
byla vybrana ze dvou stejné pravdépodobnjch moznosti?.

Tato definice predpokladé, ze pravdépodobnost jednoho symbolu v textu
je nezavisla na pravdépodobnosti predchézejicich symbolu. Tato vlastnost
pro texty v pfirozeném jazyce neni splnéna, napiiklad v jazyce anglickém je
pravdépodobnost znaku 'u’ po symbolu ’q’ vétsi nez 99%.

Pokud neni tato podminka splnéna, je nutné definovat entropii odlisSnym
zpusobem. Tato definice bude uvedena u kontextovych metod komprese dat.

Pro definici entropie se zavadi statisticky model dat. Pro zjednoduseni
budeme pro tcely klasifikace statistickych modelu uvazovat, Ze zdrojovymi
jednotkami jsou znaky. Pak muzeme zavést tyto modely:

e Statisticky model nultého stupné. Kazdy znak vstupniho textu je sta-
tisticky nezévisly na jiném znaku, pravdépodobmnosti vyskytu vsech
znak jsou stejné. Tomuto modelu odpovidd nahodné generovany text
a priblizuji se mu DNA sekvence.

e Statisticky model prvniho stupné. Kazdy znak vstupniho textu je sta-
tisticky nezavisly na jiném znaku, pravdépodobnosti vyskytu vsech
znakl jsou ruzné.

e Statisticky model druhého stupné. Tento model zohlediiuje pravdépo-
dobnosti vyskytu dvojic znaku. Jednotlivé pravdépodobnosti se nepfi-
fazuji jednotlivym znakum, ale jejich dvojicim.

e Statisticky model n-tého stupné. Tento model pracuje s pravdépodob-
nostmi n-tic znaki.

Entropie zpravy vyjadfuje miru informace, kterd je v ni uloZena. Po-
kud mayji znaky ve zpravé ruzny pocet vyskytu, nevede pouziti statistického
modelu nultého stupné k presnému odhadu entropie. Pokud je text kontex-
tové zavisly, je nutné pouzit statisticky model vyssiho stupné, ktery lépe
odhadne entropii zpravy. Pro anglicky text s mezerou statisticky model nul-
tého stupné odhaduje entropii na 4,75 bitd na znak, model tfetiho stupné
jiz tento odhad zpfesnuje na 2,77 biti na znak.

3bit - zkratka z anglickych slov binary digit
4Pocet mozmosti ovlivituje zaklad logaritmu, pro zédklad 2 je jednotka jeden bit, pro
prirozeny logaritmus (zéklad e) je jednotkou jeden nat a pro zaklad 10 jeden Hartley. Pro

y . PR oo 1
pievod logaritmii se pouziva nésledujici vztah log, z = 25102
0g10 2

Definice 1.9 (Redundance)

Predpokladejme kédovani zdrojové jednotky x a zna¢me ji jako C'(x). Délku
kédového slova C(x) ozna¢me L(x). Tato délka se mé¥i v bitech. Teorie
informace ukazuje, ze H(x) < L(x). Rozdil mezi délkou kédu a entropii x je
redundance (nadbyte¢nost) kédu C(x), znac¢ime ji R(z). Formélné:

Priklad 1.10

V tomto ptikladu si ukdZeme vztah mezi primérnou entropii symbolu a prav-
dépodobnostnim rozloZzenim symboli. Méjme t¥i typy zprav X1, Xo, X3 nad
abecedou ¥ = {a, b, ¢, d}. RozloZeni pravdépodobnosti jednotlivych symbolu
pro jednotlivé typy retézci definuje nasledujici tabulka:

|symbol [P, | P, | Ps|

a]025] 05 | 1
b 025 0,25 | 0
c 0,25 | 0,125 | 0
d |025]0,125 | 0

Prvni typ zprav odpovidd rovnomérnému rozloZeni vSech symbolu, re-
prezentant by mohl vypadat napfiklad takto abacdcbd. Druhou tiidu zprav
reprezentuje fetézec aabaabed a posledni typ zpravy mé jediného reprezen-
tanta aaaaaaaa. Nésledujici tabulka ukazuje hodnoty entropii jednotlivych
symbolu pro tii ruzné distribuce pravdépodobnosti.

‘ symbol ‘ P1 ‘ H1 ‘ P2 ‘ H2 ‘ P3 ‘ H3 ‘
a 10251 21 05 | 1 [1]0
b 02| 2 02 | 2 | 0| o
c 10250 2 0125 3 |0 |
d [025] 2 [0125] 3 | 0 | o
Havg 2 1,75 0
Vztah Hgpg(S) = — X5 p(i) logy p(i) definuje priamérnou entropii. Z

tabulky je vidét, Ze entropie jednoho symbolu roste pokud klesa pocet jeho
vyskytu (~ pravdépodobnost). Prumérna entropie je maximalni pro rovno-
mérné rozlozeni vyskytu symbolu a naopak nejmensi (nulovd) pro fetézce
obsahujici pouze jeden symbol.

Priklad 1.11

Mgéjme text dlouhy 160 znaku. V tomto textu se 80 krat opakuje symbol ’a’,
40 krat symbol ’e’, 20 krat symbol ’'c¢’. Déle tento text obsahuje po deseti
symbolech ’g’ a ’b’. Pfedpokladejme, Ze vyskyty jednotlivych symbola jsou

nezéavislé na predchézejicich symbolech. Urcete entropii kazdého symbolu a
entropii celé zpravy.

Pro vypocet entropie zdrojovych jednotek nejprve vypocitdme jejich
pravdépodobnosti a poté uréime entropii podle vztahu:

H(z;) = —logyp(i),z; € S

Vysledné entropie shrnuje nasledujici tabulka:

‘ symbol ‘ pocet ‘ pravdépodobnost ‘ entropie (bit) ‘

a 80 0,5 1
b 10 0,0625 1
c 20 0,125 3
e 40 0,25 2
g 10 0,0625 1

Je vidét, ze ¢im vyjimecénéjsi symbol (mald pravdépodobnost) tim nese
vice informace (vétsi redundance). Pokud je pravdépodobnost néjakého sym-
bolu zapornou mocninou ¢isla dvé, vychéazi entropie celoc¢iselna a odpovida
poc¢tu bitia potfebnych pro ulozeni jednotlivych symboli.

Primérné entropie jednoho symbolu z S je definovana vztahem:
Hawg(S) = — Y iegp(i)logyp(i) = Y eqp(i)H(x;) = 1-0,5 + 4:0,0625 +
3-0,125 + 2.0,25 + 40,0625 = 1,875 bitu

Entropie této zpravy X délky k znaku je definovana vztahem:

H(X) = —YF logyp(i) = X8 | H(x;) = k-Hauy(S) = 300 bit.

Priklad 1.12
Méjme zpravu s pravdépodobnostnim rozlozenim definovanym v prikladu
1.11. Uvazujme dva kédy definované nésledujici tabulkou.

[‘symbol, S; [kéd, CF | kéd, C7 |

a 0 01
b 1110 00
c 110 100
e 10 11
g 1111 101

Vypoctéte prumérnou redundanci obou kédt. Uréete redundanci pro ty-
pickou zpravu délky 160 znakt. Typickéd zprava ma frekvence vyskytu jed-
notlivych znaka odpovidajici jejich pravdépodobnosti vyskytu. Pro vypocet
redundance kédu musime zjistit délku zakédované zpravy. Pro jeji vypocet
vyuzijeme Cetnosti z ptikladu 1.11. Délka kédu zpravy délky k symbola lze
vypocitat podle vztahu

k
L(.%') = Zdij’

Jj=1

7

kde i € S a f(x;) ma d; biti. Vysledné délky kédt pro C! a C? jsou
L' = 300 bitd a L? = 350 biti. Redundance kédu je R(X) = L(X) — H(X).
Typické zprava v prvnim kédu mé nulovou redundanci a typicka zprava ve
druhém kédu obsahuje 50 redundantnich bit na 160 bitu zpravy. Pruimérna
redundance druhého kédu je tedy 0,3125 bitu na znak.

Priklad 1.13

Méjme typickou zpravu odpovidajici pravdépodobnostnimu rozlozeni z pii-
kladu 1.11. Déale uvazujme dva kédy definované v prikladu 1.12. Predpokla-
dejme, Ze typickd zprava byla zakédovana v rozsifeném ASCII kédovéani (8
bitt na znak). Uréete kompresni pomér pro oba kddy.

1.1 RLE komprese

Mezi nejjednodussi metody komprese dat patfi metoda oznacovand RLE
(z anglického Run-length encoding). Tato metoda vyuzivé skutecnosti, ze
nékterd data obsahuji dlouhé posloupnosti (fada ~ run) stejnych znaku.
Typickym piikladem pouziti jsou obrazky v nizkém barevném rozliseni. Tato
metoda je vyuZita napiiklad ve formatu obrazku PCX a muze byt pouzita
ve formatu TIFF.

Zakladni varianta RLE komprese kéduje kazdou posloupnost dvojici (po-
Cet opakovani, znak). Tato metoda je vyhodné pro ¢ernobilé obrazky. Pied-
pokladejme, ¢ast obrazku

X = bbbbbbbuwwwwwwwwwwwwwwwwwwwwbbbbbbbbbbbbbbbbbbwwwww,

symbolem b znac¢ime ¢ernou barvu, symbolem w barvu bilou. RLE komprese
by tento fetézec zakddovala do posloupnosti

7620w18b5w.

Tento kdéd je nevhodny pro texty, které obsahuji vedle dlouhych posloup-
nosti i jednoznakové posloupnosti. Pro tyto texty vznikla varianta, ktera pro
neopakujici se symboly (¢i kratké posloupnosti, napt. dvou znaki) nepro-
vadi kédovani poctu, ale pfimo prepisuje vstup. Pak je nutné pouzit néjaky
specidlni symbol, ktery ,pfepne“ do médu dvojic, (pocet, znak).

Priklad 1.14
Nyni se pokusime vypocitat kompresni pomér pro kompresi ¢asti obrazku z
uvodu této kapitoly. V obrazku mohou byt pouze dvé hodnoty, {b, w}. Pro
zakédovani jednoho znaku pouzijeme jeden bit, délka nezakddované zpravy
je pak 50 bitu.

Délku zakddovaného obrazku vyrazné ovlivni pouzité kédovani na repre-
zentaci po¢tu opakovani. Pro jednoduchost budeme uvazovat, Ze nejdelsi po-
sloupnost nepiekroc¢i 256 symbolt, pak pouzijeme binarni kéd pevné délky,
8 bitu.

1.2 Priiklady na cviceni

Priklad 1.15
Méjme kéd definovany nasledujici tabulkou.

‘ zdrojova jednotka ‘ kédové slovo ‘

a 123
b 321
c 12
d 312

Meéjme kédové Tetézce:
1. 31212321,

2. 1232112123,

3. 32131212312,

4. 3211212,

5. 12321.

Pokuste se dekédovat jednotlivé fetézce. Rozhodnéte, ktery kédovy feté-
zec je jednoznac¢né dekédovatelny. Je tento kéd jednoznacné dekddovatelny?
Je tento kéd prefixovy, blokovy ¢i afixovy?

Priklad 1.16
Meéjme kdd definovany nasledujici tabulkou.

‘ zdrojova jednotka ‘ kédové slovo

a 01
b 111
c 0
d 011

Méjme kédové fetézce:
1. 01001111101,

2. 010110111011,

3. 0111101101,

4. 111001010,

5. 0011000.

Pokuste se dekdédovat jednotlivé fetézce. Rozhodnéte, ktery kédovy feté-
zec je jednoznac¢né dekédovatelny. Je tento kéd jednoznacné dekddovatelny?
Je jednoznacné dekédovatelny po znacich? Je tento kéd prefixovy, blokovy
¢i afixovy?

