
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FAKULTA STROJNÍHO INŽENÝRSTVÍ

Ústav automatizace a informatiky

DATABÁZOVÉ SYSTÉMY

(doplňující text ke konzultacím v 3. ročníku kombinovaného bakalářského studia
oboru Aplikovaná informatika a řízení)

Doc. RNDr. Ing. Miloš Šeda, Ph.D.

BRNO 2002

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 2

Obsah

1. Teoretické aspekty zpracování dat .. 3
1.1. Úvod ..3
1.2. Databázové systémy .. 4
1.2.1 Nezávislost dat ..5
1.2.2 Sdílení dat ... 6
1.2.3 Integrita ... 6
1.2.4 Náhodný přístup .. 7
1.3. Modely dat .. 7
1.3.1. Integritní omezení pro vztahy .. 10
1.3.2 Relační model .. 12
1.3.3 Relační algebra ... 15
1.3.4 Relační algebra jako dotazovací jazyk ... 21
1.3.5 Návrh struktury relační databáze, normalizace .. 22

2. Dotazovací jazyk SQL .. 31
2.1 Výběrový dotaz .. 31
2.1.1 Agregační funkce ... 33
2.1.2 SQL s poddotazy .. 34
2.2. Křížový dotaz .. 38
2.3. Akční (aktualizační) dotazy ... 39
2.4. Definiční dotazy .. 39

3. Visual Basic pro aplikace MS Accessu ... 41
3.1. Řídící struktury Visual Basicu ... 41
3.1.1 Přiřazovací příkazy .. 41
3.1.2 Příkazy větvení .. 41
3.1.3 Příkazy cyklu ... 42
3.1.4 Příkazy skoku ... 43
3.1.5 Příkaz With .. 44
3.1.6 Procedury a funkce .. 45
3.1.6.1 Parametry procedur a funkcí ... 46
3.1.6.2 Volání procedur a funkcí ... 46
3.2. Formuláře .. 47
3.2.1 Událostní procedury ve formulářích ... 47
3.3. Objekt RecordSet .. 50
3.4. Volání SQL dotazu z VBA .. 52

4. Složitější příklad ... 55
5. Zadání projektů .. 69
6. Kontrolní otázky ... 72
Literatura ... 76

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 3

1. Teoretické aspekty zpracování dat
1.1. Úvod
 Tradiční a relativně nejčastější použití počítačů je v oblasti zpracování dat, dříve také
nazývané hromadným zpracováním dat (HZD).
 Rozsáhlejší systémy pro zpracování dat se nazývají informační systémy. Rozumíme jimi
systémy pro sběr, uchování, vyhledání a zpracování dat za účelem poskytnutí informací. Data
jsou údaje získané pozorováním nebo měřením a informace interpretací těchto dat a vztahů
mezi nimi. Informační systémy zajišťují následující činnosti:

• výběr informace,
• prognózy vývoje,
• plánování,
• rozhodování,
• použití pro automatizaci inženýrských prací (AIP),
• použití pro zpracování ekonomických agend (mzdy, faktury, skladové hospodářství,

účetnictví apod}.

Činnost informačního systému může probíhat jako

• zpracování v dávkách,
• konverzace se systémem.

První způsob je vhodný zvláště pro soubory, kde se zpracování účastní všechny nebo většina
záznamů jako např. mzdová agenda. V přípravě podkladů je ovšem potřeba rozsáhlá
administrativa a interval mezi počátkem zpracování a časem, kdy jsou připraveny výstupní
sestavy může být dosti dlouhý.
Konverzační systémy byly původně vytvořeny pro aplikace vyžadující rychlou zpětnou vazbu
jako je např. rezervace letenek, zpracování dat v bankovnictví apod. Výhodou je to, že vstup
dat se provádí přímo tam, kde data vznikají, a odpadá tak mnoho administrativy a kódování,
které je typické pro dávkové zpracování.
 V HZD se používají systémy řízení souborů, které podporují některé techniky jako např.
sekvenční, index-sekvenční, indexové soubory a B-stromy.
Charakteristickým rysem klasického hromadného zpracování dat je, že soubory jsou
strukturovány podle potřeb konkrétních programů, které je používají. Ze zadání problému
usuzujeme na to, jaká data budeme potřebovat pro zpracování a podle toho navrhneme
soubory, které jsou "ušity na míru" pro daný program. V každém programu je pak přesně
udáno, které soubory potřebuje, jak jsou strukturovány a organizovány, jaké výsledné
informace se mají získat a do kterých výstupních souborů se mají uložit.

Ze skutečnosti, že popisy souborů jsou součástí uživatelských programů vyplývá řada
těžkostí:

• Programy a data jsou navzájem závislé. Pokud je nutné změnit organizaci dat, je třeba
tyto změny promítnout do všech programů, které s daty pracují.

• Redundance (nadbytečnost) dat. Agendy jsou pojímány jako relativně izolované části
informačního systému bez širšího sdílení dat. Tak se může stát, že stejné údaje o
pracovnících podniku jsou uvedeny váněkolika souborech - v evidenci osobní, účetní,
kvalifikační, zdravotní atd.

• Nekonzistence dat. Je-li některý údaj redundantní, pak musí mít ve všech souborech
stejnou hodnotu. Tato vlastnost se nazývá konzistence. Může se však stát, že při změně
hodnoty se nepromítne tato změna do všech souborů a data se stanou nekonzistentní,
např. pracovnice se vdá a změnu příjmení nahlásí pouze na mzdovou účtárnu.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 4

• Nekompatibilita dat. Data stejného významu se v různých agendách mohou získávat
odlišnými metodami a v různém čase, což může mít za následek odlišnost výstupních
informací jednotlivých agend.

• Obtížná dosažitelnost dat. Chceme-li získat odpověď na dotaz ohledně stavu dat,
znamená to vytvořit zvláštní aplikační program, který odpovídá právě na tento dotaz,
případně se spokojit s již existujícími výstupy aplikačních programů a požadovanou
informaci vánich vyhledat "ručně".

• Izolovanost dat. Data mohou být roztroušena v různých souborech. Soubory mohou být
různě organizovány a data mohou mít různý formát. Tím se značně komplikuje tvorba
nových aplikačních programů.

• Problém současného přístupu více uživatelů. Např. v systému rezervace místenek se
jedná o koordinaci paralelních procesů, kdy jeden může modifikovat data a druhý číst.
V podstatě to není možné v souborech s vysokou redundancí, kdy je nutné aktualizovat
údaj na mnoha místech.

• Problém ochrany dat před zneužitím. Např. při zpracování dat v bankovnictví není
žádoucí, aby mohl kdokoliv provádět s daty jakékoliv operace nebo aby měl přístup ke
všem informacím. Při zpracování dat klasickým způsobem však aplikační program musí
mít k dispozici tolik podrobností, že to ochranu dat proti zneužití velmi ztěžuje.

• Problém integrity dat. Hodnoty dat podléhají omezením, které odrážejí vlastnosti
skutečných objektů ve světě (např. měnový kurs, limity váhových kategorií závodníků
apod.). Také všechna data v datových souborech musí odpovídat stavu reálného světa.
Této vlastnosti říkáme integrita (celistvost). Součástí aplikačních programů musí být
kontrola vstupujících dat, což v případě, že se kontroly týkají více souborů může
aplikační program zbytečně zkomplikovat.

1.2. Databázové systémy

 Výše uvedené problémy klasických metod hromadného zpracování dat vedly ke vzniku a
rozvoji databázových systémů. Mají následující vlastnosti:
1. Struktury datových souborů jsou odděleny od aplikačních (uživatelských) programů.
2. Přístup k datům je možný jen prostřednictvím programů databázového systému.
3. Data je možné vyhodnotit jakýmkoliv způsobem.
4. Je umožněn přístup více uživatelů současně a vyřešena ochrana dat před zneužitím.

Data již nejsou organizována v izolovaných souborech, ale v komplikovanější centrálně
zpracovávané struktuře dat, zvané databáze DB (database) nebo také báze dat, pro kterou je
vytvořena jediná interní organizace dat, společná pro všechny oblasti a způsoby využití
těchto dat. Centrální správa databáze, tzn. všechny implementační programy, jsou realizovány
prostřednictvím speciálního programového vybavení, které se nazývá systém řízení báze dat
SŘBD (database management system, DBMS). Ten spolu s databází tvoří databázový systém
DBS (database system). Zjednodušeně lze tedy říci, že

DB + SŘBD = DBS
Systém řízení báze dat zahrnuje:

• prostředky pro popis dat, které se někdy označují jako jazyk typu DDL (data definition
language - jazyk pro definici dat)

• prostředky pro popis algoritmu, označované jako jazyk typu DML (data manipulation
language - jazyk pro manipulaci s daty).

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 5

Jazyk typu DDL slouží k vytvoření všech definic uživatelských dat potřebných v aplikaci.

Jazyk typu DML se používá jednak k aktualizaci dat (tj. k změnám dat v databázi,
přidávání a rušení), jednak k výběru dat z databáze podle daných požadavků. Část DML
určená pro výběr dat se nazývá dotazovací jazyk (query language).

Na obrázku je znázorněna architektura databázového systému. Lze rozlišit 3 úrovně:
1. Externí úroveň (external level) je reprezentována daty z pohledu uživatele. Pohled

uživatele na data se též nazývá externí schéma. Mohou je představovat např. výstupní
tiskové sestavy, formuláře pro vstup dat, popř. jiná data, která obsahují informaci
užitečnou pro uživatele systému. Různí uživatelé mohou "vidět" (z důvodu odborného
zaměření, přístupových práv apod.) různě vymezené části informačního obsahu databáze.

2. Konceptuální úroveň (conceptual level) je integrovaným pohledem nebo schématem celé
databáze. Popis databáze na konceptuální úrovni se nazývá logické schéma databáze
(logical database scheme).

3. Interní úroveň (internal level) koresponduje s vlastním fyzickým uložením dat na vnějších
paměťových médiích a metodami přístupu k datům. Popis databáze na této úrovni se
nazývá fyzické schéma databáze (physical database scheme).

Obr. 1. Architektura databázového systému

1.2.1 Nezávislost dat

Nezávislostí dat se v databázových systémech rozumí možnost změnit definice dat na
nižší úrovni abstrakce, aniž by se tím ovlivnila definice na vyšší úrovni abstrakce. Mluvíme o
dvou úrovních nezávislosti dat.
1. Fyzická nezávislost dat umožňuje změnit fyzické schéma a přitom nedojde ke změně

logického schématu ani uživatelských aplikačních programů.
2. Logická nezávislost dat umožňuje změnit konceptuální úroveň popisu dat, aniž by bylo

třeba přepisovat aplikační programy. Na externí úrovni se přitom nemění pohled těch
uživatelů, jichž se změna logického schématu přímo netýká.

pohled
uživatele 1

pohled
uživatele n

pohled
uživatele 2 …

externí
úroveň

konceptuální
úroveň

logické
schéma

interní
úroveň

fyzické
schéma

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 6

1.2.2 Sdílení dat
Na rozdíl od klasického agendového zpracování je při databázovém zpracování

konceptuální úroveň prostředníctvím externí úrovně přístupná všem aplikačním programům a
je zaručena její stabilita v čase i při změnách fyzického schématu na interní úrovni. Proto není
nutné získávat redundantní údaje a celkový objem dat se sníží.

Skutečnost, že se data sdílejí všemi aplikačními programy má kromě snížení
redundance příznivý vliv i na celkovou integrovanost informačního systému. Nedochází k
náhodným rozdílům v hodnotách sdílených dat, které se používají na různé účely.