Priklad 1.17
Méjme t¥i typy zprav s ¢etnostmi znaku definovanymi nasledujici tabulkou.

zdrojova jednotka | Cetnost 1 | Cetnost 2 | Cetnost 3
a 40 80 160
b 40 40 0
c 40 20 0
d 40 20 0

Uréete entropii jednotlivych symbolt a prumérnou entropii pro oba typy
ZPprav.

Priklad 1.18
Predpokladejme zpravu s pravdépodobnostnim rozdélenim ¢etnosti symbolua
definovanym nésledujici tabulkou.

‘ zdrojova jednotka ‘ pravdépodobnost ‘

S| e

QU O

S Q| | o

;|>—A ;|>—n 5|,_. W= | ool ool 5|>—l N[

Uréete entropii jednotlivych symbola a primérnou entropii jednoho sym-
bolu. Jaka je entropie typické zpravy o délce 16 znaku. Jak takova zprava
vypada?

Jaké jsou redundance (absolutni pro zpravu délky 160 znaku a relativni
redundance) blokového kédu kédujicim jeden znak 8 bity a blokového kédu
kédujicim jeden znak 3 bity.

Navrhnéte kéd s minimalni redundanci.

Priklad 1.19
Méjme ¢ast cernobilého obrazku:

X = bbbbwwwwwwbbbbbbbwwwwwwwwwwwbbbbbbbbbbbbwbbbbbwbbwbbbbb

Zakédujte jej pomoci RLE komprese. Zhodnotte dosazeny kompresni pomér.
Diskutujte ruzné typy RLE.

10

1.3 Dalsi priklady

Priklad 1.20
Dokazte, ze kazdy prefixovy kdéd je jednoznacéné dekédovatelny.

Priklad 1.21
Méjme zpravu nad abecedou o péti symbolech. Pro jaké pravdépodobnostni
rozdéleni symboli nad touto abecedou je blokovy kéd délky 3 optiméalni?

Priklad 1.22
Dokazte, ze neexistuje bezeztratova komprese, kterd by kazdy fetézec zako-
dovala kratsim kédem, nez byla puvodni zpréava.

Priklad 1.23

Pro kédovani znakt narodnich abeced se pouziva standard Unicode. Verze
Unicode 4.0 obsahuje 96 382 znakil, mezi kterymi jsou interpunkéni zna-
ménka, matematické a technické symboly, geometrické obrazce, apod. Stan-
dard Unicode je mozné rozsirovat o nové znaky, napi. symbol pro ménu Euro
byl pridan ve verzi 2.1. Vyznamnou vlastnosti Unicode je moznost sklddani
slozitéjsich symbolu z jednotlivych ¢asti (hacek + ¢ = ¢), nebo z jednotlivych
znaku (Geské ch = c+h).

Tento standard definuje symboly na zakladé jejich vyznamu, nerozlisuje
mezi jejich ruznymi zapisy - grafickjmi reprezentacemi. Definice znaku jsou
obohaceny o dalsi vlastnosti, napt. lexikografické usporadani, proto nejde
pouze o kédovani.

Mezi zékladni reprezentace Unicode patii kédovani UCS-4° a UCS-2,
ktery obsahuje pouze prvnich 64K znaki. ProtoZe ani nové nastroje ne-
dokazi efektivné pracovat s UCS-4 (Java pouzivd UCS-2) byly definovany
kédy pro transformaci UCS, nazvané UTF7 Mezi v§znamné patii UTF-8,
UTF-16 a UTF-32.

Nasledujici tabulka ukazuje pfevodni vztah mezi UCS-4 (~ UTF-32) a
kédovanim UTF-8.

UCS-4 kéd od - do Binarni zapis znaku v UTF-8

0000 0000 - 0000 007F® OxXXXXXXX

0000 0080 - 0000 07FF ? | 110xxxxx 10xxxxXX

0000 0800 - 0000 FFFF 1110xxxx 10xxxxxx 10XXXXXX

0001 0000 - 001F FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xXXXxXXX

0020 0000 - O3FF FFFF | 111110xx 10xxxxxx 10xxxxxx 10xxxx%X 10XXXXXX
0400 0000 - 7FFF FFFF | 1111110x 10xxxxxX ... 10xxxxxX

®Universal Character Set (UCS), definovdno normou ISO/IEC 10646-1
®Kéduje zakladni sadu - Basic Multilingual Plane (BMP)
"UCS transformation formats (UTF).

11

Kédovani UTF-8 je ,zpétné kompatibilni“, tedy vSechny znaky, které
byly obsazeny v sadé ASCII maji tentyz kéd, ve starsich editorech jsou tedy
zobrazeny korektné. Ceské znaky jsou reprezentovany pomoci 16 bitii.

Ptredpokladejme existenci zpravy X = Zaba leze do bezu, j4 tam za ni
polezu.

Kolik bitu obsadi tato zprava v UCS-4, kolik v UTF-8 a kolik v roz-
Sifeném ASCII (napi. ISO 8859-2, osm bitu). Sedmibitovy ASCII nemuze
reprezentovat ,nabodenicka“. Neékteré systémy umoznuji piepis takovych
symbolil pomoci specidlnich sekvenci. IATEX by tuto zpravu pfepsal do tvaru
X = \v{Z}{\’a}ba leze do bezu, j{\’a} tam za n{\"\i{}} polezu.

Kolik bitu spotfebuje tento prepis s pouzitim ASCII(7 bita)? Jaky je
kompresni pomér mezi nejuspornéjsi a nejhorsi reprezentaci této zpravy?

12

2 Reprezenatce celych cisel

V metodéach komprese dat je ¢astou tlohou reprezentace celych cisel, ktera
reprezentuji pocet opakovani, index ve slovniku, apod.

2.1 Blokovy kéd

Pro pocitace je prirozena reprezentace celych ¢isel pomoci pevné dané délky,
kterd je vétsinou nasobkem délky jednoho bytu. V soucasné dobé (prelom
dvacatého a dvacatého prvniho stoleti) je pro reprezentaci celého ¢isla pou-
zivano 32 nebo 64 bit. To nAm umozni reprezentovat 232 = 4294967296 ~
4-10° (nebo 24 ~ 1,8.10'") riiznych hodnot.

Priklad 2.1

Meéjme zpravu obsahujici nezaporna celd Cisla. Urcete, kolik bitt by mu-
sel mit blokovy kdéd, aby mohl reprezentovat tuto zpravu, pokud vime, Ze
nejvétsi cislo ve zpravée je

1. 8,
2. 127,

3. 2 500 000.

Pocet bitl lze uréit pomoci nasledujiciho vztahu:

b= [logyn],
kde n odpovida po¢tu moznych hodnot. Protoze nezaporna cela ¢isla mensi
nebo rovna 8 pfipousti hodnoty {0,1,2,3,4,5,6,7,8}, tedy devét hodnot je
pro prvni pfipad potfeba 4 bity. Obdobné pro druhy pifipad 7 bita a pro
treti 22 bitu.
Blokovy kéd je optimalni pro reprezentaci hodnot, které maji ve zpraveé
stejnou pravdépodobnost a jejichZz pocet je celociselnou mocninou ¢isla 2.

2.2 Koédovani s oddélovadem

Kédovani s oddélovadem (byte coding, comma coding) rozdéluje kazdy blok
(obvykle 8 nebo 16 biti) kédového slova na dvé ¢asti, ¢ast, kterd nese infor-
maci. Druhou ¢asti je jeden bit oznacujici konec kédového slova. Puvodni
¢islo vznikne zretézenim vyznamovych ¢asti.

Priklad 2.2
Pomoci kédovani s oddélovacem zakddujte Cisla:

1. 0,

13

2. 203,

3. 2 500 000.

Pro kédovani pouzijte blok o délce jeden byte, bitem 1 oznacte posledni
blok.

Nejprve musime kédované cislo vyjadrit pomoci binarni reprezentace,
poté jej rozdélime po 7 bitech a zakédujeme. Cely proces shrnuje nasledujici
tabulka:

| ¢islo | binarni reprezentace | kéd s oddélovacem |
0 0 00000001
203 11001011 00000010 10010111

2 500 000 | 1001100010010110100000 | 00000010 00110000 10010110 01000001

Tento kéd umoznuje pfirozenym zpusobem zakédovani éisla 0. Obdobné
je tomu i pro jiné kdédy, napt. Golombovy, ale protoze budeme uvazovat
kédovani prirozenych ¢isel (celd ¢isla vétsi nez nula), nebudeme nulu kédovat
a cely kéd o jednicku posuneme.

2.3 Fibonacciho kody

Fibonacciho kédy jsou prefixové kédy, které umoziiuji kédovat celd kladna
¢isla. Apostolico a Fraenkel v roce 1987 predstavili kéd zaloZeny na Fibonna-
ciho ¢islech druhého fadu. Fibonacciho ¢isla jsou pojmenovany po italském
matematikovi Leonardu z Pisy!® (1175 - 1250), zndmém téz jako Fibonacci
(filius Bonacci, syn Bonacciho). Prvni zminka o téchto éislech (maatraa-
meru) viak spada do 5 stoleti pfed na$im letopoétem!!, tato &isla zavedl
indicky matematik Pingala ve svém dile Chhandah-shastra!?.

Tento kéd zobrazuje malé c¢isla na kratkd kédova slova. Kazdé Fibo-
nacciho ¢islo konci fetézcem ,,11“. Tento fetézec se nevyskytuje nikde v
kédovém slove. 2.1.

Fibonacciho kéd se vytvari pomoci Fibonacciho ¢isel, ktera jsou defino-
vana rekurzivné:

o i=1
o Fr=1
e [=F, 1+ F;, _o;fori>2

Posloupnost Fibonacciho ¢isel zacina ¢isly 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, 377, 610, 987

107aslouzil o zavedeni piivodem arabské desitkové soustavy.

11V roce 509 pt. n. L. byla v Rimé svrzena monarchie a zaloZena republika.

12y tomto dile je mimo jiné i prvni zminka o &isle nula (oznadované .), o Pascalové
trojuhelniku a zavedeni binarni ¢iselné soustavy.

14

Fibonacci zavedl tuto posloupnost jako idealni fadu pro mnozeni kraliki.
Limita 2= pro n jdouci do nekonec¢na je ¢islo oznacované jako zlaty fez
o

(1+\/5

5), Cislo vyznamné v uméni, biologii a vypocetni technice.
Kazdé pfirozené ¢islo n muze byt kédovano bindrni reprezentaci:

k
RF(n) =) biFi;1,
i=1

kde b; € {0,1}, k < n, F;,2 < i < k je i—té Fibonacciho ¢islo. Tato re-
prezentace neobsahuje dvé jednicky vedle sebe (jsou nahrazeny jednou na
vy$Sim ,Fadu”).
Fibonacciho kéd!? ¢sla n je:
F2(n) = bobybgbs . .. by,
kde bob1babs . . . by je reverzi reprezentace RF'(n).

Pro dekédovani ptivodniho éisla se odtrhne posledni jednicka a puvodni
¢islo se vypocte podle vzorce:

|cw|

> biFi,
i=1

kde F; je i—té Fibonacciho ¢islo a b; je i—ty bit v kédovém slové cw.

2.4 Fibonacciho kédy vysSich fada

Pro urychleni rastu Fibonacciho posloupnosti muze byt definice Fibonacciho
Cisel rozsifena pouzitim delsi posloupnosti ¢isel (k predchozich éisel) pro
vypocet Fibonacciho ¢isla. Tato ¢isla jsou nazyvana Fibonacciho ¢isla k-
tého fadu. Tato ¢isla byla intenzivné studovana V. Schlegelem.
Posloupnost Fibonacciho ¢isel tfetiho fadu (téZ nazyvana Tribonacci
numbers) za¢ind 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, 1705
Yamamoto a Ochi (1991) odvodili Fibonacciho kédy vyssich radu. Pro
jejich odvozeni je potfeba nejprve definovat Fibonacciho ¢isla vyssich fadu:

o I =0, jestlize ¢ <0,
o F/ =1, jestlize i =1,
o F/ =Y\ | FJ, jestlize i > 2.