Centralizací dat do sdílené databáze se však odpovědnost za správu dat přenesla
z jednotlivých agend na databázový systém. V rámci uživatelské organizace se předpokládá,
že jeho provoz má na starosti pověřená osoba, tzv. administrátor (správce) databáze. Do jeho
kompetence patří vytváření schémat na všech úrovních a definice a popis vazeb mezi
jednotlivými úrovněmi. Externí schémata vytváří přitom podle požadavků uživatelů.

1.2.3 Integrita
O tomto pojmu jsme se již částečně zmínili v závěru 1. kapitoly. Integrita (celistvost)
databáze je stav, váněmž jsou data v plném rozsahu přípustná a využitelná v aplikačních
programech a mezi hodnotami položek souborů databáze platí vztahy, které jsou stanoveny k
zaručení sémantické korektnosti databáze. Jinak se dá také říci, že je to stav, kdy hodnoty dat
jsou správné, konzistentní a aktuální.

K narušení integrity může dojít chybami technického i základního programového
vybavení, chybami v aplikačních programech a v datech apod.

Jak jsme již uvedli, součástí aplikačních programů musí být kontrola správnosti
vstupujících dat. Některé systémy řízení báze dat (SŘBD) mají možnost uchovat integritní
omezení, např. formule v predikátovém kalkulu 1. řádu, které po interpretaci hodnot položek
databáze nabývají hodnotu True anebo False a informují o tom, zda stav databáze je
správný či nikoliv. Tímto způsobem se dá zamezit provedení aktualizačních příkazů, které by
vedly k nesprávnému stavu databáze. Příkladem integritního omezení je požadavek, aby věk
oprávněného voliče bylo celé kladné číslo větší nebo rovné 18.

Procedury ukládání dat musí být takové, aby systém řízení báze dat v případě vzniku
chyby mohl obnovit data beze ztrát. Z tohoto důvodu je SŘBD vybaven funkcemi kopírování
celé databáze anebo jejich částí na záložní paměťové médium. V případě, že došlo ke ztrátě
integrity, použije se kopie databáze k její obnově. Vzhledem k většinou velkým rozsahům
databáze a z toho vyplývající časové náročnosti kopírování nelze jej provádět příliš často, což
způsobuje ztrátu dat, která byla získána v době od posledního kopírování po poruchu. Pokud
je riziko ztráty velké anebo má značné důsledky, používají se jemnější kopírovací procedury.
Jednou z nich je použití tzv. žurnálové záložní paměti, kam se při každé změně dat v databázi
zaznamená stav menších oblastí (záznamu, bloku) před změnou a po změně.

1.2.4 Náhodný přístup
 Agendové zpracování je zaměřené jednoúčelově a předpokládá, že všechny požadavky na
výstupní informace jsou specifikovány předem. Při používání programu se však velmi často
objeví dodatečné požadavky na jeho funkci, jejichž realizace si může vyžádat značné
programátorské úsilí.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 7

V databázovém systému vzhledem k nezávislosti dat na aplikačních programech je snadné
napsat nový aplikační program, který zabezpečí provedení požadované akce. V mnoha
případech jde o požadavek na výběr dat podle zadaného kritéria. Většina SŘBD je vybavena
speciálními uživatelskými jazyky neprocedurálního charakteru, které jsou orientovány na
využití neprogramátory.

Možnost realizace náhodného přístupu k databázi výrazně zlepšuje využití dat v informačním
systému a je často jedním z hlavních důvodů přechodu na databázovou technologii zpracování
dat.

1.3. Modely dat
 Posláním automatizovaného informačního systému je poskytovat informace o určité části
reálného světa (realitě). Informační systém a jeho konstrukce je současně určitým druhem
modelu reality. Před vybudováním databáze je tedy nutné analyzovat realitu a vytypovat
objekty, o nichž chceme v databázi udržovat informaci. Objekty lze přitom rozdělit do dvou
tříd:

• Entity - rozumíme jimi abstrakce libovolných existujících věcí.
• Hodnoty - charakterizují, popisují entity.

Vlastnosti entit se nazývají atributy. Atribut přiřazuje každé entitě z množiny entit hodnotu z
nějaké neprázdné množiny nazývané doména atributu. Atribut je tedy funkce z množiny entit
do domény atributu. Neformálně řečeno atributy jsou vztahy mezi entitami a hodnotami.
(Později se budeme ještě bavit o vztazích mezi entitami, které nazýváme relace.)

Příklad 1.3.1
Entity množiny studentů VUT mají například atributy jméno, pohlaví, věk. Jsou to funkce z
množiny studentů VUT po řadě do množiny alfabetických řetězců možných jmen studentů,
množiny {muž,žena} a intervalu [18,60].

Atribut či množina atributů, jehož hodnoty jednoznačně určují každou entitu v
množině entit se nazývají klíčovým atributem (klíčem) dané množiny entit.

Příklad 1.3.2
Pro množinu zaměstnanců nějaké organizace může být klíčem např. rodné číslo nebo osobní
číslo zaměstnance přidělené osobním oddělením.

Uvažujme uspořádaný seznam množin entit E1, E2, … ,Ek a nechť k-tice entit
(e1, e2, … ,ek), ei ∈ Ei je navzájem mezi sebou v nějakém vztahu v. Existence tohoto vztahu
nás opravňuje považovat k-tici (e1, e2, … ,ek) za entitu a množinu V všech takových k-tic,
které jsou navzájem mezi sebou ve stejném vztahu v, nazýváme vztahem V mezi množinami
E1, E2, … ,Ek.

Nejčastější případ vztahů mezi množinami entit je pro k = 2. Tyto vztahy lze dále klasifikovat.

• Vztah 1:1 - každá entita jedné množiny je spojena vztahem s nejvýše jednou entitou
druhé množiny

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 8

• Vztah 1: N mezi množinami E1 a E2 reprezentuje situace, kdy každá entita z E1 je
spojena vztahem s žádnou či více entitami z E2, ale každá entita z E2 je spojena vztahem
s nejvýše jednou entitou z E1.

• Vztah M : N je nejobecnější, nejsou kladena žádná omezení na množinu dvojic entit
spojených příslušným vztahem.

Obr. 2. Schématické vyjádření vztahů mezi 2 množinami entit

Příklad 1.3.3
1. Příkladem vztahu 1:1 je vztah manželství mezi muži a ženami v evropské části světa.

Jeden muž může mít současně nejvýše jednu manželku a jedna žena nejvýše jednoho
manžela.

2. V arabském světě jde v uvedeném příkladě o vztah 1: N. Jeden muž může současně mít
více než jednu ženu, žena může mít nejvýše jednoho manžela.

3. Pokud bychom upustili v daném příkladě od požadavku současnosti, pak i v Evropě může
jít o vztah M : N. Každý muž mohl být několikrát ženatý, stejně jako žena vícekrát vdaná.

Od počátku 70. let se objevují pokusy o zachycení sémantiky (významu) dat ukládaných v
informačních systémech. Vznik prakticky použitelného sémantického modelu umožňujícího
popsat konceptuální úroveň databáze je svázán s tzv. Entity-Relationship modelem, který se
také zkráceně označuje jako E-R model. Jde o schématické znázornění množin entit, jejich
atributů a vztahů mezi nimi grafickou formou. Používané grafické symboly ukazuje
následijící obrázek.

Postup při vytváření E-R modelu je následující:
1. Určí se a pojmenují zobrazované objekty z reality a vztahy mezi nimi, které nás budou

zajímat.
2. Rozhodne se o rozdělení objektů na entity a hodnoty.
3. Definičním oborům vztahů mezi entitami a atributům se podle potřeby přiřadí nová jména.
4. Stanoví se identifikátory entit.
5. U vztahů mezi entitami se určí jejich typ (1:1, 1:N, M:N).
6. Sestrojí se grafické zobrazení modelu.

1:1 1:N M:N

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 9

Grafický symbol Význam symbolu

obdélník reprezentuje entity nebo množiny entit

 kosočtverec znázorňuje vztahy mezi entitami nebo
množinami entit

oválné uzly reprezentují atributy

 čáry jsou použity pro spojení symbolů

1 znak 1 je použit pro označení jednoduchého výskytu ve
vztahu

M, N, … M, N, atd. označují vícenásobný výskyt ve vztahu

Tab. 1. Grafické symboly E-R modelů

Příklad 1.3.4

Na obr. … je vyjádřen vztah mezi čtenáři a knihami v knihovně. Tento vztah je typu 1 : N,
protože každý čtenář mít vypůjčeno vice knih a naopak každá kniha může být v každém
okamžiku vypůjčena nejvýše jedním čtenářem. Na obr. E-R diagramu jde o vztah M : N
mezi učiteli a předměty, protože jeden učitel může učit více předmětů a přitom jeden předmět
může být vyučován více učiteli. Vidíme, že vztah může mít svůj vlastní atribut, v našem
případě úvazek učitele pro daný předmět.

Obr. 3. E-R model se vztahem 1 : N

ČTENÁŘ VYPŮJČIL KNIHA

DATUM
JMÉNO

PŘÍJMENÍ

RODNÉ-Č

…

AUTOR

NÁZEV

ISBN

…
1 N

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 10

Obr. 4. E-R model se vztahem M : N

1.3.1 Integritní omezení pro vztahy

1. Kardinalita vztahu – 1:1, 1:N, M:N
2. Členství ve vztahu
3. Slabé entitní typy, cizí klíč
4. Min-max integritní omezení

Členství ve vztahu
- povinné (úplné)
- nepovinné (částečné)

Příklad 1.3.5

Lékaři v nemocnici

(Každý učitel učí alespoň 1 předmět, ne každý předmět musí být vyučován, např.volitelný
předmět nemusí být otevřen)

UČITEL UČÍ PŘEDMĚT

ÚVAZEK
JMÉNO

PŘÍJMENÍ

RODNÉ-Č

…

NÁZEV

ROČNÍK

SEMESTR

…
M N

KÓD

PRACUJE-
NA

 UČITEL UČÍ PŘEDMĚT
M N

 LÉKAŘ ODDDĚLENÍ
N 1 PRACUJE-

NA

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 11

(Sportovec nemusí vyhrát žádnou soutěž, každá soutěž má vítěze)

(Čtenář nemusí mít nic vypůjčeno, knihu si nikdo nevypůjčil)

Nechť zápis R(E1, E2) vyjadřuje diagram

Pak E(min, max) označuje minimální, resp. maximální počet výskytů entity E ve vztahu R.

Pro binární typy vztahů lze např. psát

R (E1: (1,1), E2 : (1,1)) odpovídá 1:1
R (E1: (1,1), E2 : (0,n)) 1: N
R (E1: (0,1), E2 : (0,n)) (0 nebo 1) : N
R (E1: (0,m), E2 : (0,n)) M :N

Příklad: Popis režimu v knihovně

VÝPŮJČKA (ČTENÁŘ : (0,5), EXEMPLÁŘ : (0,1))
REZERVACE-KNIH (ČTENÁŘ : (0,4), KNIHA : (0,n))
EVIDENCE (KNIHA : (1,n), EXEMPLÁŘ : (1,1))
n – kniha může být v knihovně ve více kusech,
EVIDENCE (KNIHA : (0,n), EXEMPLÁŘ : (1,1))
0 – kniha nemusí být ve fondu knihovny, např. jde o ztracenou knihu nebo knihu získanou z
jiné knihovny meziknihovní výpůjčkou

Závěrem se dá říci, že E-R modely mají pro návrh databáze podobný význam jako

vývojové diagramy pro návrh algoritmu.

 ČTENÁŘ VYPŮJČIL KNIHA
1 N

 SPORTOVEC JE-VÍTĚZEM SOUTĚŽ
M N

 E1 R E2

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 12

Po vytvoření E-R modelu se následuje další etapa, v níž se určí způsob reprezentace
tohoto modelu v databázi. V první řadě jde o návrh logického schématu, tj. organizace dat na
konceptuální úrovni. Pak se navrhne organizace dat na externí a interní úrovni.

Organizace dat se navrhují prostřednictvím modelů dat (datových modelů). V 60.
letech byly vyvinuty tři nejznámější datové modely, které tvoří základ dnešních komerčních
systémů řízení báze dat. Jsou to modely: Relační, hierarchický a síťový.

V relačním modelu jsou jednotným prostředkem pro zobrazení množin entit i vztahů
mezi nimi tzv. relační schémata a relace.

V hierarchickém a síťovém modelu množinám entit odpovídají množiny záznamů, pro
znázornění vztahů jsou speciální prostředky. V hierarchickém modelu se vztahy mezi
množinami entit reprezentují stromovými strukturami, v nichž uzly reprezentují entity, hrany
existenci vztahu mezi entitami.

V síťovém modelu lze vztahy budovat jako obecné grafové struktury. Hierarchický
model je speciálním případem síťového modelu.

Nejvýznamější a současně nejrozšířenější datový model je model relační, a proto se
jím nyní budeme podrobněji zabývat.

1.3.2 Relační model
Úvodem zavedeme ještě několik nových pojmů.

Definice 1.
Nechť je dán systém Di, 1≤ i ≤ n neprázdných množin, tzv domén. Pak podmnožina
kartézského součinu R ⊆ D1 × D2 × … × Dn se nazývá relace stupně n (n-ární relace) nad
doménami D1, D2, … ,Dn. Prvky relace R jsou uspořádané n-tice (d1, d2, … ,dn), kde di∈ Di,
1 ≤ i ≤ n.

Z hlediska reálné existence databáze nemá smysl uvažovat nekonečné relace R,
omezíme se proto pouze na konečné podmnožiny kartézského součinu.

Při tomto omezení si můžeme relaci jednoduše představit jako matici s m řádky a n sloupci.
Pro lepší názornost sloupcům přiřadíme jména, která označují příslušné domény z oboru
definice relace. Těmto jménům říkáme atributy. Pokud budeme chápat atributy jako funkce z
n-tic relace do jednotlivých domén, dostaneme se k atributům ve smyslu úvodu kapitoly 3.

Je výhodné zobrazovat relace také v alternativní formě pomocí tabulky takto:
1. Každému prvku relace odpovídá jeden řádek tabulky, žádné dva řádky nejsou shodné

(protože relace je množina a prvek množiny uvádíme jen jednou).
2. i-tý sloupec obsahuje pouze hodnoty z domény Di.
3. Záhlaví sloupců reprezentují atributy.

Poznámka:
Prvky relace jsou uspořádané n-tice, vyměníme-li tedy pořadí domén, dostaneme

relaci, která se od původní relace liší.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 13

V tabulkové interpretaci však nezáleží na pořadí sloupců, pokud se permutují i se jmény v
záhlaví. Z matematického hlediska tedy nejsou reprezentace pomocí relace a tabulky
ekvivalentní. Tento nedostatek lze odstranit alternativní definicí relace, viz např. [4]. Protože
však z pohledu reprezentace reálného světa na pořadí atributů nezáleží, nebudeme mezi oběmi
interpretacemi rozlišovat.

Příklad 1.3.6

UČITELÉ
číslo_učitele jméno honorář/hod funkce
U1 Starý 150 docent
U2 Novák 100 asistent
U3 Kříž 200 profesor
… … … …

Tab. 2. Relace UČITELÉ

Domény relace UČITELÉ lze popsat tímto způsobem:

D1 množina řetězců tvaru Un, n přirozené číslo
D2 množina možných jmen učitelů
D3 množina nezáporných čísel menších než 100, představujících honorář v Kč za hodinu

přednášky
D4 množina alfabetických řetězců označujících funkční zařazení učitelů zaměstnání.

Strukturu relace budeme zapisovat takto: Uvedeme název relace a v závorce seznam jejích
atributů.

Struktura relace z příkladu 1.3.6 je: UČITELÉ(číslo,jméno,honorář,funkce)

Zápis tohoto tvaru nazýváme relační schéma. Atributy, které pojmenovávají jednu doménu
(sloupec) budeme nazývat jednoduché atributy jejich kombinace složené atributy.

Definice 2.
Klíč K relace R je podmnožina atributů relace R s těmito vlastnostmi, které jsou nezávislé na
čase:
 V1: Jednoznačná identifikace. Každá n-tice relace je hodnotami atributů tvořících K

jednoznačně určena.
 V2: Neredundance. Žádný atribut z K nelze vynechat, aniž by přestala platit vlastnost V1.

Schéma relace může obsahovat více klíčů. Ze všech možných klíčů se vybere jeden a
označí se jako primární klíč. V zápisu relačního schématu budeme atributy tvořící primární
klíč podtrhovat.

Je zřejmé, že v relaci existuje alespoň jeden klíč, protože kombinace všech klíčů má
vlastnost V1. Vyplývá to z toho, že relace je množina a nemůže tedy obsahovat 2 stejné
prvky.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 14

Je nasnadě analogie mezi relačním schématem a deklarací záznamu (stanovení a

pojmenování položek záznamů a jejich typu). Stejně tak existuje analogie mezi relací a
souborem a mezi prvkem relace a záznamem souboru.

Tyto analogie ukazují jednu z možných implementací relace v paměti počítače, totiž
implementovat relaci jako soubor záznamů s formátem daným relačním schématem.

 Všechny 3 přístupy k popisu dat shrnuje tabulka

relace tabulka soubor
relační schéma jméno a záhlaví tabulky definice typu záznam a soubor
prvek relace řádek tabulky záznam (věta)

Tab. 3. Ekvivalentní termíny

Definice 3.
Databází (bází dat) nazýváme konečnou množinu v čase proměnných konečných relací, které
jsou definovány nad doménami ze systému množin Di, 1 ≤ i ≤ n.

Aktualizace databáze, tj. její změna v čase, která umožňuje zachytit v databázi změny
probíhající v reálném světě, spočívá ve změně aktuálních relací databáze - přidáváním,
vynecháváním prvků relace nebo změnou hodnot některých komponent některých prvků
relací.

Výsek reality popsaný v E-R modelu lze pomocí relačního modelu popsat tímto
způsobem:

• Množina entit se reprezentuje pomocí relace, jejíž schéma obsahuje atributy těchto entit.
Každý prvek relace reprezentuje jednu entitu dané množiny.

• Vztah mezi množinami entit E1, E2, … ,Ek se reprezentuje relací R, jejíž schéma
obsahuje klíčové atributy entit každé množiny E1, E2, … ,Ek.

 V případě binárního vztahu typu M : N bude výsledný klíč této relace složen z dvojice
(K1,K2), kde K1, K2 jsou klíčové atributy množin entit E1, E2, v případě vztahu 1: N bude
výsledným klíčem přímo klíč K2.

Případným přejmenováním atributů splníme podmínku jednoznačnosti jmen atributů relace R.
Má-li vztah svoje vlastní atributy, přidají se do relačního schématu R.

Příklad 1.3.7
Uvažujme E-R model z příkladu 3.4. Pomocí relací jej vyjádříme takto:

 UČITELÉ(ČU, jméno, honorář, funkce)
 PŘEDMĚTY(ČP, název, ročník, hodin)
 CO_UČÍ(ČU,ČP, úvazek)
V příkladu jsme vzhledem k relaci CO_UČÍ popisující vztah mezi učiteli a předměty a
sdružující mimo jiné klíčové atributy relací UČITELÉ a PŘEDMĚTY museli nejednoznačné
označení atributu číslo přejmenovat. Nová označení atributů jsou ČU (číslo učitele) a ČP
(číslo předmětu). Tyto dva atributy tvoří složený klíč relace CO_UČÍ.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 15

1.3.3 Relační algebra
 Zavedením relací jako prostředku na modelování databáze se řeší jeho první - definiční -
stránka. Relační model databáze dále tvoří operace s databázemi.
Nejznámějším nástrojem pro práci s relacemi je relační algebra.

(1) Sjednocení (union) relací R a S téhož stupně se označuje R ∪ S a je definováno

R ∪ S = { t | t ∈ R ∨ t ∈ S }

(2) Rozdíl (difference) relací R a S se označuje R − S a je definován

R − S = { t | t ∈ R ∧ t ∉ S }

Příklad 1.3.8

R S

A B A B
a 1 b 3 ⇒
d 2 c 1
c 1

R ∪ S R − S

A B A B
a 1 a 1
d 2 d 2
c 1
b 3

Tab. 4. Sjednocení a rozdíl relací

(3) Kartézský součin (Cartesian product) relace R stupně n a relace S stupně m se označuje

R × S a je definován

R × S = { rs | r ∈ R ∧ s ∈ S }, kde rs = (r1, r2 , … , rn, s1, s2, … , sm)

Příklad 1.3.9

R S

A B C D E
a 1 x 2 a ⇒
b 1 y 2 b

R × S

A B C D E
a 1 x 2 a
a 1 x 2 b
b 1 y 2 a
b 1 y 2 b

Tab. 5. Kartézský součin

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 16

(4) Projekce (projection) relace R stupně n na atributy A = (i1, i2, … im), kde 1 ≤ ij ≤ n,

ij ≠ ik pro j ≠ k, je seznam indexů různých komponent relace R (sloupce tabulky nebo
alternativně jména atributů), se označuje R[A] a je definována

R[A] = { r[A] | r∈R }, kde r[A] = (ri1, ri2, … , rim pro r∈R

(projekce slouží k výběru sloupců tabulky)

Příklad 1.3.10

R
A B C
a 1 x ⇒
b 2 x

R[A] R[C] R[A,C]

A C A C
a x a x
b b x

Tab. 6. Projekce

(5) Selekce (selection) nebo také restrikce (restriction).

Nechť R je relace, ϕ logická formule sestavená obvyklým způsobem s případným
užitím logických operátorů ∧ ∨ ¬. Pak selekce (výběr) z relace R podle ϕ se označuje
R[ϕ] a je definována

R[ϕ] = {r | r∈R ∧ ϕ (r)}
(selekce slouží k výběru řádků tabulky)

Příklad 1.3.11

R

A B C
1 a 2
3 b 2 ⇒
2 a 2
1 c 1

R[A>2] R[A≤C] R[(A>C)∨ (B=”c”)]

A B C A B C A B C
3 b 2 1 a 2 3 b 2
 2 a 2 1 c 1
 1 c 1

Tab. 7. Selekce

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 17

(1) až (5) tvoří pět základních operací relační algebry, další uvedené operace se dají vyjádřit
pomocí těchto pěti základních.