Daéle ozna¢me S i-ty soucet Fibonacciho ¢isel stupné r:

7
Sy=> Fji>1
j=1

3Budeme jej oznacovat F?(n), protoze dile zavedeme Fibonacciho kédy zalozené na
Fibonacciho ¢islech vyssich fada

15

n RF(n) Fib?(n) | |Fib%(n)|
1 1 11 2
2 10 011 3
3 100 0011 4
4 101 1011 4
5 1000 00011 5
6 1001 10011 5
7 1010 01011 5
8 10000 000011 6
50 10100100 001001011 9
1 000 000 ... | 0810101010212 30
34 2113 8 5 3 2 1

Tabulka 2.1: Fibonacciho kédy pro mal ¢isla. Cislo n vznikne souétem RF
koeficientu nasobenych prislusnym Fibonacciho ¢islem, jak je zobrazeno na
poslednim Fadku. Vysledny kéd F'ib?(n) vznikne otodenim kédu RF(n) a
jeho prodlouZenim jednickou.

Dale oznacme M i-ty soucet soucti Fibonacciho ¢isel stupné r:
i
T _ T
M=) Sii>1
j=1

Vysledny binarni kéd stupné r je:
e Fib"(n) = 01771, jestlize n = 1
o Fib"(n) = 0Fib"(n — S;}), jestlize M ' <n < M/ }' + F !

o Fib"(n) = 1Fib" (n — S; 1), jestlize M '+ F/ P <n < M *

Priklad 2.3

Uréete Fib3(31). Pro uréeni Fibonacciho kédu tetiho fadu jsou dilezité Fi-
bonacciho ¢éisla druhého Fadu, jejich soucty a soucty téchto souctu (tzv. mega
soucty). Nejblizsi nizsi mega soudet M2 | je ¢islo 26. P¥islusné Fibonacciho
¢islo (F?) se nachazi na dalsim fadku a je to ¢islo 8. Protoze 26 + 8 > 31
bude vysledny kéd zac¢inat nulou a zbytek kédu bude Fib3(31 — 12), protoze
S? | = 12. Bereme tedy soudet ze stejného fadku jako mega soudet. Pokud
bychom kdédovali jednicku, odecitali bychom soucet z nésledujiciho fadku.
Lze tedy psat: Fib3(31) = 0Fib?(31 — 12) = 0Fib3(19).

16

n S2 M? Fib3(n)
1 1 1 011
2 2 3 0011
3 4 7 1011
4 7 14 0 0011
) 12 26 0 1011
6 20 46 1 0011
7 33 79 1 1011
8 54 133 0 0 0011
50 | 32951280098 | 86267571219 | 0 0 0 1 0 0011

'

2012 74 2 1

Tabulka 2.2: Fibonacciho kédy tfetiho fadu pro malé ¢isla. Vyznamové nuly
znaéi, ze do vysledného souétu se zapocitava Castecény soucet S2, jednicky
znaci, ze do vysledného souctu se zapocitava ¢asteény soucet z vyssi tirovné.

n| F21 82| M2|F3]S3| M| Fivd(n) | Fib*(n)
1| 1| 1] 1] 1| 1 1 011 0111
2| 1] 2 1| 2| 3 0011 | 00111
3| 2| 4| 7| 2| 4| 71 1011 | 10111
4| 3| 7| 14| 4| 8| 15| 00011 | 000111
5| 5| 12| 26| 7| 15| 30| 01011 | 010111
6| 8|20| 46| 13| 28| 58| 10011 | 100111
7| 1333 79| 2452|110 | 11011 | 110111
8| 21| 54| 133 | 44 | 96 | 206 | 000011 | 0000111

Tabulka 2.3: Fibonacciho c¢isla, jejich soucty a Fibonacci kédy tretiho a
¢tvrtého stupné pro mala ¢isla

Cislo 19 je vétsi nez 14 = MZ a zdroveii je mensi ¢ rovno &fslu 19 =
M? + F2, proto bude dal$i bit opét 0 a budeme odecitat S7 = 7. Tedy
Fib3(31) = 0Fib3(19) = 00Fib3(19 — 7) = 00Fib®(12).

Pro zakédovani &sla 12 jsou rozhodujici ¢isla 7= M2 a 10 = M3 + F2.
Protoze 12 je vice nez 10, bude dalsim bitem 1 a od ¢isla 12 se bude odecitat
S2 = 7. Stejnym postupem ziskdme vysledny kéd:

Fib*(31) = 0Fib®(19) = 00Fib3(12) = 001Fib3(12 — 7) = 001 Fib*(5) =
= 0010Fib>(3=5_2) = 00101 Fib(1—3_5) = 00101 011

Piiklad 2.4
Fib3(50) = 000100 011.

17

¢islo | unarni kéd | délka unarniho kédu
1

01
001
0001
00001

U W N =
U W N =

1 000 001 | (10000009 1000001

Tabulka 2.4: Priklad unarniho kédu

Délka Fibonacciho kédu stupné r je Lppr(n) =i+7r —1, 1\427"__11 <n<
Mt
H
Z Fibonacciho kédu Fib"(n) = byby,_1 ... bab 01771 1ze é&islo n dekédo-
vat pomoci:

m
n=1+ ZS{;&.
i=1

Priklad 2.5

000100011 — 1+ (871, 0+ S5+ 5731 +Stuo+S2+53) =14+ (1+
247+ 7412+ 20) = 50. Tabulka 2.3 ukazuje piiklady ¢isel potFebnych pro
vypocet Fibonacciho ¢isel r-tého stupné.

2.5 Unarni kéd

Unérni kéd kéduje nezdporné celé ¢slo 4 pomoci bitového fetézce 0P~ 11.
Tento kdd je optimélni pro pravdépodobnostni rozdéleni splnujici

p(i) =270+,

Priklady unarniho kédu pro mala ¢isla ukazuje tabulka 2.4.

2.6 Golombovo kdédovani

Golombovo kédovani je pojmenovano po svém tvirci Solomonu Wolfu Go-
lombovi, ktery toto kédovani predstavil v roce 1966. Toto kédovani je opti-
malni pro zdrojové jednotky s geometrickym rozlozenim, tedy malé hodnoty
jsou mnohem vice pravdépodobnéjsi nez vyssi hodnoty.

Pouziva nastavitelny parametr b pro rozdéleni vstupni hodnoty na dvé
¢asti: vysledek po déleni ¢islem b, a zbytek po tomto déleni.

~1
q=Lnb Js r=n—gb-1

18

¢islo b=3 b=5

1 0]0 0]00

2 0[10 0/01

3 0[11 0[10

4 10/0 0[110

5 10/10 0[111

6 10[11 10/00

7 1100 10/01

8 110|10 10[10

1 000 000 | 13333330|0 | 11999990111

Tabulka 2.5: Piiklady Golombovych kéda pro dva rizné parametry b = 3 a
b=5

Prvni ¢asti kddu je unarni kéd ¢isla g + 1 (zde jsou zaménény jednicky a
nuly). Néasleduje zbytek po déleni v zkraceném bindrnim kédovani. Vybér
b = 3 generuje tfi mozné zbytky od 0 do 2, které jsou zakédovany pomoci
fetézcu 0, 10 a 11. Pro volbu zbytku 5 vznikaji zbytky od 0 do 4, které jsou
postupné kédovany fetézci 00, 01, 10, 110 a 111.

Tabulka 2.5 ukazuje Golombovo kédovani pro dvé rizné hodnoty koefi-
cientu b (3 a 5). Obé ¢asti kédu jsou v tabulce 2.5 oddéleny symbolem |. Je
vidét, ze tento kéd je nepouzitelny pro velké cisla.

2.7 Riceovo kdédovani

Toto kédovani poprvé popsal Robert Rice v 1979. Jde o specialni ptipad
Golombova kédovani, kde je koeficient b volen jako mocnina dvou. Tento
kodd je velice rychle kédovatelny a dekédovately na pocitacich. Pro ulozeni
zbytku lze s vyhodou pouzit blokovy kéd.

Priklad 2.6

Pomoci Riceovych kédii s parametry 4 a 16 zakédujte ¢islo 50. Cislo 50 lze

zapsat jako 1+ 12-4 4+ 1, vysledny kéd je Rices(50) = 1111111111110|01.
Obdobné pro koeficient 16 dostavame 50 = 1 + 3-16 + 1, Rice6(50) =

1110|0001

2.8 Eliasovy kody

Tyto kédy jako prvni popsal sovétsky védec Levenstein (1968), ale pozdéjsi,
Eliasuv (1975) popis je zejména v anglické literatufe citovan.
Eliasuv «(i) kéd je unéarni kéd.

19

Cislo @ ~(7) v (%) o

1 1 1 1

2 001 010 0010

3 011 011 0011

4 00001 001 00 01100

5 00011 001 01 01101

6 01001 001 10 01110

7 01011 001 11 01111

8 | 0000001 0001 000 00001 000

1 000 000 39bits | 0121 13010%10%210° | 000010011 12010%10%10°6

Tabulka 2.6: Piiklady Eliasovych v, 4" a ¢’ kédu pro mala ¢isla

Piiklad 2.7
Eliastiv (i) kéd ¢isla 50 je 0491, Jeho délka je 50 bitd.

Eliastuv (i) kéd pfirozend bindrni reprezentace €isla i zacinajici prvni
vyznamnou jednic¢kou. Tento kdd neni jednoznac¢né dekddovatelny, napr.

B(6) = 110 = (1)5(2).

Piiklad 2.8
Eliasuv (i) kéd ¢isla 50 je 110010. Jeho délka je 6 bitu. Tento kéd neumi
reprezentovat ¢islo 0.

Eliasuv (3'(i) kéd vznikne z Eliasova (3(i) kédu odtrzenim nejvyznam-

N 4

e 7(0)=c¢
o 3(20) = F(0)0
o B(2i+1)=B(i)]
Eliasuv '(i) kéd je nejednoznaény stejné jako (3(i) kéd.

Priklad 2.9
Eliasuv 3'(7) kéd pro ¢islo 50 je 10010. Jeho délka je 5 bitu.

Eliasiv ~(i) kéd zapisuje jednotlivé bity 3'(i) kédu a kazdy uvede
bitovym priznakem. Posledni priznak je jednicka, ostatni jsou nuly. Na tento
kod se da nahlizet jako na blokovy kéd s oddélovacem, kde délka bloku je
jedna.

Eliasiv 7/(i) kéd vznikne permutaci (i) kédu, s bitovymi p¥iznaky
tvoricimi unarni kéd umisténymi pied datové bity (5’(7) kéd).

Formalné:

20

7' (@) = a(I8(H))F'(0)

Priklad 2.10
Pomoci Eliasova /(i) kédu zakdédujte éislo 38.

1. Nejprve prevedeme cislo 38 do dvojkové soustavy a odtrhneme prvni
jednicku, ¢imz vytvoiime Eliasuv 3'(38) kdd, tedy 00110.

2. Pocet bitu tohoto kédu je 5, a(5) = 00001. Vysledny Eliasuv +/(7) kéd
vznikne zFetézenim obou kédi. Vysledny kéd je:

00000100110
——

Vsimnéte si, ze vysledny kéd ma lichou délku, uprostied se nachazi
jednicka, kterd uzavird unarni kéd délky druhé Gasti a zaroven muze
byt povazovana za prvni bit dvojkového zapisu puvodniho éisla.

Priklad 2.11
Mé¢jme binarni fetézec 000000100100101110001. ... Predpokladejme, ze re-
prezentuje posloupnost ¢isel v 7/ kédu. Dekdédujte prvni ¢islo.

1. Kdyby fetézec zacinal jednic¢kou, pak je tato jednicka celym kédem a
reprezentuje Cislo 1.

2. V naSem pripadé kéd zacina cislici 0, proto spoc¢teme pocet nul pred
prvni jednic¢kou, zde jich je Sest.

3. Tento pocet zvétsime o jedna (zde 7) a tolik bitu vyjmeme(1001001) a
prevedeme z dvojkové soustavy. Puvodni ¢islo bylo 73 a jeho kéd byl
0000001001001.