Jsou to tyto operace:

(6) Průnik (intersection) relací R a S se označuje R ∩ S a je definován

R ∩ S = { t | t ∈ R ∧ t ∈ S }

Příklad 1.3.12

R S

A B A B
a 1 b 3 ⇒
d 2 c 1
c 1

R ∩ S

A B
c 1

Tab. 8. Průnik relací

(7) Θ-spojení (Θ-join)
 Nechť R je relace stupně m, i∈{1,2, … ,m}, S relace stupně n, j∈{1,2, … ,n},
 Θ∈{<, ≤, = ≥, >, ≠}
 Θ-spojení relací R a S podle Θ na i-té komponentě relace R a j-té komponentě relace S

se označuje R[i Θ j]S a je definováno
R[i Θ j]S = {rs | r ∈ R ∧ s ∈ S ∧ r[i] Θ s[j]}

(Θ-spojení je tedy kartézský součin omezený podmínkou Θ, tj. do výsledného spojení
jsou vybrány jen ty řádky, které splňují tuto podmínku)

Příklad 1.3.13

R S

A B C D E
a 1 1 1 x ⇒
b 1 2 2 y
b 2 2 3 z

R [B = D] S

A B C D E
a 1 1 1 x
a 1 2 1 x
b 2 2 2 y

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 18

R [C > D] S

A B C D E
a 1 2 1 x
b 2 2 1 x

R [C < D] S

A B C D E
a 1 1 2 y
a 1 1 3 z
a 1 2 3 z
b 2 2 3 z

Tab. 9. Θ-spojení

Z příkladu je vidět, že pokud bude Θ podmínkou rovnosti, pak výsledné spojení bude
obsahovat 2 shodné sloupce. Zavádí se proto operace:

R[i∗j]S = (R[i = j]S) [1,2, … ,m+j-1, m+j+1, …,m+n]
která automaticky jeden ze shodných sloupců vypouští.

V našem příkladě tedy dostaneme R[B∗D]S

(8) Přirozené spojení (natural join) relací R a S se označuje R[∗]S.

Vzhledem k poměrně složitému formálnímu popisu uvedeme jeho definici pouze
slovně. Přirozené spojení ze součinu R × S vybere ty záznamy, které mají na stejně
pojmenovaných sloupcích stejné hodnoty, přitom stejně pojmenované sloupce se objeví
ve výsledném spojení pouze jednou.

(9) Dělení (division).

Nechť R je relace stupně m a S relace stupně n.

Nechť A = (i1, i2, … ,ik), ij ∈{1,2, … ,m}, j = 1, … ,k, ij ≠ ik pro j ≠ k,
 B = (g1, g2, … ,gt), gj ∈{1,2, … ,n}, j = 1, … ,t, gj ≠ gk pro j ≠ k,
jsou seznamy vybraných atributů relací R, resp. S (atributy zde pro jednoduchost označujeme
přirozenými čísly).

Označme Ā = (j1, j2, … , jm−k), kde jp ∈ {1,2, … , m}−A pro p =1,2, … , m−k,
jp < jk pro p< k (tj. Ā jsou atributy z R, které nebyly vybrány do seznamu A).

Definujme pro r∈R množinu imR (r[Ā]), (image set), která obsahuje všechny doplňky k r[Ā],
které v součinu s r[Ā] tvoří prvek relace R, tedy

imR (r[Ā]) = {y | r[Ā] y ∈ R[Ā, A] }.
Dělení relace R na A relací S na B se označuje R[A : B]S a je definováno:

R[A : B]S = {r[Ā] | r∈R ∧ (S[B] ⊆ imR (r[Ā])}.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 19

Lze dokázat, že platí
R[A : B]S = R[Ā] − ((R[Ā] × S[B]) − R[Ā, A]) [1,2, … ,m−k]

Příklad 1.3.14 Image set

R

D1 D2 D3 D4 D5
1 a x f 2
2 a y g 3
1 b x f 2
2 c y h 3
3 a x f 1
1 b y f 2
2 a x h 3

Nechť A ={D3, D2, D4}, pak Ā = {D1, D5}. Je-li r = (1, a, x, f, 2), pak r[A] = (x, a, f),
r[Ā] = (1,2), a tedy imR(r[Ā]) = imR(1,2) = {(x, a, f), (x, b, f), (y, b, f)}.

Příklad 1.3.15
Úkolem je pro údaje zadané v tabulce 10 zjistit příjmení a jména všech kupujících, kteří
kupují všechny typy výrobků.

Jestliže položíme A = {příjmení, jméno}, B = {kód_zboží}, pak řešení získáme operací dělení

KUPUJÍCÍ [Ā : B] VÝROBEK, tzn. operací dělení
KUPUJÍCÍ [{kód_zboží}:{kód_zboží}] VÝROBEK.

KUPUJÍCÍ VÝROBEK
příjmení jméno kód-zboží kód-zboží výrobní-

cena
prodejní-
cena

Hora Jan X X 5 8
Kos Petr Y Y 4 4
Novák Ivo X Z 6 9
Hora Jan Y
Kos Petr X
Hora Jan Z

KUPUJÍCÍ [kód-zboží : kód-zboží]VÝROBEK
příjmení
Hora

Tab. 10. Příklad operace dělení

Ověření:

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 20

R= KUPUJÍCÍ, A={příjmení,jméno},
Ā={kód-zboží}, B={kód-zboží}

R[Ā] ={ KUPUJÍCÍ}[příjmení] ={Hora,Kos,Novák}

imR (r[Ā]):
imR (Hora,Jan) ={X,Y,Z}
imR (Kos,Petr) ={X,Y}
imR (Novák,Ivo) ={X}

S[B]={VÝROBEK}[kód-zboží]={X,Y,Z},
podmínce S[B] ⊆ imR(r[Ā]) vyhovuje pouze Hora.

Poznámka:

• Relační dělení je spíše dělení ve smyslu rozdělování (vyber ty, kteří se ti hodí), než
dělení v aritmetickém smyslu. Relační dělení vyjadřuje univerzální kvantifikátor ∀.

• Spojení obsahuje podmínku pro každý nebo podmínku typu existuje, a tedy může
vyjadřovat existenční kvantifikátor ∃.

Poznámka:
Relace v relačním modelu uvažujeme výhradně konečné, to samozřejmě tedy platí i o
operandech operací relační algebry. Rovněž relace, které jsou výsledkem uvedených operací
jsou konečné. Proto do relační algebry nezahrnujeme např. operaci doplňku ~R ={r | r ∉ R }.

Z definic operací je vidět, že některé operace lze vyjádřit pomocí jiných operací.

i) Θ-spojení lze definovat pomocí kartézského součinu a selekce,
ii) přirozené spojení pomocí kartézského součinu, selekce a projekce,
iii) průnik lze vyjádřit několika způsoby pomocí rozdílu a případně sjednocení:

* R ∩ S = R ∪ S − (R − S) − (S − R),
* R ∩ S = R − (R − S),
* R ∩ S = S − (S − R).

Odtud vyplývá, že minimální množina operací relační algebry je určena např. takto:
{sjednocení, kartézský součin, rozdíl, selekce, projekce}.

R − S S − R

R

S

R ∩ S

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 21

1.3.4 Relační algebra jako dotazovací jazyk

Příklad 1.3.16

Uvažujme relace

UCHAZEČI(rodné-č, jméno, příjmení, místo, ulice, čp, PSČ)
JAZYKY(kód, název)
ZNALOSTI(rodné-č, kód, stupeň-znalosti).

Stupeň znalosti budeme klasifikovat jako "začátečník", "pokročilý" a "velmi pokročilý".

Máme určit odpovědi na tyto dotazy:

(D1) Zjistit základní údaje o všech uchazečích.

Q : = UCHAZEČI
(D2) Rodná čísla, jména a příjmení všech uchazečů z Brna.

Q : = (UCHAZEČI[místo="Brno"]) [rodné-č, jméno, příjmení]
(D3) Jména a příjmení uchazečů, kteří jsou velmi pokročilí v angličtině.

Q : = {UCHAZEČI [∗] (ZNALOSTI [kód="Eng" AND stupeň-znalosti="velmi
pokročilý"])}[jméno,příjmení]

(D4) Jazyky, v nichž je uchazeč zadaného rodného čísla přinejmenším pokročilý.
Q : = { (ZNALOSTI [rodné-č=zadané-rodné-číslo AND

(stupeň-znalosti="pokročilý" OR stupeň-znalosti="velmi pokročilý")])
[∗] JAZYKY}[název]

(D5) Uchazeči, kteří jsou velmi pokročilí v alespoň jednom jazyku a v kterém.
Q : = {UCHAZEČI [∗] (ZNALOSTI [stupeň-znalosti="velmipokročilý"]) }

[jméno,příjmení,kód]
(D6) Uchazeči, kteří neovládají žádný (cizí) jazyk.

neznají žádný = všichni − ti, co znají alespoň 1 jazyk
Q : = (UCHAZEČI [rodné-č] − ZNALOSTI [rodné-č] [∗]

(UCHAZEČI [rodné-č, jméno, příjmení])
(D7) Uchazeči, kteří ovládají pouze angličtinu.

znají pouze angličtinu = ti, co znají angličtinu − ti, co znají jiný jazyk
Q : = { (ZNALOSTI[kód="Eng"]) [rodné-č] − (ZNALOSTI [kód<>"Eng"])

 [rodné-č] }
[∗] (UCHAZEČI[rodné-č, jméno, příjmení])

(D8) Uchazeči, kteří mají alespoň základní vlastnosti všech jazyků.
 Q3 ti, co znají všechno = ti, co něco znají − ti, co něco neznají
 Q2: ti, co něco neznají = všichni znají vše − ti, co něco znají
 Q1: všichni znají vše = kartézský součin UCHAZEČI [rodné-č] × JAZYKY[kód]

 Q1 : = UCHAZEČI [rodné-č] × JAZYKY[kód]
 Q2 : = Q1 − ZNALOSTI [rodné-č, kód]
 Q3 : = Q1 [rodné-č] − Q2 [rodné-č]
 Q : = Q3 [∗] (UCHAZEČI [rodné-č, jméno, příjmení])

Totéž pomocí operace dělení

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 22

 Q1 : = ZNALOSTI [{A1, A2, … }−{ rodné-č } : kód] JAZYKY
 Q : = Q1 [∗] (UCHAZEČI [rodné-č, jméno, příjmení])

1.3.5 Návrh struktury relační databáze, normalizace
V dalším omezíme třídu relací, které budeme používat k zobrazení výseku reálného světa v
databázi.

Příklad 1.3.17
Předpokládejme, že chceme sledovat údaje organizace, a to z jakých oddělení se skládá, kdo
je na odděleních vedoucím a kteří pracovníci jsou na jednotlivá oddělení zařazeni. Pro
jednoduchost budeme pracovníky označovat pouze příjmením a předpokládáme, že tato
příjmení jsou jednoznačná v rámci celé organizace.

Tyto údaje bychom tedy mohli vyjádřit relací ZAMĚSTNANCI(oddělení,vedoucí,pracovníci)

ZAMĚSTNANCI
oddělení vedoucí pracovníci
Konstrukce Novák Novotný, Navrátil, Sedláček, Janíček, ...
Projekce Růžička Karas, Kos, Sova, ...
Účtárna Konečná Nová, Stará, Hrubá, ...
… … …

Tab. 11. Relace ZAMĚSTNANCI v 0. normální formě

Z tabulky 11 je vidět, že organizace i správa dat je velmi neefektivní:

• Šířka pole pro pracovníky se musí nastavit podle oddělení s nejvyšším počtem
pracovníků (resp. s nejvyšším počtem znaků pro jejich jména), a na odděleních s malým
počtem pracovníků bude pole jen málo využito.

• Je obtížné zjistit, kolik zaměstnanců mají jednotlivé oddělení.
• Modifikace údajů o pracovnících je složitá.
• Řešení přestává být zvládnutelné, jestliže bychom chtěli o pracovnících sledovat více

údajů, např. také křestní jméno, rodné číslo, místo, ulici, číslo popisné a PSČ jejich
bydliště apod.

Všechny zmíněné problémy byly způsobeny tím, že relace ZAMĚSTNANCI ve sloupci
pracovníci neobsahuje "jednoduché hodnoty", ale seznamy údajů. Proto se v relačním
modelu databáze uvažují pouze relace v 1. normální formě (1NF) (first normal form), tj.
relace, jejichž domény jsou množinami v jistém smyslu jednoduchých hodnot, např. množiny
čísel, znaků, slov v nějaké abecedě ap. Prvkem tabulky nesmí být pole ani záznam, hodnoty
atributů musí být atomické. Relaci, která není v 1NF (nenormalizovanou relaci), lze za
předpokladu, že klíč relace neobsahuje atributy, jejichž domény jsou množinami relací,
zpravidla nahradit jednou nebo několika relacemi v 1NF se stejným informačním obsahem.

Nenormalizovanou relaci z příkladu můžeme nahradit jednou relací v 1NF, jak je vidět z
tabulky zaměstnanců
.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 23

ZAMĚSTNANCI
oddělení vedoucí pracovník
Projekce Růžička Karas
Projekce Růžička Kos
Projekce Růžička Sova
… … …
Konstrukce Novák Novotný
Konstrukce Novák Navrátil
Konstrukce Novák Sedláček
Konstrukce Novák Janíček
… … …
Účtárna Konečná Nová
Účtárna Konečná Stará
Účtárna Konečná Hrubá
… … …
… … …

Tab. 12. Relace ZAMĚSTNANCI v 1. normální formě

Je vidět, že i toto řešení je neefektivní. Jeho nedostatky jsou tyto:

1. Redundance (redundancy), (nadbytečnost).
Informace o tom, jak se oddělení jmenuje a kdo je jeho vedoucím, se v tabulce vyskytuje
tolikrát, kolik má oddělení pracovníků.

2. Nebezpečí nekonzistence (risk of inconsistency) při aktualizaci.
Z existence redundance vyplývá i složitější oprava údajů. Je-li např. jmenován nový
vedoucí projekce nebo vedoucí účtárny změní jméno, případně některé oddělení změní
název, musí se tento údaj opravit u všech pracovníků příslušného oddělení. Pokud se to
provede nedůsledně, pak se data stanou nekonzistentní (totéž oddělení má dva vedoucí,
resp. dva různé názvy).

3. Anomálie vložení (insertion anomaly).
Do tabulky nelze vložit informaci o nově zřízeném oddělení, pokud ještě nemá žádné
pracovníky.

4. Anomálie zrušení (deletion anomaly).
Pokud všichni pracovníci některého oddělení odejdou, pak při jejich zrušení v tabulce
zrušíme i informaci o vlastním oddělení, což není žádoucí.

Z uvedeného lze již intuitivně odvodit, že obvykle nevystačíme s jedinou tabulkou a je nutné
původní tabulku rozložit na několik tabulek v 1NF, které ovšem musí obsahovat spojující
údaje, aby nedošlo ke ztrátě informačního obsahu.

V našem příkladě můžeme rozdělit výchozí relaci ZAMĚSTNANCI na dvě relace
ZAM1(oddělení,vedoucí) a ZAM2(oddělení,pracovník).

Funkční závislosti

Definice 4
Nechť A a B jsou atributy relace, D(A) je doména atributu A a D(B) je doména atributu B a
nechť f je funkce měnící se v čase taková, že

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 24

f : D(A) → D(B).

[V matematickém smyslu není funkce, protože je dovoleno, aby se v čase relace v databázi
měnily].

Jestliže tedy f znamená množinu uspořádaných dvojic { (a, b) | a∈D(A), b∈D(B) }, pak v
každém bodě časové osy existuje nejvýše jedna hodnota b z domény D(b).

Abychom rozlišili f od funkce v matematickém smyslu, budeme ji nazývat funkční závislost
(functional dependency).

Kvůli stručnosti budeme místo f : D(A) → D(B) psát f : A → B .

Existuje-li funkční závislost f : A → B, pak řekneme, že doména B je funkčně závislá nebo
stručně závislá na doméně A a řekneme, že A funkčně determinuje nebo stručně determinuje
doménu B.

Existuje-li pouze jediná funkční závislost z domény A do domény B, budeme stručně psát
A → B, tj. A funkčně determinuje B.

Označení A ¬→ B znamená, že neexistuje žádná funkční závislost z A do B.

Platí-li A → B a současně B → A, pak v každém okamžiku existuje mezi A a B jednoznačná
korespondence (tj. korespondence 1:1), což budeme zapisovat A ⇔ B.

Definice 5
Jsou-li X, Y podmnožiny množiny atributů A, pak řekneme, že Y funkčně závisí na X (nebo X
funkčně determinuje Y), píšeme X → Y, když pro každou možnou aktuální relaci R platí, že
mají-li libovolné dva prvky relace R stejné hodnoty atributů (množiny atributů) X, pak mají i
stejné hodnoty atributů (množiny atributů) Y. Formálně zapsáno tedy

 X → Y na R(A) ⇔ ∀ r1, r2 ∈ R, (r1.X = r2.X) ⇒ (r1.Y = r2.Y) (1)

Poznámka:

Zde je důležité si uvědomit, že funkční závislost je definována na základě vlastností
všech možných aktuálních relací (jinými slovy pro všechny populace relace), a není tedy
možné soudit na funkční závislost z vlastností jediné (třeba právě nyní) aktuální relace.
Naopak je z jediné aktuální relace možné ukázat neplatnost funkční závislosti mezi některými
atributy (resp. množinami atributů).

Definice 6
Jestliže je dána množina funkčních závislostí F, pak řekneme, že F logicky implikuje závislost
X → Y (resp. X → Y je funkční závislost (logicky) odvoditelná z F), jestliže je splněna ve
všech relacích, v nichž jsou splněny závislosti z F. Množina všech funkčních závislostí
odvoditelných z F se nazývá uzávěr (closure) množiny F, značíme jej F+.

Vzhledem k nekonečnému počtu takových relací prakticky nelze F+ určovat podle definice.
Snahou tedy je k pojmu logické implikace (logical implication) najít ekvivalentní nástroj pro

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 25

výpočet F+, resp. pro určení, zda daná závislost X → Y patří do F+ či nikoliv. V klasické
teorii relačních databází k tomuto účelu existují tři odvozovací pravidla (inference rules)
známá jako Armstrongovy axiomy (Armstrong's axioms). Tato pravidla splňují požadované
vlastnosti axiomatického systému. Tj. jsou:
(i) bezesporná (nebo také korektní) (sound), to znamená, že pomocí nich lze z F odvodit

pouze závislosti patřící do F+;
(ii) úplná (complete), dovolují odvodit z F všechny závislosti z F+ a
(iii) nezávislá (independent), tj. odstraněním kteréhokoliv axiomu porušíme platnost úplnosti.

Nechť X, Y, Z jsou podmnožiny množiny atributů A. Pak platí:
A1: Pravidlo inkluze (Inclusion rule).

Jestliže Y ⊆ X, pak X → Y .
A2: Pravidlo zvětšení (Augmentation rule).

Jestliže X → Y, then XZ → YZ (XZ zastupuje X ∪ Z).
A3: Pravidlo tranzitivity (Transitivity rule).

Jestliže X → Y a Y → Z, pak X → Z.

Aplikací Armstrongových axiomů lze určit další užitečná pravidla pro odvozování funkčních
závislostí (W v posledním z nich označuje podmnožinu množiny atributů A):

P1: Pravidlo kompozice (Union rule).

Jestliže X → Y a X → Z , pak X → YZ.
P2: Pravidlo dekompozice (Decomposition rule).

Jestliže X → YZ , pak X → Y a X → Z.
P3: Pravidlo pseudo-tranzitivity (Pseudo-transitivity rule).

If X → Y and YW → Z, then XW → Z.

Důkaz [P1] Z prvního předpokladu X → Y pravidla P1 dostaneme podle A2, že XZ → YZ.
Analogicky z druhého předpokladu X → Z pravidla P1 dostaneme podle A2, že
XX → XZ, a tedy X → XZ. Konečně z X → XZ a XZ → YZ dostaneme podle
A3, že X → YZ.

 [P2] Z pravidla A1 plyne platnost YZ → Y a YZ → Z. Odtud a z předpokladu X → YZ
pravidla P2, aplikujeme-li pravidlo A3, přímo vyplývá existence funkčních
závislostí X → Y a X → Z.

 [P3] Z prvního předpokladu X → Y pravidla P3 dostaneme aplikací pravidla A2
platnost XW → YW, což společně s dalším předpokladem YW → Z pravidla P3
implikuje podle pravidla A3 existenci funkční závislosti XW → Z, což jsme
chtěli dokázat.

S pojmem funkční závislosti se úzce váže pojem klíče relačního schématu.

Definice 7
Je-li dáno relační schéma R(A) a K ⊆ A, pak K je klíčem (key) relačního schématu R(A),
jestliže splňuje následující vlastnosti:
 (V1) K→ A.
 (V2) Neexistuje K' ⊆ K tak, že K' → A.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 26

První vlastnost vyjadřuje jednoznačnost, druhá neredundanci. S využitím pojmu uzávěr lze
klíč alternativně definovat takto:

Je-li dáno relační schéma R(A) a K ⊆ A, pak K je klíčem relačního schématu R(A), jestliže
splňuje následující vlastnosti:

 (V1') K→ A ∈ F+.
 (V2') Pro každé K' ⊆ K platí K' → A ∉ F+.

Speciální funkční závislosti, normální formy relací
V metodice návrhu datových struktur hrají důležitou roli pojmy úplné a částečné funkční
závislost (full, partial functional dependence).

Definice 8
Nechť R(A) je relační schéma, X, Y jsou podmnožiny množiny atributů A. Řekneme, že:

• Y úplně funkčně závisí na X, X→ Y, jestliže neexistuje X', X' ⊆ X, X'≠∅ tak, že X' → Y.
• Y částečně funkčně závisí na X, X → Y, jestliže existuje X', X'⊂ X, X'≠∅ tak, že X'→ Y.

S využitím těchto pojmů lze pak vlastnost (V2') v druhé variantě definice klíče vyjádřit takto:

 (V2'') A úplně funkčně závisí na K.

Existence částečných funkčních závislostí v relačním schématu způsobuje výše zmíněné
problémy: nebezpečí nekonsistence při modifikaci a aktualizační anomálie (update
anomalies) - anomálie vložení a anomálie zrušení. Příčinou prvního z nich je redundance dat.

Příklad 1.3.18
Jestliže např. v tabulce odpovídající relaci z předchozího příkladu je více řádků se stejnou
hodnotou atributu A1, pak při její změně (reprezentující např. změnu jména, adresy apod.) je
třeba ji promítnout do všech příslušných řádků, jinak se informace stanou nekonsistentními
(tatáž osoba se pak může vyskytovat v tabulce se dvěma různými jmény, atd.).

Anomálie vložení nastává tehdy, když nemůžeme do tabulky vložit jinak užitečnou informaci,
pokud k ní není určena hodnota klíče.

Příklad 1.3.19
Pokud například v jediné tabulce společně zpracováváme údaje doktorandů (rodné číslo,
jméno, příjmení) s uvedením názvu předmětu, který si vybrali ze skupiny volitelných
předmětů do svého studijního plánu, pak nelze vložit informaci o předmětu, jestliže si jej
nikdo nevybral.