Dalsi piiklady v a v/ kédu ukazuje tabulka 2.6. Tyto kédy reprezentuji
¢islo i pomoci 2[log(i)] bitu.

Eliasuv ~(i) kéd je dlouhy pro velka éisla, coz je zpusobeno reprezentaci
délky (' kédu pomoci a (unérniho) kédu. Eliasiv (i) kéd pouziva pro
délku 3 kédu v kéd. Formalné:

a(i) = (|B(1)])B' (i)

Obdobné Eliasuv §’'(i) kéd pouzivé pro délku 8 kédu ' kéd. Formalné:
&'(i) = ~v(1B@H)])B' (2)

Priklad 2.12

Eliasuv /(i) kéd pro ¢islo 50 je 000001 10010. Jeho permutaci vznikne
Eliasuv v(50) kéd, 01000001001. Délka kazdého tohoto kédu je 11 bitu.

21

¢islo @ w(7) W' (7)

1 0 0

2 100 010 0

3 110 0110

4 101000 100 0

7 101110 1110

8 11 1000 0 011 1000 0

15 1111110 011 1111 0

16 10 100 10000 0 100 10000 0

1 000 000 | 10 101 10011 140104102106 0 | 101 10100 14010410210 0

Tabulka 2.7: Piiklady Eliasovych w a w’ kédu

Eliasuv ¢’(1000000) je 000010011 1110100001001000000 a m4a délku 28
biti misto 39 bitu (1000 000).

Dalsimi Eliasovymi kédy jsou Eliasuv w a w’ kéd. Piiklady téchto kédu
ukazuje tabulka 2.7. w(i) kéd je ukonéen nulou. Tuto nulu predchazi G(i)
kéd cisla i. Dalsi ¢asti vysledného kédu jsou (8 kédy reprezentujici délku
nasledujicich ¢asti. Tato rekurze kon¢i prvni (nejkratsi) ¢asti, ktera je dlouha
2 bity (w) popfipadé 3 bity (w’). Tyto reprezentace jsou pro velkd ¢isla
uspornéjsi nez ostatni Eliasovy kédy, napf. w(1 000 000) zabird 30 bitu a
w’(1 000 000) pouze 28 bitu.

Priklad 2.13
Eliasuv w(i) kéd éisla 50 je 10 101 110010 0. Eliasuv w’(50) je 101 110010 0.
Eliasuv w(50) zabird 12 bitu, délka w’(50) kédu je 10 bitu.

Priklad 2.14
Dekédujte posloupnost ¢isel uloZenou v fFetézci

2.9 Trojkovy kod s oddélovacem

Vsechny prezentované kédy pouzivaly binarni kédovani. Pouzijme pary bita
pro reprezentaci ¢tyf hodnot, prvku mnoziny {0, 1,2, oddélovac¢}. Pak po-
moci bindrniho kédu muzeme lehce reprezentovat posloupnost trojkovych
¢isel oddélenych oddélovacem. Tento kéd je oznacovan trojkovy kdéd s od-
délovadem (ternary comma code). S touto myslenkou piisel v roce 1993
Australan Peter Fenwick. Tabulka 2.8 ukazuje p¥iklady trojkovych kédu s
oddélovacem.

Priklad 2.15
Pomoci trojkového kédu s oddélovadem zakddujte ¢islo 52. Trojkovy kdod

22

o
=
o

¢islo i | trojkovy kéd(i) s oddélovacem

)

)

0
1
2,
10,
11,
12,
21

0 g O U i Wi
(=2 e e B e R

)

1 000 000 1212210201222, 28

Tabulka 2.8: Piiklady trojkovych kéda s oddélovacem

\ kéde|[1]2[5]10] 102] 10°] 10| 10° | 10°
binarni [1[2[3] 4] 7] 10 14 17 20
Golombivy,—s [2 [3[4] 5] 35| 335| 3335 [33335 | 333335
Golombitvy—s | 3 |3 |4 | 5| 23| 203 | 2003 | 20003 | 200003
Fibonacciho | 2 |3 | 5| 6| 11| 16 18 23 30
undrni | 2 | 3| 6 | 11 [101 | 1001 | 10001 | 100001 | 1000001
Eliasivy |13 |5 | 7| 13| 19 27 33 39
Eliasiv ¢’ |14 |5| 8| 11| 16 20 25 28
Eliasivw | 1 3|6 7| 13| 17 21 28 31
Fibd |3]4|5] 6| 10| 15 19 24 29

Fib* |4]5]6| 7| 10| 14 18 22 25

trojk. sodd. |4 |4 6| 8| 12| 16 20 24 28

Tabulka 2.9: Délky kédovych slov pro vybrané ¢isla

s oddélovadem je posunuty o 2, proto nejprve pievedeme ¢islo 50 (50 =
52 - 2) do trojkové soustavy (1212) a pfidame oddélova¢ Délka vysled-
ného kédu je 10 biti, protoZze pro kédovani jednotlivych symbola abecedy
{0,1,2,0ddélova¢} musime pouzit dvou bitu.

2.10 Porovnani kédua

Tabulka 2.9 ukazuje délky kédu pro reprezentaci celych nezapornych cisel.
Nejlepsi je samoziejmé binarni kdd, ale neni jednoznac¢né dekddovatelny.
Unérni a Golombovy kédy jsou pouzitelné pro malé cisla, jejich délka vy-
razné roste s rostouci zdrojovou jednotkou.

23

2.11 Priklady na cviceni

Priklad 2.16

Meéjme zpravu obsahujici kladné celd ¢isla. Urcete, kolik bitu by musel mit
blokovy kéd, aby mohl reprezentovat tuto zpravu, pokud vime, ze nejvétsi
¢islo ve zpravé je

1.1,
2. 16,
3. 524,

4. 3 333 333.

Priklad 2.17
Odhad poctu C¢astic ve znamém vesmiru je po nékolik malo poslednich de-
setileti 1082. Kolik biti by musel mit blokovy kéd, abychom mohli oéislovat
kazdou ¢astici?

Priklad 2.18
Vypliite tabulky v ptiloze.

Priklad 2.19
Méjme tyto zpravy obsahujici posloupnosti ¢isel:

1.0,1,1,0,2,0,0,0,0,2,0,1,3,1
2.1,2,3,4,5,6,7,8,9, 10
3. 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Zjistéte kolik biti zabere zakédovani téchto zprav pomoci téchto kddo-
vani:

1. unéarniho,

2. blokového,

3. trojkového s odd€lovacem,
4. Fibonacciho,

5. Fibonacciho tretiho fadu,

6. Fibonacciho ¢tvrtého radu,

7. Eliasova -,

24

8. Eliasova &',
9. Eliasova w,
10. Eliasova w'.

Které kédovani je nejlepsi pro jednotlivé zpravy?

2.12 Dalsi priklady

Priklad 2.20

Princip kédovani ¢isel pomoci jiné ¢iselné soustavy uplatnény u trojkového
kédu s oddélovacem lze pouzit i pro dalsi ¢iselné soustavy. Jako zaklad pou-
zijte soustavu o zékladu 7. Pro zakédovani jednotlivych ¢éislic a oddélovace
pouzijte tento kod:

‘ hodnota ‘ kod ‘ hodnota ‘ kéd ‘

0 000 4 100
1 001) 101
2 010 6 110
3 011 odd. 111

Zakédujte ¢isla od nuly do 20 a dale ¢isla 100, 1000 a 1000 000.

Priklad 2.21
Vys8e zminény princip lze pouzit pro binarni abecedu rozsifenou o oddélovac.
Porovnejte nasledujici kédy:

‘ hodnota ‘ kéd1 ‘ kod2 ‘
0 0 01
1 10 00
oddélovac 11 1

Zakédujte ¢isla od nuly do 20 a dale ¢isla 100, 1000 a 1000 000.

Priklad 2.22
Ve cviceni 1.19 jsme méli ¢ast ¢ernobilého obrazku:

X = bbbbwwwwwwbbbbbbbwwwwwwwwwwwbbbbbbbbbbbbwbbbbbuwbbuwbbbbb.

Protoze se pravidelné stiidaji ¢asti ¢erné a bilé, lze pouzit RLE kompresi,
kterd bude kédovat pouze délky jednotlivych tseku. Vysledna posloupnost
bude X' =4,6,7,11,12,1,5,1,2,1,5. Jaké kédovani ¢isel je pro tuto zpravu
nejvhodnéjsi a jakého kompresniho poméru timto kédovanim dosdhneme?

25

4 Statistické metody komprese dat

Statistické metody komprese dat vychézeji z modelu prvni Grovné, ktery
predpoklada, ze pravdépodobnosti zdrojovych jednotek ve zpravé jsou ruzné
a nezavislé na vyskytu okolnich symbola.

4.1 Shannon-Fanovo kédovani

V roce 1949 publikovali na sobé nezavisle Claude Elwood Shannon s Warre-
nem Weaverem a Robert Mario Fano metodu na vytvoreni prefixového kédu
proménné délky pro mnozinu symbolu a jejich ¢etnosti. Tato metoda je ozna-
¢ovana jako Shannon-Fanovo kédovani. Zpusob vytvoreni Shannon-Fanova
kédu popisuje algoritmus 4.1.

Algoritmus 4.1 Shannon-Fanovo kédovani

Vstup: vstupni text nad abecedou zdrojovych jednotek S;

Vystup: kéd K = (S,C, f), kédové slovo pro kazdy symbol ze vstupniho
textu;

pro kazdé x € S : f(x) < ¢;

zjisti Cetnosti jednotlivych symboli;

symboly sefad do neklesajici posloupnosti s podle jejich ¢etnosti;

Split(s);

Procedura Split(s):
1: if |s| > 1 then
2: rozdél s na s; a sy se souctem Cetnosti nejblizsimi poloving;
for all z € s; do
f() — f(x)0
end for
for all x € s; do
flx) = flx)
end for
Split(s1);
10: Split(SQ);
11: end if

Priklad 4.1

Pomoci Shannon-Fanova kédovani zakédujte zpravu X = abede fa faaacaa.
Shannon-Fanuv kéd je reprezentovan stromem vybudovanym nad symboly
vstupni abecedy serazenymi do neklesajici posloupnosti podle jejich ¢etnosti.
Tento strom vznikne rekurzivnim délenim této posloupnosti na dvé casti s
Cetnostmi nejblizsimi poloviné. Vysledny strom je zobrazen na obrazku 4.1.
Jednotlivé kroky déleni jsou znézornény pomoci teckovanych car.

26

Déleni ¢islo tii a ¢tyfi mohla byt provedena v opa¢ném poradi, na délku
vysledného kédu nema toto poradi vliv.

Obrézek 4.1: Shannon-Fanuv kéd pro vstupni text z pfikladu 4.1

Tento strom je vhodny pro dekdédovani, neni vSak prili§ vhodny pro ko-
dovéni, pro které je lepsi prevodni tabulka zobrazena v tabulce 4.1.

‘ Symbol, z € S ‘ pocet ‘ Shannon-Fanuv kéd, f(x) ‘

a 7 1

b 1 0000
c 2 010
d 1 0001
e 1 001
f 2 011

Tabulka 4.1: Pfevodni tabulka pro Shannon-Fanuv z pfikladu 4.1

Vstupni text X = abedefafaaacaa je zakédovan do posloupnosti Y =
1 0000 010 0001 001 011 1 011111 010 1 1. Délka vysledného kédu je 30
bitt. K této délce by bylo nutné pridat rezii vzniklou pii ukladani kédového
stromu, popfipadé informaci nutnych k jeho vytvoreni.