Naopak, jestliže jediný student si vybral určitý předmět a pak byl z tabulky vyřazen (např.
ukončil studium), zruší se s údaji studenta i informace o předmětu. Tento nežádoucí jev se
označuje anomálie zrušení. Vzhledem k tomu, že studenti volí větší počet předmětů není
klíčem pouze rodné číslo ani pouze kód předmětu, protože ten si mohlo zapsat více studentů,
ale oba atributy (rodné číslo, kód předmětu), přičemž informace o termínu složení zkoušky

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 27

bude záviset na celém klíči, údaje vážící se k studentovi závisí pouze na rodném čísle studenta
(tj. na části klíče) a údaje o předmětech pouze na kódu předmětu.

Proti uvedeným problémům se br níme rozkladem výchozího schématu na více schémat, která
neobsahují částečné funkční závislosti.
Tj. atributy, které úplně závisí na celém klíči umístíme se všemi složkami klíče do jedné
schématu a do dalšího (dalších) vložíme atributy s částí klíče, na níž závisí.

V uvedeném příkladu tedy původní schéma rozložíme na 3 schémata:
STUDENTI(rodné-číslo}, jméno, příjmení),
PŘEDMĚTY(kód-předmětu, název),
ZÁPIS-PŘEDMĚTU(rodné-číslo, kód-předmětu, termín zkoušky).

Podtržením jsou označeny klíčové atributy. V konkrétním příkladu byly všechny uvedené
problémy odstraněny. V obecném případě tomu však tak být nemusí. V některém z
rozložených schémat se mohou ještě vyskytovat tranzitivní funkční závislosti, které způsobují
tytéž problémy jako částečné funkční závislosti. Jejich definice je následující:

Definice 9
Nechť X, Y jsou podmnožiny množiny atributů A, C je jednoduchý atribut, který se
nevyskytuje v X ani v Y. Nechť dále platí X→Y, Y→ C, a neplatí Y→ X. Pak řekneme, že C
tranzitivně funkčně závisí na X.

Tranzitivní závislost odstraníme další dekompozicí na dvě relační schémata. Závislost
X→Y→C odstraníme vytvořením dvou projekcí, z nichž jedna obsahuje atributy X, Y a druh
atributy Y, C.

Příklad 1.3.20
NEMOCNICE(pacient-ID, jméno-pacienta, příjmení-pacienta,
zaměstnavatel, adresa-zaměstnavatele, datum-přijetí, čas-přijetí, přijímající-lékař,
oddělení, diagnóza)

klíč= (pacient-ID, datum-přijetí, čas-přijetí)

funkční závislosti:

pacient-ID → jméno-pacienta,
pacient-ID → příjmení-pacienta,
pacient-ID → zaměstnavatel → adresa-zaměstnavatele,
(pacient-ID, datum-přijetí, čas-přijetí) → přijímající-lékař,
(pacient-ID, datum-přijetí, čas-přijetí) → oddělení,
(pacient-ID, datum-přijetí, čas-přijetí) → diagnóza.

Dekompozice:

PŘIJETÍ(pacient-ID, datum-přijetí, čas-přijetí, přijímající-lékař, diagnóza)
PACIENT(pacient-ID, jméno-pacienta, příjmení-pacienta)
LÉKAŘ(přijímající-lékař, oddělení)
ZAMĚSTNAVATELÉ-PACIENTŮ(zaměstnavatel, adresa-zaměstnavatele)
ZAMĚSTNÁN(pacient-ID, zaměstnavatel)

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 28

Vlastnosti relačních schémat jsou klasifikovány jako normální formy (normal forms). 1.
normální forma (1NF) byla již zmíněna v úvodu.

Definice 10
Řekneme, že relační schéma je v:

• 2. normální formě (2NF), jestliže je v 1NF a neobsahuje žádné částečné funkční
závislosti neklíčových atributů na klíči;

• 3. normální formě (3NF), jestliže je v 2NF a žádný neklíčový atribut není tranzitivně
závislý na žádném klíči;

• Boyce-Coddově normální formě (BCNF), když je v 3NF a neobsahuje ani tranzitivní
závislost klíčových atributů (jednoho klíče) na (jiném) klíči.

Je definována i 4. normální forma (4NF), která se odkazuje na další typ funkční závislost, tzv.
multizávislost. Vztah mezi relacemi z hlediska normální formy ukazuje následující obrázek.

Definice11
Atribut Y v R(A) multizávisí na atributu X, jestliže platí, že každá hodnota atributu X určuje
množinu hodnot atributu Y a tato množina přitom nezávisí na hodnotě jiných atributů v R(A).
Píšeme X→→Y. Formálně:
X→→Y ⇔df
∀ r1, r2 ∈ R (r1.X = r2.X ⇒ ∃ v1, v2 ∈ R , kde
 (a) v1.X = v2.X = r1.X = r2.X
 (b) (v1.Y = r1.Y) ∧ (v1. XY = r2. XY)
 (c) (v2.Y= r2.Y) ∧ (v2. XY = r1. XY))

To znamená, že zaměníme-li hodnoty atributu Y v n-ticích r1, r2, pak tyto modifikované n-tice
opět musí být v instanci relace R.

Příklad 1.3.21
ROZVRH(učitel, předmět, učebna)

Učitel může učit více předmětů, každý předmět může být vyučován ve více učebnách. Dané
relační schéma obsahuje dvě multizávislosti:

4NF
BCNF
3NF
2NF
1NF

0NF

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 29

učitel →→ předmět a předmět →→ učebna. Tato dvojice multizávislostí způsobuje
následující problémy:

Jestliže některý všeobecný předmět může být vyučován např. v 10 učebnách a přibude nový
učitel vyučující tento předmět, pak je nutné přidat 10 nových záznamů.

Přibude-li nová učebna pro výuku určitého předmětu, pak je nutné přidat tolik řádků, kolik
učitelů učí tento předmět.

Uvedené problémy odstraníme rozkladem výchozího relačního schématu na dvě schémata:

R1(učitel, učebna)
R2(předmět, učebna)

Definice 12
Relace R je v 4. normální formě (4NF), jestliže v případě, že obsahuje multizávislost
X →→ Y, kde not(Y⊆X) a XY nezahrnuje všechny atributy A, pak X obsahuje i klíč relace A.

Shrneme-li tento odstavec, pak při návrhu datových struktur rozkladem relačního schématu na
několik relačních schémat postupně odstraňujeme všechny nežádoucí funkční závislosti, které
způsobují problémy s nekonsistencí, resp. aktualizační anomálie.
Tento postup se označuje jako normalizace a cílem je, aby všechna výsledná relační schémata
byla v 4NF nebo alespoň minimálně v 3NF. Při rozkladu je třeba dbát na to, aby byl
bezeztrátový (lossless) a zachovával vazby mezi souvisejícími údaji. To znamená, abychom
operací spojení (join) přes společné atributy rozložených schémat byli schopni rekonstruovat
původní relační schéma.

Definice 13
Nechť R(A) je relační schéma a ρ ={R(A1), R2(A2)} je jeho rozklad a F je množina funkčních
závislostí. Řekneme, že při rozkladu nedojde ke ztrátě informace vzhledem k F, jestliže pro
každou relaci R(A) splňující F platí:
R = R1(A1) [∗] R2(A2).

Věta 1 (dekompoziční teorém)
Jestliže v R(A1, A2, A3) platí funkční závislost A1 → A2 , pak R můžeme bez ztráty informace
rozložit do projekcí R1(A1, A2) a R2(A1, A3).

Věta 2
Nechť ρ ={R(A1), R2(A2)} je rozklad relačního schematu R(A) a F je množina funkčních
závislostí. Pak při rozkladu ρ nedochází ke ztrátě informace vzhledem k F právě tehdy, když:
(A1 ∩ A2) → A1 − A2 nebo (A1 ∩ A2) → A2 − A1.

Příklad 1.3.22
UČITELÉ(jméno, ústav, předmět, úvazek)
F = {jméno → ústav, (jméno, předmět) → úvazek}

ρ = { UČ(jméno, ústav), UČ-PŘ(jméno, předmět, úvazek) }

{jméno, ústav}∩{jméno, předmět, úvazek}= {jméno}

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 30

{jméno, ústav} − {jméno, předmět, úvazek}= {ústav}

Odtud tedy podle předchozí věty je ověřeno, že tento rozklad je bezeztrátový.

Rozpoznání funkčních závislostí tvoří základ porozumění významu (sémantiky) dat a
jejich odstranění vede k efektivnímu návrhu databáze.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 31

2. Dotazovací jazyk SQL

SQL (Structured Query Language)

2.1. Výběrový dotaz

SELECT [ALL | DISTINCT | DISTINCTROW | [TOP n [PERCENT]]]

{* | tabulka.* | [tabulka.] položka1 [AS alias1]
 [,tabulka.] položka2 [AS alias2]
 [,...] }

 FROM {1tabulka1 [AS alias1t] |
2výběrový-dotaz1 [AS alias1d] |
3=1|2} [LEFT | RIGHT | INNER] JOIN

tabulka2 [AS alias2t] ON spojovací-podmínka
[IN externí-databáze] }

[,{...}]
 [WHERE vyhledávací-podmínka}]
 [GROUP BY klíč-agregace]

 [HAVING vyhledávací-podmínka-skupin]
 [ORDER BY {název-sloupce | číslo-sloupce [ASC | DESC] }

 [,{...}]
 [WITH OWNERACCESS OPTION]

spojovací-podmínka

• tabulka1.položka1{= |<> | < | <= | > | >= } tabulka2.položka2

vyhledávací-podmínka

• výraz1 {= |<> | < | <= | > | >= } výraz2
• výraz [NOT] BETWEEN dolní AND horní
• výraz [NOT] IN množina-hodnot
• výraz [NOT] LIKE vzorový-řetězec
• výraz {= |<> | < | <= | > | >= } ALL (poddotaz)
• výraz {= |<> | < | <= | > | >= } ANY | SOME
• (poddotaz)
• výraz [NOT] IN (poddotaz)
• [NOT] EXISTS (poddotaz)

Příklady
jméno LIKE "K*"
jméno LIKE "J?rka"
jméno LIKE "P[A-F]###"
jméno IN ("Jan","Jiří","Pavel")
jméno IN ([Osoby].[Jméno])

Poznámka:

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 32

Jestliže se v klauzuli FROM uvede několik tabulek bez omezujících kritérií (v klauzulích
WHERE, resp v JOIN), pak je výsledkem dotazu kartézský součin těchto tabulek. To je
možné ve speciálních případech využít, jak ukazuje následující příklad.

Příklad:

ŠACH(hráč-ID, jméno, příjmení)
Úkolem je vygenerovat hrací listinu hráčů systémem každý s každým.

Při řešení příkladu otevřeme tabulku dvakrát, podruhé s náhradním jménem. Předpokládáme
přitom jednokolový hrací systém. Jestliže bychom chtěli vygenerovat hrací listinu pro
dvoukolový hrací systém, pak stačí operátor < nahradit operátorem nerovnosti <>.

SELECT šach.jméno, šach.příjmení, š2.jméno, š2.příjmení

FROM šach, šach AS š2
WHERE šach.hráč-ID < š2.hráč-ID

Poznámka:

SELECT ∗

FROM Tab1,Tab2
WHERE Tab1.ID = Tab2.ID

je zpracováno Accessem stejně jako
SELECT ∗

FROM Tab1 INNER JOIN Tab2 ON Tab1.ID=Tab2.ID

Příklad

ODDĚLENÍ(č-oddělení, název-oddělení)
PRACOVNÍCI(rodné-číslo, jméno, příjmení, č-oddělení)
1. INNER JOIN - kombinuje všechny záznamy, které splňují operaci spojení, tj. vyberou se

všechna oddělení, na nichž jsou nějací pracovníci
2. LEFT JOIN - vybrat všechna oddělení, i když na některých nemusí být žádní pracovníci
3. RIGHT JOIN - vybrat všechny pracovníky včetně těch, kteří nejsou přiřazeni na žádná

oddělení (např. externisté).

Příklad: V seznamu vystupujících informací nemusí být uvedeny pouze položky tabulky, ale
také i složitější výrazy.

OSOBY(rodné-číslo, jméno, příjmení, ...)
ZAMĚSTNÁNÍ(rodné-číslo, organizace, datum-nástupu, datum-odchodu, ...)

Zjistit seznam osob, jejich zaměstnání a počet let odpracovaných u jednotlivých
zaměstnavatelů a vypsat je seřazené abecedně.

SELECT DISTINCTROW osoby.příjmení, osoby.jméno, zaměstnání.organizace,

Val(Format(Iif(IsNull(zaměstnání.datum-odchodu,
Date()−zaměstnání.datum-nástupu,

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 33

zaměstnání.datum-odchodu−zaměstnání.datum−nástupu),
"yy")) AS "počet odpracovaných let"

FROM osoby LEFT JOIN zaměstnání
ONosoby.rodné-číslo=zaměstnání.rodné-číslo

ORDER BY osoby.příjmení, osoby.jméno

2.1.1 Agregační funkce

název agregační funkce význam
COUNT(*) počet záznamů včetně těch, které obsahují

Null hodnoty
COUNT(položka) počet záznamů, neuvažují se položky

s hodnotou Null
AVG(výraz) aritmetický průměr
SUM(výraz) součet
MIN(výraz) minimální hodnota
MAX(výraz) maximální hodnota
STDEV(výraz) směrodatná odchylka základního souboru

číselných výrazů
STDEVP(výraz) odhad směrodatné odchylky základního

souboru ze směrodatných odchylek skupin
vytvořených pomocí GROUP BY

VAR(výraz) rozptyl základního souboru číselných výrazů
VARP(výraz) odhad rozptylu základního souboru z rozptylů

skupin vytvořených pomocí GROUP BY

Tab. 13. Agregační funkce

Příklad:
VOLITELNÉ-PŘEDMĚTY(student, název-předmětu, ročník, semestr, ...)

Vypsat seznam předmětů, do nichž se přihlásilo alespoň 10 studentů a setřídit je sestupně
podle počtu přihlášených.

SELECT název-předmětu, COUNT(název-předmětu)
 FROM volitelné-předměty
 GROUP BY název-předmětu

 HAVING {COUNT(název-předmětu) >=10
 ORDER BY 2 DESC

Agregační klíč může být i vícesložkový, jak ukazuje následující příklad.

Příklad:
Uvažujme relační schéma ŠKOLA(číslo-uč, jméno, příjmení, katedra, funkce, ...).

Chceme určit, seznam kateder a kolik profesorů, docentů a asistentů na jednotlivých
katedrách pracuje.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 34

SELECT katedra, funkce, COUNT() AS počet
 FROM škola
 GROUP BY katedra, funkce

Výsledek vyhodnocení tohoto dotazu má tvar podle tabulky.

katedra funkce počet
Matematika profesor 2
 docent 6
 asistent 17
Fyzika profesor 2
 docent 4
 asistent 11

Tab. 14. Vícevrstvá agregace

Ve vícevrstvé agregaci záleží na pořadí složek agregačního klíče. Jestliže toto pořadí v
předchozím příkladu obrátíme, pak dostaneme odlišný výstup, jak ukazuje jak ukazuje
následující tabulka.

SELECT funkce, katedra COUNT() AS počet
 FROM škola
 GROUP BY funkce, katedra

funkce funkce, počet
profesor Matematika 2
 Fyzika 2
 … …
docent Matematika 6
 Fyzika 4
 … …
asistent Matematika 17
 Fyzika 11
 … …

Tab. 15. Vícevrstvá agregace (podruhé)

2.1.2 SQL s poddotazy

Příklad
FIRMA1(rodné-č, jméno, příjmení, plat, funkce, ...)
FIRMA2(rodné-č, jméno, příjmení, plat, funkce, ...)

Všichni pracovníci z 1. firmy, jejichž plat převýšuje plat všech pracovníků z 2. firmy.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 35

SELECT jméno, příjmení, plat
 FROM firma1
 WHERE plat > ALL (SELECT plat
 FROM firma2)

Všichni pracovníci z 1. firmy, jejichž plat převyšuje plat alespoň jednoho pracovníka z 2.
firmy.

SELECT jméno, příjmení, plat
 FROM firma1
 WHERE plat > ANY (SELECT plat
 FROM firma2)

Příklad
ZÁKAZNÍCI(č-zákazníka, jméno-zák, místo, ulice, čp, PSČ)
FAKTURY(č-faktury, č-zákazníka, datum, ...)
Seznam zákazníků, kteří v tomto roce neplatili žádnou fakturu.

SELECT jméno-zák
 FROM zákazníci
 WHERE č-zákazníka NOT IN
 (SELECT č-zákazníka
 FROM faktury
 WHERE datum >= #01.01.2001#)

Totéž zadání řešit s využitím klauzule EXISTS

SELECT jméno-zák
 FROM zákazníci
 WHERE NOT EXISTS
 (SELECT ∗
 FROM faktury
 WHERE zákazníci.č-zákazníka=faktury.č-zákazníka
 AND datum >= #01.01.2001#)

Příklad

SOUTĚŽ(tým, body, dal, dostal, ...)
a) Sestavit tabulku sportovní soutěže podle získaných bodů, při rovnosti bodů se rozhoduje

podle rozdílu vstřelených a obdržených gólů.
b) Z tabulky Q získané dotazem v předchozím kroku určit tým s největším počtem bodů.

Pokud je více týmů s nejvyšším počtem bodů, pak je všechny vypsat.

SELECT tým, SUM(body) AS Sbody, SUM(dal) AS Sdal, SUM(dostal) AS Sdostal
 FROM soutěž

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 36

 GROUP BY tým
 ORDER BY 2 DESC, SUM(dal−dostal) DESC

SELECT Q.tým, Q.Sbody, (Q.Sdal−Q.Sdostal) AS skóre
 FROM Q ‘ Q ≡ sportovní-tabulka získaná předchozím dotazem
 WHERE Q.Sbody = (SELECT MAX(Q.Sbody)
 FROM Q)
 ORDER BY skóre DESC

V poddotazu je agregační funkce MAX vztažena k celé tabulce, protože zde chybí klauzule
GROUP BY.

Příklad:

ČTENÁŘI(ID-čtenáře, jméno, příjmení, ...)
KNIHY(ISBN, název, autor, nakladatelství ...)
REZERVACE(ID-čtenáře, ISBN)

Jména čtenářů, kteří mají rezervovanou knihu "Zločin a trest".

SELECT čtenáři.jméno, čtenáři.příjmení
 FROM čtenáři
 WHERE čtenáři.ID-čtenáře IN
 (SELECT rezervace.ID-čtenáře
 FROM rezervace
 WHERE rezervace.ISBN =
 (SELECT knihy.ISBN
 FROM knihy
 WHERE knihy.název = "Zločin a trest"))

Existenční a univerzální kvantifikátor v SQL

Výrok "pro každé x platí p(x)" je logicky ekvivalentní výroku "neexistuje x takové, že p(x)
neplatí". Formálně zapsáno:
(∀x) p(x) ≡ ¬ (∃ x)(¬ p(x))

Příklad:
(∀x) (∃ y): y>x
je ekvivalentní
¬ (∃ x)(¬ (∃ y): y>x)

Poznámka:
Je jednodušší "myslet" v univerzálních kvantifikátorech, než v negacích existenčních
kvantifikátorů. V SQL však není definován univerzální kvantifikátor.

Poznámka:
Výraz ... EXISTS (SELECT ∗ ...) se vyhodnotí true, je-li množina daná v závorkách
neprázdná.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 37

Příklad:

Jména čtenářů, kteří mají rezervovanou nějakou knihu.

SELECT čtenáři.jméno, čtenáři.příjmení
 FROM čtenáři
 WHERE čtenáři.ID-čtenáře IN
 (SELECT rezervace.ID-čtenáře
 FROM rezervace)

Zadání předchozího příkladu lze vyjádřit jinými slovy tak, že chceme určit jména čtenářů
takových, že existuje kniha, kterou mají rezervovánu. Při tomto vyjádření se nabízí použití
klauzule EXISTS.
SELECT čtenáři.jméno, čtenáři.příjmení
 FROM čtenáři
 WHERE EXISTS
 (SELECT ∗
 FROM rezervace
 WHERE čtenáři.ID-čtenáře = rezervace.ID-čtenáře)

Čísla čtenářů, kteří mají rezervovánu alespoň jednu knihu, přitom však žádnou z
nakladatelství UNIS. Jinými slovy tedy čísla čtenářů takových, že neexistuje jimi rezervovaná
kniha, která by byla z UNISu.

SELECT rezervace.ID-čtenáře
 FROM rezervace, rezervace AS R2
 WHERE NOT EXISTS
 (SELECT ∗
 FROM rezervace
 WHERE rezervace.ID-čtenáře = R2.ID-čtenáře
 AND ISBN IN
 (SELECT ISBN
 FROM knihy
 WHERE knihy.nakladatelství = "UNIS"))

Čísla čtenářů, kteří mají rezervovány všechny knihy.

SELECT čtenáři.ID-čtenáře
 FROM čtenáři
 WHERE (SELECT DISTINCT ISBN
 FROM rezervace
 WHERE rezervace.ID-čtenáře = čtenáři.ID-čtenáře)
 =
 (SELECT ISBN
 FROM knihy)

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 38

Z povahy problému plyne, že obě množiny jsou identické, jestliže mají stejný počet prvků, a
tedy jej lze řešit i takto:

SELECT čtenáři.ID-čtenáře
 FROM čtenáři
 WHERE (SELECT COUNT(DISTINCT ISBN)
 FROM rezervace
 WHERE rezervace.ID-čtenáře = čtenáři.ID-čtenáře)
 =
 (SELECT COUNT(ISBN)
 FROM knihy)

2.2. Křížový dotaz

TRANSFORM agregační-funkce (výraz1)

výběrový-dotaz
PIVOT výraz2

Příklad:

TRANSFORM SUM(qOsoba.doba) As celková-doba

SELECT qOsoba.rodné-čislo, qOsoba.příjmení, qOsoba.jméno
 FROM Osoba
 GROUP BY qOsoba.rodné-čislo, qOsoba.příjmení, qOsoba.jméno
 PIVOT Osoba.místo

rodné číslo příjmení jméno <> ABB KPS …
 Hora Jan 0 …
 Kos Petr 10 4 …
 Novotný Pavel 5 …
… … … … … …

Tab. 16. Křížový dotaz

Příklad:

TRANSFORM COUNT(Student.ročník)

SELECT Student.ročník
 FROM Student
 GROUP BY Student.ročník

PIVOT Partition(průměrný-prospěch,1,3,0.50)

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 39

ročník 1 : 1.50 1.51 : 2 2.01 : 2.50 2.51 : 3
1 40 150 250 60
2 … … … …
3 … … … …
4 … … … …
5 … … … …

Tab. 17. Křížový dotaz

2.3. Akční (aktualizační) dotazy

Vytvoření nové tabulky.