4.2 Statické Huffmanovo kddovani

David A. Huffman v roce 1952 publikoval metodu na vytvotfeni kédi s mi-
nimalni redundanci. Tato metoda vytvari kddovaci strom opa¢nym smérem
nez Shannon-Fanova metoda, tedy smérem od spoda nahoru. Tento strom je
nazyvan Huffmanovym stromem. Algoritmus 4.2 popisuje vytvareni tohoto
stromu.

27

Algoritmus 4.2 Statické Huffmanovo kédovani

Vstup: n zdrojovych jednotek s pravdépodobnostmi p(i), 1 < i < n,
S (i) = 1.
Vystup: n kédovych slov, automat M = (@, {0,1}, 6, qo, F).
1 Q«— 0; F «— 0
2: fori=1tondo
3: vytvol novy stav g;;
4 Q—QU{g}l F— FU{a}; p(a) « p(i);
5: end for
{Stav (list Huffmanova stromu) ¢; zdrojové jednotky i je oznacen svou
pravdépodobnosti p(i).}
: k—n;
while k£ > 2 do
8: mnajdi dva stavy r, s; r # s s nejmensimi pravdépodobnostmi p(r),
p(s);
9: vytvol novy stav g;
10: Q<+« QU{q}; p(q) < p(r) + p(s);
11: 66— 0U{d(q,0) =1, d(q,1) — s};
12 p(r) < 0; p(s) < 0;
13: if k=2 then
14: oznac stav g jako pocatecni;
15: end if
16: k«—k—1;
17: end while
18: kédové slovo f(i) pro kazdou zdrojovou jednotku i je oznaceni pfechodu
na cesté od pocatecniho stavu do stavu ¢q;, 1 <7 < n;

NS

Misto pravdépodobnosti zdrojovych jednotek lze pouzit pocty opakovani
zdrojovych jednotek. Vysledek bude stejny.

Priklad 4.2
Méjme text X = stré _prst_skrz_krk. Zakddujte jej s pouzitim statického

Huffmanova kédovani. Zhodnotte kompresi. Nasledujici tabulka ukazuje shr-
nuti zdrojovych jednotek s jejich frekvencemi ve zdrojovém textu.

28

‘ Zdrojova jednotka ‘ frekvence ‘ Huffmanuv kéd ‘
3 101

100
01

0000
0001
0010
110
111

0011

S|+ ®»

¢

ENI RS S

|
g [yJU) Y iy rc] RS NN N Y

Tato tabulka je vyuzita pii konstrukci Huffmanova stromu. Prvnim kro-
kem konstrukce je vytvoreni stavu pro zdrojové jednotky. Tyto stavy jsou
ohodnoceny prislusnymi pocty opakovani.Vysledny Huffmanuv strom uka-
zuje obrazek 4.2. Pocty opakovani jsou znazornény pomoci malych, podtr-
zenych Cisel. Vysledné kédy vzniknou prectenim cesty od pocatecniho stavu
do listu odpovidajiciho zdrojové jednotce.

Obrézek 4.2: Huffmanuv strom vznikly algoritmem 4.2. MnozZina zdrojovych
jednotek je S = {s,t,r,¢, ,p, 2, k,.}

Zdrojovéa zprava X = strc_prst_skrz_krk bude s pouzitim kédovaci ta-
bulky pfevedeno na zpravu Y = 1011000100001110001011011001111011100
10010111110011100011.

Délka tohoto kédu je 57 bitu. Predpokladejme, Ze pro puvodni zpravu
byl pouzit standardni osmibitovy kéd. Potom je délka puvodni zpravy 19

29

bytu, 152 biti. Zanedbejme potiebu ulozeni Huffmanova stromu, pak bude
kompresni pomér cr = 155—72 =0,375.

4.3 Modelovani komprese dat

Staticky model komprese dat predpokldda, ze kodér i dekodér pouzivaji
stejny model dat, v nasem piipadé Huffmanuv strom. Toho lze dosdhnout v
ptipadé, ze je tento model pro velké mnozstvi dat neménny, napfiklad pro
Ceské texty ve velké knihovné.

Castéjsim pi¥ipadem je nutnost pfizptisobeni modelu vstupnim datiim.
Pak je nutné provést jeden pruchod vstupnim textem, abychom napocitali
Getnosti jednotlivych symboli, které slouzi pro konstrukci modelu - Huffma-
nova stromu. Druhym priuchodem se provede komprese dat. Tento model je
oznacovan jako semiadaptivni.

Porovnani obou typl modelovani znazoriuje obrazek 4.3

%Db Statické modelovani
model

data—> — datové dloziste, — —» data
komunikaéni kandl

Semiadaptivni modelovan{

TS
.7 , model model
/ \ :
\ A

!
|

!

N ~
NS _ -

v PR -
data—» — datové dloziste, — —» data
komunikaéni kandl

Obrazek 4.3: Statické a semiadaptivni modelovani

Dalsi moznosti je vytvareni modelu béhem ¢teni vstupnich dat, model
se béhem komprese vyviji. Dekodér vytvaii model na zédkladé dekédovanych
dat. Tento model je adaptivni. Adaptivni variantou Huffmanova kédu se
zabyva nasledujici kapitola.

4.3.1 TUlozZeni Huffmanova stromu

Priklad 4.3
Predpokladejme semiadaptivni verzi statického Huffmanova kédovani z pri-
kladu 4.2. Zakédujte pfislusny Huffmantv strom.

1. Prvni moznosti pro preneseni Huffmanova stromu je preneseni zdrojo-

vych jednotek spolu s jejich ¢etnostmi. Dekodér by mél dostatek infor-
maci pro jeho vytvofeni. Vysledny kdd by zac¢inal poctem zdrojovych

30

jednotek nasledovany péry (zdrojové jednotka, pocet opakovéani). Pro
kédovani éisel pouzijme Fib® kéd. Vysledek bude Fib®(9) ¢Fib3(1)
p Fib3(1) z Fib®(1) . Fib3(1) r Fib3(4) t Fib3(2) s Fib3(3) k Fib3(3)
_ Fib3(3). P¥i pouziti osmi bitli na jednu zdrojovou jednotku bude
délka kédu pro Huffmanuv strom 9-8 + 39 = 111 bitu. Tento zpusob
je velmi neefektivni pro velké hodnoty Cetnosti jednotlivych symboli.

ey

do bitového proudu bez potieby ukladani po¢tu opakovani. Implemen-
tace zaCind poctem zdrojovych jednotek nasledovanych jejich vyctem.
Poradi musi odpovidat jejich umisténi v Huffmanové stromu, zleva do-
prava. Dale nésleduje rekuzivni vypis ohodnoceni hran stromu, kdy se
nejprve vypisuje levy podstrom a potom pravy. Nas priklad produkuje
nasledujici vystup Fib®>(9)¢ p z. r t s k 0000110111001101. Vlastni
struktura stromu zabird pouze 16 biti. Celkova délka kédu pro strom
je 5+ 9-8 + 16 = 93 bitt. Vysledny kompresni pomér je 571*5'293 = 0.99.
S rostouci délkou kédované zpravy klesa neblahy vliv nutnosti ulozeni
Huffmanova stromu na vysledny kompresni pomeér.

4.4 Adaptivni Huffmanovo kédovani

Adaptivni verzi Huffmanova kédovani poprvé na sobé nezavisle navrhli Faller
(1973) a Robert G. Gallager (1978). Donald E. Knuth v roce 1985 tento al-
goritmus vylepsil, vyslednéd varianta adaptivniho Huffmanova kédovani je
nazyvana FGK algoritmem.

Jeff Vitter tuto metodu v roce 1987 vylepsil (po zakédovani jednoho
symbolu dojde nejvyse k jedné tpravé kédového stromu oproti az logan).

FGK algoritmus adaptivniho Huffmanova kédovani popisuje algoritmus
4.1. Cely algoritmus se opird o vyznamnou vlastnost Huffmanovych stromi,
kterou je sourozenecké vlastnost. Tato vlastnost je pro binarni stromy defi-
novana takto:

e kazdy uzel kromé kofene ma sourozence,

e existuje usporadani uzlu v potfadi neklesajictho ohodnoceni tak, Ze
kazdy uzel sousedici v seznamu s néjakym uzlem je jeho sourozenec
(levi synové na lichych mistech a pravi synové na sudych mistech v
seznamu).

Takové usporadani je na obrazku 4.4 v ¢asti III zobrazeno lomenou tec-
kovanou sipkou.

Priklad 4.4
Text X = abbaacddc zakédujte pomoci adaptivniho Huffmanova kédovani.

31

Algoritmus 4.3 Adaptivni Huffmanovo kédovani
Vstup: vstupni text nad abecedou zdrojovych jednotek S;
Vystup: zakdédovany text;

1: vytvof strom obsahujici pouze uzel zero;

2: while neni zakédovan cely text do

3: ¢« dalsi symbol vstupniho textu;

4: if prvni vyskyt symbolu ¢ then

5: koéd prodluz o kéd uzlu zero;

6: zakéduj c;

7: uzel zero nahrad novym uzlem s nésledniky zero a novym uzlem u
pro symbol ¢, ohodnoceni u « 0;

8: aktualizujStrom(u);

9: else

10: kéd prodluz o kéd uzlu ¢;

11: aktualizujStrom(c)

12: end if

13: end while

Procedura aktualizujStrom (uzel u):

1: while u neni kofen do

2: if 3 uzel v’ se stejnym ohodnocenim vyse v poradi sourozenct, pokud
jich je vice, vyber ten nejvyse polozeny then

3 prohod uzly u a u’;

4 zvy$ ohodnoceni u o 1;

5 u «— predek(u);

6: aktualizujStrom(u);

7. end if

8: zvys ohodnoceni u o 1;

9: end while

Kdédovat budeme pomoci FGK varianty popsané algoritmem 4.3. Celé kédo-
vani za¢ind s Huffmanovym stromem obsahujicim pouze uzel zero. Nejprve
je do vystupu poslan kéd prvniho znaku, pro ktery je pouzit néjaky jedno-
zna¢né dekédovatelny kdd, na kterém se dohodne kodér i dekodér. Takovym
kédem je naptiklad ASCII kéd.

Po odeslani symbolu a je upraven Huffmanuv strom nahrazenim uzlu
zero novym uzlem se dvéma potomky, uzlem zero a novym uzlem odpovida-
jicim symbolu a a s ohodnocenim (¢etnosti symbolu) 1. Situace po zakédo-
vani symbolu a ukazuje obrazek 4.4, ¢ast II. Ohodnoceni uzlu je zobrazeno
pomoci podtrzeného ¢isla u uzlu.

Dalsim symbolem vstupniho tetu je symbol b. I toto je zatim nezakddo-
vany symbol, proto je do vystupu posldn kéd uzlu zero nésledovany kédem
nového symbolu. Opét dojde k rozdéleni uzlu zero.

32

Zero

Obrazek 4.4: Prvni ¢tyti kroky kédovani FGK adaptivniho Huffmanova ké-
dovéni retézce X = abbaacddc z prikladu 4.4

Dalsim symbolem ve vstupu je opét b. Tento symbol je jiz ve stromu
obsazen, do vystupu je poslan jeho kdéd, tedy 01. V této fazi kédovani do-
jde k prohozeni uzla. JelikoZ jsme kédovali symbol b, budeme u tohoto uzlu
zvySovat ohodnoceni, ale musime zajistit, ze vysledny strom neporusi souro-
zeneckou vlastnost. Usporddani uzlu do neklesajici posloupnosti je zobrazeno
v ¢asti III obrazku 4.4 teckovanou lomenou ¢arou. Toto uspoféddani véetné
Cetnosti je zero0, bl, q11, al, g22. Posledni vkladany symbol je b, jeho cet-
nost je 1. V této posloupnosti napravo od symbolu b jsou dva uzly s cetnosti
1, uzel ¢1 a a. Vybereme ten blizsi kofeni, tedy a a oba uzly prohodime.
Navysime ohodnoceni uzlu b a pfesuneme se k jeho predkovi. Tim je koien
stromu, aktualizace stromu konci navysSenim jeho cetnosti.

Obrazek 4.5: Dalsi kroky kédovani FGK adaptivniho Huffmanova kédovani
fetézce X = abbaacddc z prikladu 4.4

Obdobnym zpusobem jsou zakdédovany dalsi t¥i symboly vstupniho fe-
tézce. Modifikace Huffmanova stromu béhem téchto kroku ukazuje obra-
zek 4.5. Zavér kédovani shrnuje obrazek 4.6. Vsimnéte si, ze ve fazi IX dojde
béhem kédovani jednoho symbolu k dvéma zdméndm podstromt. Varianta
FGK pripousti moznost az logan zédmén béhem kédovani jednoho symbolu.

33

Obrézek 4.6: Posledni kroky kédovani FGK adaptivniho Huffmanova kédo-
vani fetézce X = abbaacddc z prikladu 4.4

Priklad 4.5
Zhodnotte dosazeny kompresni pomér v piikladu 4.4.

Vstupni text je X = abbaacddc, jeho délka 9 symbolu. Pti pouziti rozsi-
feného ASCII kédu s osmi bity na symbol je vysledna délka vstupniho textu
9-8 = 72 bitu.

Zakédovana zprava je Y = a0b01010100c000410011101. Pokud pro kédo-
vani symbola pouZijeme stejny kdd jako pro vstupni text, bude délka zaké-
dované zpravy 4-8 + 20 = 52 bitu. Vysledny kompresni pomér je % =0,72.

4.5 Priklady na cvi¢eni

Priklad 4.6
Méjme zpravu s nasledujicimi ¢etnostmi jednotlivych symbolu:

‘ Symbol, x € S ‘ pocet ‘

a 105
b 49
c 42
d 42
e 35

Vypoctéte entropii jednotlivych symbola.

Pro danou zpravu vytvoite Shannon-Fanuv a Huffmanuv kéd. Porov-
nejte jejich redundanci nad danou zpravou. Jaké jsou kompresni pomeéry
pro oba kdédy. Diskutujte moznosti implementace obou stromu.

Priklad 4.7

Predpokladejme kédy z prikladu 4.6. Dekddujte tento fragment zpravy Y =
01010 01110 10111 00101 10110 11101 00101 00000 01011... Jak se zméni
dekddovand zprava, pokud zaménime prvni bit za jednicku?

34

Priklad 4.8
Méjme zpravu s nasledujicimi pravdépodobnostmi jednotlivych symbolu:

‘ Symbol, x € S ‘ pocet ‘

a 0.35
b 0.17
c 0.17
d 0.16
e 0.15

Vypoctéte entropii jednotlivych symbola.

Pro danou zpravu vytvorte Shannon-Fanuv a Huffmanav kéd. Porov-
nejte jejich redundanci nad danou zpravou. Jaké jsou kompresni poméry
pro oba kédy. Diskutujte moznosti implementace obou stromu.

Priklad 4.9
Zpravu X = mamamelemaso zakédujte pomoci adaptivniho Huffmanova
kédovani. Zhodnotte dosazenou kompresi.

Priklad 4.10
Kéd Y = 510a0100¢110 dekédujte pomoci adaptivniho Huffmanova kédo-
vani. Zhodnotte dosazenou kompresi.

Priklad 4.11

Zpravu X = babaaabba zakdédujte pomoci adaptivniho Huffmanova kédo-
véani. Zhodnotte dosaZenou kompresi. Stejnou zpravu zakédujte pomoci sta-
tického Huffmanova kédovani. Porovnejte kompresni pomeéry.

Priklad 4.12

Pomoci adaptivniho Huffmanova kédovani zakédujte zpravu X = a3Cbbe.
Zhodnotte dosazenou kompresi. Stejnou zpravu zakédujte pomoci statického
Huffmanova kdédovani. Porovnejte kompresni poméry.

4.6 Dalsi priklady

Priklad 4.13
Pomoci Huffmanova kédovani zakédujte zpravu X = abedefafaaacaa. Po-
rovnejte délku vysledného kédu s Shannon-Fanovym kédem z ptikladu 4.1.

Priklad 4.14
Predpokladejme, Ze vstupni abeceda mé 32 symbola. Jaka je nejmensi délka

vstupni zpravy, aby nad ni vytvofeny Huffmantv strom mél maximalni
hloubku (odpovida délce nejdelsiho kédu):

1. 5,

35

4. 317

Priklad 4.15

Zpravu X = telemelesele zakodujte pomoci adaptivniho Huffmanova ko-
dovéani. Zhodnofte dosazenou kompresi. Stejnou zpravu zakddujte pomoci
statického Huffmanova kédovani. Porovnejte kompresni pomeéry.

36

5 Aritmetické kodovani

5.1 Statické aritmetické kédovani

Huffmanovo statické kédovani je optimalni pokud pravdépodobnosti jednot-
livych symboli zdpornymi mocninami ¢isla dvé. Poté jsou entropie jednotli-
vych symboli celoc¢iselné a odpovidaji délce ptislusného Huffmanova kédu.

Pokud jsou vSak pravdépodobnosti jednotlivych symbolu nejsou zépor-
nymi mocninami ¢isla dvé, tak dochézi pfi kédovani jednotlivych symbola
ke vzniku redundance.

Priklad 5.1
Uréete entropii symbolu a s pravdépodobnosti p(a) = 0, 3.

Tento symbol ma entropii H(a) = —loga(p(a)) = 1,74. Pokud bychom
pro tento symbol pouzili kéd o délce 2 bity, byla by redundance vznikla
timto symbolem 0, 26 bitu.

Tuto redundanci lze snizit pouzitim aritmetického kédovani, které neko-
duje jednotlivé symboly, ale pouzivé jeden kéd pro zakédovani celé zpravy.
Kédem celé zpravy je pak jedno éislo z intervalu < 0;1). Postup kédovani
ukazuje algoritmus 5.1.

Algoritmus 5.1 Aritmetické kédovani

Vstup: vstupni text nad abecedou zdrojovych jednotek S;
Vystup: zakédovany text;
1: do vystupu uloz pravdépodobnosti nebo ¢etnosti symboli;
2: nastav interval [«< 0;1);
3: while neni zakédovan cely text do
4: precti dalsi symbol ¢;
5: Rozdél interval I na podintervaly, jejichz velikosti jsou tmérné prav-
dépodobnostem symboli;
I — podinterval odpovidajici c;
7: end while
8: Vystupem je libovolné ¢islo z intervalu I;

2

Prestoze vysledkem kédovani je libovolné ¢islo z posledniho intervalu, je
jesté potreba zakddovat informaci o ukonceni kédu, protoze dekodér musi
védét, kdy ma skoncit s délenim intervalu. Existuji dvé varianty feseni to-
hoto problému:

1. pred vlastnim kédem cdisla z intervalu je néjakym prefixovym kédem
zakédovan pocet symbola,

2. pouzit specialni symbol pro oznaceni konce vstupu. Tento symbol bude
mit nejnizsi pravdépodobnost. Pokud na néj dekodér narazi, pozné, ze
dekdédovani kondi.

37

Priklad 5.2

Méjme text nad abecedou A = {a, b, c}. Pravdépodobnosti jednotlivych sym-
bolu jsou p(a) = 0,6, p(b) = 0,1, p(c) = 0, 3. Ukazte jak se vytvafeji aritme-
tické kédy pro ruzné fetézce. Obrazek 5.1 ukazuje postupné déleni intervalu
< 0;1) na podintervaly.

I Ot e -1
aaa
aa 10,784
a aac
10.676
Lo aab 1 46y
ac
I AR - 0,46
044] L 0,4
ca
C
e 10,22
cC
01 do o 1o 018
) e 0,1
b be [
0 @ oreereeneee e L 0
bb

Obrazek 5.1: Déleni intervalu pfi aritmetickém kédovani

7 obrazku je zfejmé, ze velikost intervalu je pfimo timérna pravdépodob-
nostem odpovidajici zpravy. Symbol a zabira interval I(a) =< 0,4; 1), jehoz
velikost je 0,6. Oproti tomu symbol b zabira interval I(a) =< 0;0,1) o Sifce
0,1. Sitky intervalt klesaji s rostouci délkou zpravy, I(aaa) =< 0,784;1),
velikost 0,216; I(bbb) =< 0;0,001), velikost 0,001.

Prestoze sitka intervalu odpovida pravdépodobnosti zpravy, délka cisla
nemusi uplné presné zaviset na Sifce intervalu.

Nejkratsimi bindrnimi kédy éisel z intervalu < 0;1) jsou bindrni éisla
0,02 = 0 a 0,13 = 0,5. VSechna ¢isla z intervalu < 0;1) zac¢inaji 0, proto
tuto nulu nekédujeme. Jediny bit muze kédovat nasledujici zpravy:

| bit | ¢slo (dekadicky) | puvodni zprava |
0 0 b, bb, bbb, bbbb,. . .

1 0,5 a,ac, acc, acca . . .

38

Na druhou stranu pro zakédovani zpravy X = aaa je potteba tiech bita,
111, protoze 0,111 = £ = 0,875 €< 0,784; 1).

Priklad 5.3
Text X = abacaacbc zakédujte statickym aritmetickym kddem.

Text X rozsifime o ukoncovaci symbol, X’ = abacaacbc#. Pro spravnou
funkci aritmetického kodéru si spocitame pravdépodobnosti a kumulativni
pravdépodobnosti jednotlivych symbola. Ty nam poslouzi jako zaklad pro
déleni intervalu. Kumulativni pravdépodobnost zdrojové jednotky x v uspo-
fadani z1, T2, . .. 7|5 ziskdme podle vztahu

i—1
i =Y _pj
j=1

Tyto hodnoty zobrazuje nasledujici tabulka.

Symbol | ¢etnost | pravdépodobnost | kumulativni p. interval
x f(z3) i cp; I(x;)
a 4 5 =0,4 0 < 0;0,4)
b 2 5 =0,2 0,4 < 0,4;0,6)
c 3 2 =0,3 0,6 <0,6;0,9)
1 5 =0,1 0,9 <0,9;1)

Prvni kroky komprese fetézce X' = abacaacbc# jsou zobrazeny na ob-
razku 5.1.

0,192 0,1888

0,1888 #0,18784

1

#10,9

0,1792 0,18496

0,18304

0,1792

a b a c

Obrazek 5.2: Prvni kroky kédovani fetézce X' = abacaacbc#

39

‘ krok ‘ symbol ‘ Low ‘ Range

0 0 1
1 a |0 0,4

2 b 0,16 0,8

3 a | 0,16 0,032

1 c 0,1792 0,0096

5 a | 0,1792 0,00384

6 a | 0,1792 0,001536

7 c 0,1801216 0,0004608

8 b 0,18030592 | 0,00009216

9 c 0,180361216 | 0,000027648
10 # | 0,1803860992 | 0,0000027648

Tabulka 5.1: Komprese fetézce X' = abacaacbc#

Aritmetické kédovani nemusi pocitat vSechny délici hodnoty intervalu,
staci si pamatovat pouze dolni mez, oznac¢me ji Low a §itku intervalu, Range.
Nové hodnoty se vypocitavaji podle vztahu:

Low «— Low + Range-cp;

Range «— Range-p;

Jednotlivé kroky komprese shrnuje tabulka 5.1. Vysledny interval je
I(abacaacbe#) =< 0,1803860992;0,180388864). Vhodnym kandidatem se
jevi byt cislo
94575

0, 1803874969482421875 = 519

=0,00101110001011011115.
Vysledny kéd obsahujici ukoncéovaci znak je bez tschovy Cetnosti symbola
dlouhy 19 bitu.

5.2 Adaptivni aritmetické kédovani

Tak jako statickd verze Huffmanova kédovani musi nejprve urcit pravdeé-
podobnosti jednotlivych symbolt, tyto frekvence predat dekodéru a teprve
pak kédovat, musi toto provést i staticka verze aritmetického kddovani. Po-
kud opomineme moznost pouziti pfipraveného pravdépodobnostniho modelu
(napf. pro jeden typ dat, knihy v ¢eStiné) je FeSenim adaptivni verze arit-
metického kodéru.

Adaptivni verze aritmetického kodéru na zdkladé pravdépodobnosti ké-
duje jednotlivé symboly stejné jako statické aritmetické kédovani, ale model
- pravdépodobnostni rozdéleni se méni po zakédovani kazdého symbolu.

40

metoda 1 metoda 2

Sym. | a [b |cde f.g]| # a | b [cdefg|#
1 1 1 1 1 1 1 1

8 8 8 8 8 8 8 8

2 1 1 1 1 1y =9 | 1L | 1.1 -1 | 1

a 9 9 9 9 2 1+ 8) 16 | 16 2 8 16 16
3 1 1 1 1. 1y—-1 | 1 | 1.1 —1 | 1

a 10 | 10 10 10 || 3 (2 + 8) 24 | 24 38 24 24
3 | 2 1 1 1 1 1 1

11 | 11 11 11 8 8 8 8

a 4 | 2 1 1 1 1 1 1
12 | 12 12 12 8 8 8 8

a S5 | 2 1 1 1 1 1 1
13 | 13 13 13 8 8 8 8

b 5 | 3 1 1 1 1 1 1
14 | 14 14 14 8 8 8 8

5 | 3 1 2 1 1 1 1
15 | 15 15 15 8 8 8 8

Tabulka 5.2: Vyvoj pravdépodobnosti béhem aritmetického kédovani

Priklad 5.4
Meéjme text X = aabaab#. Zakddujte jej pomoci adaptivniho aritmetického
kédovéani.

Predpokladejme, Ze vstupni abeceda obsahuje pouze symboly S = {a, b,

¢, d e, f, g}
Na zacatku kodovani maji vSechny symboly vstupni abecedy stejnou
pravdépodobnost. V nasem pfipadé, kazdy symbol zabira ﬁ = %, protoze

jeden podinterval rezervujeme pro ukoncovaci znak #. Pokud bude interval
pro symbol a prvni, tedy < 0;0,125 bude timto intervalem zakédovan prvni
symbol. Po jeho zakédovani je nutné vypocitat nové pravdépodobnosti. Pro
tento vypocet existuje mnoho zpusobt, tady jsou dva zakladni:

1. Kazdy symbol mél na zacatku cetnost rovnu 1. Zakdédovani jednoho
symbolu jeho ¢etnost zvysi o jedna.

2. Cetnost vSech symbolii dohromady byla na za¢atku rovna 1. Zakédo-
vani jednoho symbolu jeho ¢etnost zvysi o jedna.

Prvni zpusob vypoctu ¢etnosti je jednodussi, druhy pruznéji reaguje na
vstupni text!.

Postupné zmeény pravdépodobnosti jednotlivych symbolu béhem kédo-
vani fetézce X = aabaab# ukazuje tabulka 5.2.

5.3 Priklady na cviceni

Priklad 5.5
Text aaab zkomprimujte pomoci aritmetického kédovani. Zhodnotte dosa-

14 - s v v , .« es s . ’) , ey
V praxi je nutné fesit otazky souvisejici s implementaci v bindrnim kédu, zejména
omezena presnost Cisel a omezeny rozsah

41

zenou kompresi.

Priklad 5.6
Text baaabaa# zkomprimujte pomoci aritmetického kédovani. Zhodnotte
dosazenou kompresi.

Priklad 5.7
Méjme pravdépodobnostni rozdéleni symbola z prikladu 5.6. Jaky Fetézec
kéduje ¢islo 0,01107

Priklad 5.8
Text cabecbabb# zkomprimujte pomoci aritmetického kédovani. Zhodnotte
dosazenou kompresi.

Priklad 5.9
Text aaab zkomprimujte pomoci adaptivniho aritmetického kédovani. Zhod-
notte dosazenou kompresi.

Priklad 5.10
Text baaabaa# zkomprimujte pomoci adaptivniho aritmetického kédovani.
Zhodnotte dosazenou kompresi.

Priklad 5.11
Méjme text obsahujici symboly S = {a, b, ¢, }. Tento text je zakoncen sym-
bolem #. Jaky retézec kéduje ¢islo 0,01107

Priklad 5.12
Text cabcebabb## zkomprimujte pomoci adaptivniho aritmetického kédovani.
Zhodnotte dosazenou kompresi.

5.4 Dalsi priklady

42

6 Slovnikové metody komprese dat

6.1 LZ77

Metoda LZ77 je nazyvana metodou posuvného okna. Posuvné okno je po-
uzito pro zakédovani textu. Je rozdéleno na dvé ¢asti, zakédovanou ¢ast a
nezakédovanou ¢ast. Dohromady tvoii celkovou velikost okna. Piedpony z
nezakdédované ¢asti jsou kddovany pomoci podietézcu zacinajicich v zakd-
dované ¢asti okna.

Do vystupniho proudu je v kazdém kroku ulozena trojice (7, j,a). Pfed-
pokladejme, Ze jsme nalezli nejdelsi Fetézec (oznacme jej s) zacinajici v
zakodované ¢asti a shodujici se s pfedponou fetézce z nezakédované cCasti
posuvného okna (ozna¢me jej p). Pak ¢ je vzdalenost prvniho znaku fe-
tézce s od hranice mezi zakédovanou a nezakdédovanou ¢asti okna, j je délka
fetézce s a a je prvni znak za predponou p. Po uloZeni trojice (i, j,a) je celé
okno posunuto o j + 1 znaku doprava.

Priklad 6.1

Metodou LZ77 zakddujte text T = aabaacaaaaaababababbab. Pouzijte okno
velikosti 10 znaku, velikost nezakddované ¢asti volte ¢ty¥i znaky. Zhodnotte
dosazenou kompresi.

Kédovani zac¢ind s posuvnym oknem polozenym na text tak, ze hranice
mezi zakddovanou a nezakddovanou ¢asti lezi na zacatku textu. V zakddo-
vané Casti se nenachézi jediny znak, slovnik pro vyhledavani je tedy prazdny.
Tuto situaci ukazuje nasledujici obrazek.

[-1-]-]-]-]-]a]a]Db]a]|Trojice je (0,0,a), posun okna o jeden
znak doprava.

Jelikoz nejdelsi predpona z nezakédované ¢asti zacinajici v zakddované
¢asti ma délku 0, je do vystupniho proudu vlozena trojice (0,0,a), kde a je
prvni znak kédovaného fetézce. Celé okno je posunuto o jeden znak doprava.

Kédovani pokracuje v nasledujicich krocich:

[l-[-[-[-Tafla[bfa]a](Lb)

‘_‘_‘_‘a‘a‘bHa‘a‘C‘a‘(?’QaC)

‘a‘a‘b‘a‘a‘cHa‘a‘a‘a‘(?),Za)

Nejdelsi predpona v nezakédované ¢asti okna na predchéazejicim obrazku
byla aa. Tato predpona se nachazi v zakédované ¢asti okna na dvou pozicich
a to pozici 3 a pozici 6. Proto jsou dvé moznosti zakédovani nasledujici
trojice : (3,2,a) a (6,2,a). Na jednoznacnost dekédovani nema vybér jedné

43

trojice vliv, nicméné volime trojici (3,2,a), nebot obsahuje nizsi ¢isla a da se
predpokladat, ze budou kédovana krat$imi kédy.

‘a‘a‘c‘a‘a‘aHa‘a‘a‘b‘(l,&b)

Pripomenime, ze nalezeny retézec nemusi koncit v zakddované ¢asti okna.
Na zakladé umluvy z pfedchézejiciho odstavce pouzijeme trojici (1,3,b) z
moznych trojic (1,3,b),(2,3,b) a (3,3,b).

‘a‘a‘a‘a‘a‘b“a‘b‘a‘b‘(2,3,b)

Zde nastavéa situace, kdy je cela nezakédované c¢ast okna ve slovniku -
v zakdédované casti, ale protoze se do vystupniho proudu musi dat jeden
symbol (ten by byl préavé za oknem), je do vystupniho proudu déna trojice
(2,3,b).

‘a‘b‘a‘b‘a‘bHa‘b‘b‘a‘(ZQ,b)

[bfa]blaf[b[bJla[b[-]-[(32b)

Zavér kédovani. Nezakddované ¢ast okna neni zcela zaplnena a posledni
znak musi byt uveden jako nasledujici znak za nalezenym podietézcem. Me-
toda LZ77 nepotiebuje ukoncovaci znak, protoze binarni kéd kazdé trojice
je delsi nez jeden byte.

Vysledny kéd je tedy:

=

2}

AN N AN N N
N = w =
RO LW NN RO
//_/E/\/_/_/

S o O

» <

(3,1,b)

Prvni ¢islo v usporadané trojici adresuje nezakédovanou ¢ast okna, in-
terval pfipustnych hodnot je tedy < 0,6 >. Pii pouziti binarniho kédu bude
potieba pro uloZeni této adresy tfech bitu.

Druhé ¢islo urcuje délku nalezeného podretézce. Maximalni délka je
rovna délce nezakédované ¢asti okna zmensené o jednicku (znak do vystupu),
v nasem pfipadé tii znaky. Nejkratsi délka je pro piipad, kdy jiz prvni znak
v nezakédované Casti okna neni obsazen ve slovniku, pak je délka rovna
nule. Tedy interval < 0,3 >, binarni kéd délky dva. Pro kédovani znaki
pouzijeme standardni ASCII kéd, tedy 8 bitu.

Celkova délka kédu bude 7 * (3 4+ 2 + 8) = 91 bitu. Byl-li puvodni text
v ASCII kédovani, byla jeho délka 22 « 8 = 176 biti. Kompresni pomér je
91/176 = 0,52.

44

Priklad 6.2

Provedte dekédovani textu z predchoziho prikladu. Postup je obdobny jako
u kédovani. Dekodér bude pouzivat stejné okno, na zakladé indexu bude do-
pliiovat znaky do vystupniho proudu. Potom pfesune okno tak, aby hranice
mezi zakddovanou a nezakddovanou ¢asti byla za poslednim znakem. Vse je
znézornéno na nasledujicich obrézcich.

Trojice je (0,0,a), do vystupu vloz symbol a.

l--[-T-[-faf-]-][-]@Lb)
Posun okno o jeden znak (o j+1, zde 0+1).

-1-]-]-[-]Ta]a|b]-]-](11)b) Vioz a a piidej b.

‘-‘-‘—‘a‘a‘b“a‘a‘c‘—‘(3,2,C)Vloiaaapfidejc.

laJa|blalalc[alala]-](324a) Vloz aa a piidej a.

‘a‘a‘c‘a‘a‘aHa‘a‘a‘b‘(l,f&,b)

‘a‘a‘a‘a‘a‘b“a‘b‘a‘b‘(2,3,b)

la|bla|bla|b]a|b|b]-](22D)

[bfa]bJaf[b[bfla[b[-]-[@.Lb)

6.2 LZ78

Priklad 6.3
Metodou LZ78 zakédujte text T = aabaacaaaaaababababbab. Zhodnotte
dosazenou kompresi.

Metoda LZ78 produkuje v kazdém kroku jednu dvojici (i,a), kde i je
index fraze ve slovniku a a je symbol nachézejici se bezprostiedné za ukla-
danou frazi. Slovnik je reprezentovan jako strom s ocislovanymi uzly, kazdy
uzel reprezentuje frazi na cesté z korene do tohoto uzlu. Po vloZeni jedné
usporadané dvojice do vystupniho proudu je slovnik rozsifen o novou frazi,
kterd vznikne rozsifenim ukladané fraze o pravé ukladany symbol. Tato fraze
bude oznacena nejnizsim novym ¢islem a zaclenéna do kédovaciho stromu.

Kédovani zaciné se stromem obsahujicim jediny uzel, uzel nula. Nejdelsi
predpona nalezend v tomto stromu je €, do vystupu jde dvojice (0,a) a strom

45

je rozsifen o uzel 1 a hranu ohodnocenou symbolem a. Uzel 1 tedy reprezen-
tuje frazi a. Hranice mezi zakédovanou a neazakddovanou c¢asti vstupniho
Tetézce je posunuta:

alabaacaaaaaababababbab

Protoze nejdelsi pfedpona nezakédované casti retézce nalezena v kédo-
vacim stromu je a, tj. uzel 1, do vystupu se pfeda (1,b). Strom je rozsifen o
novou frazi 2 = 1b = ab. Hranice je posunuta za tfeti symbol:

aablaacaaaaaababababbab

Obréazek 6.1: Stromova reprezentace slovniku metody LZ78.

Algoritmus komprese postupné vytvoii strom na obrazku 6.1. Hranice
mezi zakédovanou a nezakddovanou ¢asti budou:

alablaa|c|laaalaaablabalblabblab

Kazdy podretézec uzavieny sousedicimi hranicemi je kédovaci fraze, jeji
poradi odpovidé ¢islu uzlu, jez ji reprezentuje. Vyjimku tvori posledni pod-
fetézec, ktery zde nevytvaii novou frazi a je kédovan dvojici (1,b), protoze
algoritmus dekédovéani vyzaduje vlozeni symbolu. Vysledny kéd je:

46

Kéd | velikost slovniku | pocet bitu pro index fraze
(0,a) 0 0
(1,b) 1 1
(1,a) 2 2
(0,c) 3 2
(3,a) 4 3
(5,b) 5 3
(2,a) 6 3
(0,b) 7 3
(2,b) 8 4
(1,b) 9 4

Pro vypocet kompresniho poméru predpokladejme, Ze puvodni text pouzival
8 bitu na jeden symbol, dOlka puvodniho textu byla 22 x 8 = 176 bitu. Jed-
notlivé symboly budeme kédovat také 8 bity. Indexy frazi budeme kédovat
bindrnim kdédem jehoZ délka bude zavisla na velikosti slovniku, tj. pfi ko-
dovani prvni dvojice, je slovnik prazdny, neni potieba kédovat index fraze,
po vloZeni prvni fraze je potieba jeden bit (0 ...nova fréze, 1 ...fraze a).
Celkova délka kédu bude 108 +1+2%2+4x3+2x4 = 105 bitid. Kompresni
pomér je 105/176 = 0, 60.

Priklad 6.4
Dekédujte vystup z piredchoziho piikladu. Pro reprezentaci slovniku je pfi
dekédovani vyhodnéjsi tabulka. Jeji inicializace je:

Index fraze | fraze
0 €

Prvni dvojice je (0,a), do vystupu je pfidan fetézec odpovidajici indexu
fraze 0, tedy € a symbol a. Tabulka frazi je rozsifena o frazi vzniklou zfe-
tézenim fraze 0 a symbolu a, tedy a. Vysledna tabulka véetné dokédovani

bude

Index fraze fraze do vystupu

0 €

1 Oa...a a

2 1b...ab ab
3 la...aa aa
4 Oc...c c

) 3a...aaa aaa
6 5b...aaab aaab
7 2a...aba aba
8 0b...b b

9 2b...abb abb
— — ab

47

6.3 LZW

Metoda LZW vymyslend Welchem vychézi z metody LZ78. Jejim vystupem
jsou pouze indexy, slovnik je inicializovdn vSemi symboly vstupni abecedy,
posledni symbol posledné vloZené fraze je pocateénim symbolem vkladané
fraze.

Priklad 6.5
Metodou LZW zakddujte text T = aabaacaaaaaababababbab. Zhodnotte
dosazenou kompresi.

Metoda LZW predpokladé slovnik inicializovany vsemi symboly abecedy.
Pro jednoduchost predpokladejme, ze vstupni abeceda obsahuje pouze sym-
boly a,b, c'®. Slovnik bude obsahovat fraze a,b a ¢, indexované ¢&isly 1,2 a
3. Cely slovnik je zobrazen na obrazku 6.2.

Obrazek 6.2: Stromova reprezentace slovniku metody LZW.

Nasledujici tabulka shrnuje jednotlivé kroky kédovéani. Symbolem | je
oznacena novéa hranice mezi zakédovanou a nezakédovanou ¢asti textu, fraze
ukladana do slovniku je zvyraznéna tucné.

'50Obecné nevime jaké symboly budou v textu obsaZeny, proto se slovnik inicializuje
vSemi moznymi symboly. Jinou moznosti by bylo zjistovani pravdy, které by si vyzadalo
jeden pruchod zakédovavanym textem a predani inicializovaného stromu dekodéru.

48

Text index do vystupu | index nové fraze
alabaacaaaaaababababbab 1 4
aa|baacaaaaaababababbab 1 5
aab|aacaaaaaababababbab 2 6
aabaa|caaaaaababababbab 4 7
aabaac|aaaaaababababbab 3 8
aabaacaalaaaababababbab 4 9
aabaacaaaaalababababbab 9 10
aabaacaaaaaablabababbab 5 11
aabaacaaaaaababalbabbab 11 12
aabaacaaaaaabababa|bbab 6 13
aabaacaaaaaabababab|bab 2 14
aabaacaaaaaababababbab 13 —

Vysledna posloupnost indexu je 1,1,2,4,3,4,9,5,11,6,2,13. Pro kédovani
jednotlivych indexu pouzijeme binarni kéd, jehoz délka bude [log,(sl)], kde
sl je velikost slovniku, tj. prvni a druhy index fraze budou zakédovany dvéma
bity (inicializovany slovnik obsahuje 3 fréze). Délka vysledného kédu bude
2%x24+4%3+6x*4 = 40 bitu. Pokud byl puvodni text v ASCII kédu, je
kompresni pomér 40/176 = 0, 23.

Priklad 6.6
Dekédujte posloupnost z predchoziho prikladu. Uvazujte stejny pocateéni
slovnik. Pocate¢ni slovnik obsahuje tii fraze:

Index fraze | fraze
1 a
2 b
3 c

Pripomenme, ze kazdéa nova fraze ma prvni symbol shodny s poslednim
symbolem predchozi fraze.

Pro dekédovani si je nutné uchovavat dva odkazy do textu, misto kam
pujde dalsi symbol (vzdy za posledni symbol) a posledni symbol v posledni
ulozené frazi.

Prvni index je ¢islo jedna, odpovidajici fraze je a. Druhy index je jedna,
odpovidajici fraze je a, cely vystup je aa. Nova fraze je aa, Cislo 4. Tento
a dalsi kroky shrnuje nasledujici tabulka, nova fraze je zvyraznéna pruhem
nad dekdédovanym textem, posledni dekédovana fraze je zvyraznéna tuénym
pismem.

49

Index fraze ze vstupu | vystup nova fraze
1 aa 4...aa
2 aab 5...ab
4 aabaa 6...ba
3 aabaac 7...aac
4 aabaacaa | 8...ca

V tomto okamziku je na vstupu index 9, tato fraze jesté nebyla vloZena do
slovniku. Tento pripad nastava pro fraze typu axa, kde x je libovolny Fetézec
a fraze ax je jiz ve slovniku. Tato fraze je rozsifenim posledné dekédované
fraze. V nasem piipadé jde o frazi 4...aa, prvni a posledni symbol nové
fraze se musi shodovat, fraze 9 bude aaa. Stejny problém bude dekodér resit
s frazi 11.

Index fraze ze vstupu | vystup nova fraze
9 aabaacacaaa 9...aaa
) aabaacaaaaaaab 10... aaaa
11 aabaacaaaaaababa 11...aba
6 aabaacaaaaaabababa 12...abab
2 aabaacaaaaaabababab 13...bab
13 aabaacaaaaaababababbab | 14 .. .bb

6.4 Priklady na cviceni

Priklad 6.7
Text X = aabaabbcabacaabcbaa zakédujte metodou LZ77. Velikost posuv-
ného okna a nezakédované ¢asti volte:

‘ velikost zakddované ¢asti ‘ velikost nezakdédované c¢asti ‘

5 3
10 4
15)

Zvolte vhodné kédovani pouzitych ¢isel a zhodnotte dosazenou kompresi.

Priklad 6.8

Text X = aaaaaaaaaabaaaaaaaaaa = a0ba'® zakédujte metodou LZ77. Ve-
likost posuvného okna a nezakédované ¢asti volte stejné jako v prikladu 6.7.
Zvolte vhodné kédovani pouzitych ¢isel a zhodnotte dosazenou kompresi.

Priklad 6.9

Metoda LZ77 s velikosti zakddované ¢asti 6 symboli a velikosti vyhledu 4
symboly vytvorila vystup Y =(0,0,a)(0,0,0)(2,3,b)(2,1,a)(4,2,b)(4,2,b). Ur-
Cete vstupni text.

90

Priklad 6.10
Text X = aabaabbcabacaabcbaa zakddujte metodou LZT8. Zvolte vhodné
kédovani pouzitych éisel a zhodnotte dosazenou kompresi.

Priklad 6.11
Text X = aaaaaaaaaabaaaaaaaaaa = a'%ba'® zakédujte metodou LZT78.
Zvolte vhodné kédovani pouzitych ¢isel a zhodnotte dosazenou kompresi.

Priklad 6.12
Metoda LZ78 vytvorila vystup Y =(0,a)(0,b)(1,b)(3,a)(1,a)(2,b)(5,b). Urcete
vstupni text.

Obrazek 6.3: Po¢atecni strom pro metodu LZW z priklada 6.13, 6.14, 6.15,
6.16 a 6.19

Priklad 6.13

Text X = aabaabbcabacaabcbaa zakédujte metodou LZW. Predpokladejme,
Ze pocateéni strom je stejny jako na obrazku 6.3. Zvolte vhodné kédovani
pouzitych éisel a zhodnofte dosazenou kompresi.

Priklad 6.14

Text X = aaaaaaaaaabacaaaaaaaa = a'®ba'® zakédujte metodou LZW.
Predpokladejme, Ze pocateéni strom je stejny jako na obrazku 6.3. Zvolte
vhodné kédovani pouzitych ¢isel a zhodnotte dosazenou kompresi.

Priklad 6.15

Text X = aaaaaaaaaabaaaaaacaaa = a®ba'® zakédujte metodou LZW.
Predpokladejme, Ze pocateéni strom je stejny jako na obrazku 6.3. Zvolte
vhodné kédovani pouzitych ¢isel a zhodnotte dosazenou kompresi.

Priklad 6.16

Text X = aaaaaaaaaabaaaaaaaaaa = a'ba'® zakédujte metodou LZW.
Predpokladejme, Ze pocatecni strom je stejny jako na obrazku 6.3. Zvolte
vhodné kédovani pouzitych ¢&isel a zhodnotte dosazenou kompresi.

51

6.5 Dalsi priklady

Priklad 6.17

Text X = abababababababababab = (ab)'? zakédujte metodou LZ77. Velikost
posuvného okna a nezakddované ¢asti volte stejné jako v ptrikladu 6.7. Zvolte
vhodné kédovani pouzitych ¢&isel a zhodnotte dosazenou kompresi.

Priklad 6.18
Text X = abababababababababab = (ab)® zakédujte metodou LZ78. Zvolte
vhodné kédovani pouzitych ¢&isel a zhodnotte dosazenou kompresi.

Priklad 6.19

Text X = abababababababababab = (ab)® zakédujte metodou LZW. Pted-
pokladejme, Ze pocatetni strom je stejny jako na obrazku 6.3. Zvolte vhodné
kédovéani pouzitych ¢isel a zhodnotte dosazenou kompresi.

Priklad 6.20

Urcete, jak se zméni kédovani a vysledny kompresni pomér v prikladech
6.13, 6.14, 6.15, 6.16 a 6.19 pokud pocatecni strom bude obsahovat pouze
symboly, které se vyskytuji v kédovaném textu.

52