SELECT [ALL | DISTINCT | ...]

seznam-polí
INTO nová-tabulka [IN externí-databáze]
FROM zdrojová-tabulka

Přidání jednoho záznamu do existující tabulky nebo dotazu.

INSERT INTO { tabulka | dotaz }

[(seznam polí, do nichž se data přidávají)]
VALUES (seznam hodnot)

Výběr záznamů z jedné tabulky a jejich přidání do nových záznamů jiné tabulky.

INSERT INTO { tabulka | dotaz }

[(seznam polí, do nichž se data přidávají)]
SELECT ...
FROM ...
WHERE ...

Změna obsahu položek v tabulce.
UPDATE { tabulka | dotaz }

[IN externí-databáze]
SET název-sloupce = { výraz | NULL }

[, ...]
WHERE vyhledávací-podmínka

Vymazání (zrušení) záznamů v tabulce.

DELETE [∗ | tabulka. ∗ | seznam-sloupců]

FROM ...
[IN externí-databáze]
WHERE vyhledávací-podmínka

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 40

2.4. Definiční dotazy

Vytvoření nové tabulky, definice položek (název, datový typ, velikost).a indexů

CREATE TABLE tabulka

(položka1 datový-typ[(velikost)]
 [NOT NULL] [CONSTRAINT index1…]
 [, položka2 datový-typ[(velikost)]
 [NOT NULL] [CONSTRAINT index2…]
 [, ...]]
 [,CONSTRAINT vícesložkový-index …
 [, ...]])

Klauzule CONSTRAINT
- definice indexů (a vytvoření relace s jinou tabulkou)
 v příkazech CREATE TABLE a ALTER TABLE

• Jednoduchý index

 CONSTRAINT jméno-indexu

{ PRIMARY KEY | UNIQUE | NOT NULL |
 REFERENCES cizí-tabulka [(cizí-pole1, cizí-pole2)]}

• Vícesložkový index (lze jej definovat pouze pro primární klíč.)

 CONSTRAINT jméno-indexu
 { PRIMARY KEY (primární-segm1[,primární-segm2 [, ...]]) |

UNIQUE} (jedinečný-segm1 jedinečný-segm2 [, ...]]) |
NOT NULL (nenulový-segm1[,nenulový-segm2 [, ...]]) |
FOREIGN KEY (ref1[,ref2 [, ...]]) REFERENCES cizí-tabulka

 [(cizí-pole1 [,cizí-pole2
 [, ...]])]}

• Modifikace struktury existující tabulky (přidávání nových položek, resp. odstraňování

existujících položek.

ALTER TABLE tabulka

{ ADD { COLUMN položka datový-typ [(velikost)]
 [NOT NULL}] [CONSTRAINT index …] |

 CONSTRAINT vícesložkový-index …} |
 DROP { COLUMN položka | CONSTRAINT jméno-vícesložkového indexu } }

• Zrušení existující tabulky z databáze, resp. zrušení existujícího indexu z tabulky.

DROP {TABLE tabulka | INDEX index ON tabulka}

• Vytvoření nového indexu pro existující položku v tabulce.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 41

CREATE [UNIQUE] INDEX index

ON tabulka (položka [ASC | DESC]
 [,položka [ASC | DESC], ...])
 [WITH { PRIMARY | DISALLOW NULL | IGNORE NULL}]

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 42

3. Visual Basic pro aplikace MS Access

Definice konstant

[Public | Private] Const název-konstanty [As datový_typ] = konstantní_výraz

Private (implicitní) – konstanta přístupná pouze v modulu, kde byla definována
Public v deklarační sekci (modulu, formuláře nebo sestavy) – globální platnost
datový_typ: Byte, Boolean, Integer, Long, Currency, Single, Date, String, Variant

3.1. Řídící struktury Visual Basicu

3.1.1 Přiřazovací příkazy

proměnná = výraz
Set proměnná ={ New objektový-výraz | Nothing}

3.1.2 Příkazy větvení

If podmínka Then příkaz1 [Else příkaz2]

If podmínka Then
 příkazy1
[Else If podmínka2 Then
 příkazy2
 [Else
 příkazy3]]
End If

Select Case testovaný-výraz
 Case seznam-hodnot-1
 příkazy1
 Case seznam-hodnot-2
 příkazy2
 ...
 [Case Else
 příkazy-n]
End Select

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 43

3.1.3 Příkazy cyklu

For řp = poč To konc [Step krok]
 příkazy1
[Exit For]
 příkazy2
Next řp

Jestliže se tělo cyklu provádí pro všechny prvky nějaké kolekce, je výhodné použít následující
verzi cyklu For.

For Each prvek In skupina
 příkazy1
[Exit For]
 příkazy2
Next prvek

Příklad:
Určení názvů všech otevřených formulářů a prvků v nich obsažených. Pro srovnání ukážeme
řešení příkladu pro obě verze cyklu For.

Sub VýpisNázvů1()
 Dim nf As Integer, nc As Integer, i As Integer, j As Integer
 Dim s As String
 Dim frm As Form
 s = ""
 Set nf = Forms.Count
 If nf > 0 Then
 For i = 0 To nf−1
 Set frm = Forms(i)
 s = s & frm.Name & Chr$(13) & Chr$(10)
 nc = frm.Count
 If nc > 0 Then
 For j = 0 To nc−1
 s = s & " " & frm(j).Name & Chr$(13) & Chr$(10)
 Next j
 Else
 s = s & " ve formuláři nejsou žádné prvky" & Chr$(13) & Chr$(10)
 End If
 Next i
 Else
 s = s & "Nejsou otevřeny žádné formuláře" & Chr$(13) & Chr$(10) & Chr$(13) _

& Chr$(10)
 End If
 MsgBox s
End Sub

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 44

Sub VýpisNázvů2()
 Dim s As String
 Dim frm As Form, ctl As Control
 s = ""
 Set nf = Forms.Count
 If Forms.Count > 0 Then
 For Each frm In Forms
 s = s & frm.Name & vbCrLf
 If frm.Count > 0 Then
 For Each ctl In frm.Controls
 s = s & vbTab & ctl.Name & vbCrLf
 Next ctl
 Else
 s = s & vbTab & "ve formuláři nejsou žádné prvky" & vbCrLf
 End If
 Next frm
 Else
 s = s & "Nejsou otevřeny žádné formuláře" & vbCrLf
 End If
 MsgBox s
End Sub

Do {While | Until} podmínka
 příkazy1
 [Exit Do]
 příkazy2
Loop

Do
 příkazy1
 [Exit Do]
 příkazy2
Loop {While | Until} podmínka

While podmínka
 příkazy
Wend

3.1.4 Příkazy skoku

• Nepodmíněný skok na jiný příkaz v proceduře nebo funkci
 GoTo {návěští | číslo-řádku}

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 45

 Příklad
 GoTo nav
 ...
 nav:

• Podmíněný skok při vyhodnocení chyby
 On Error {GoTo identifikátor-řádku | Resume [Next] | GoTo 0}

• Je-li uvedeno pouze Resume, provede se skok na příkaz, který způsobil chybu a Access
se pokusí jej znovu provést.

• Konstrukce Resume Next zachycuje chyby, přitom se však pokračuje v provádění
následujícého příkazu.

• Jestliže je použito GoTo 0, pak je zachycování chyb v aktuální proceduře vypnuto a
chyba je předána chybové rutině ve volající proceduře. Pokud žádná předcházející
chybová rutina neexistuje, otevře se chybové dialogové okno.

Poznámka:
V chybové rutině (podprogramu ošetření chyby) lze testovat:

1. Hodnotu vestavěné proměnné Err(číslo chyby). Jestliže Err=0, pak žádná chyba

nenastala.
2. Chybové hlášení pomocí funkce Error.
3. Lze využít i objekt Err a jeho vlastnosti Err.Description, v níž je uložena textová

informace o vzniklé chybě, a Err.Number obsahující číslo chyby.

3.1.5 Příkaz With

With objekt
 příkazy
End With

Příklad:

With můj-objekt
 .Height = 2000
 .Width = 2000
 .Caption = "Toto je moje označení"
End With

Odkazy na prvky kolekce ve Visual Basicu

Forms … kolekce otevřených formulářů
Forms(i) … (i+1)-ní otevřený formulář
Forms[objednávky] … formulář objednávky

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 46

Forms("objednávky") … formulář objednávky

Jestliže je jméno prvku kolekce uloženo v proměnné, např. je parametrem procedury nebo
funkce, pak musíme použít poslední zápis s kulatými závorkami, uvozovky se ovšem
nepoužijí.

Příklad:
Jestliže při návrhu formuláře do něj začleníme řídící prvek karta, pak zjistíme, že tento prvek
má pouze dvě stránky a v interaktivním režimu není možné počet stránek karty zvýšit.
Jedinou možností je programové řešení. Například jej můžeme implementovat takto: Do
pomocného formuláře zařadíme dvě editační pole
(jedno je určeno pro vstup jména formuláře a druhé pro jméno karty ve formuláři) a tlačítko,
po jehož stisku se spustí procedura, která otevře příslušný formulář v návrhovém zobrazení,
do určené karty přidá novou stránku a nakonec formulář zavře. Kostru procedury znázorňuje
následující úsek zdrojového kódu.

Sub PřidatStránkuNaKartu(názevform As String, názevkarty As String)
 ...
 DoCmd.OpenForm názevform, acDesign
 ...
 Forms(názevform).Controls(názevkarty).Pages.Add
 DoCmd.Close
 ...
End Sub

3.1.6 Procedury a funkce

[Public | Private] [Static] Sub název-procedury ([seznam-parametrů])
 [příkazy1]
 [Exit Sub]
 [příkazy2]
End Sub

 Rozsah platnosti procedury/funkce
Public Ve všech procedurách/funkcích všech

 modulů.
Private V dalších procedurách/funkcích stejného

 modulu.
Static Všechny proměnné deklarované (implicitně

či explicitně) po celou dobu otevření modulu
obsahující tuto proceduru budou uchovány.
Příklad: Čítač uvnitř procedury, jehož
hodnota se zvyšuje o 1 při každém volání
procedury.

Tab. 18. Rozsah platnosti procedury/funkce

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 47

3.1.6.1 Parametry procedur a funkcí

[Optional] [ByVal | ByRef] [ParamArray] název-parametru [As datový-typ]

• Optional označuje nepovinný parametr. Umožňuje deklarovat parametr typu Variant.
Za nepovinným parametrem musí být všechny další parametry rovněž nepovinné. Test
nepřítomnosti nepovinných parametrů lze provést pomocí funkce IsMissing().

• ByVal - volání hodnotou. Jestliže je skutečným parametrem výraz, Visual Basic s ním
zachází jako by byl deklarován pomocí ByVal.

• ByRef - volání odkazem. Pole se vždy předávají odkazem.
• ParamArray musí být v seznamu parametrů poslední.

3.1.6.2 Volání procedur a funkcí

Proceduru můžeme volat dvěma způsoby:

Call název-procedury(seznam-skutečných-parametrů)

nebo

název-procedury seznam-skutečných-parametrů

Výsledkem funkce je hodnota, a tedy je možné ji použít všude tam, kde je přípustný výraz,
např. na pravé straně přiřazovacího příkazu:

proměnná = název-funkce(seznam-skutečných-parametrů)

výchozí hodnoty: (Pokorný/Kopp, str. 40-41)
 číslo 0
 řetězec prázdný řetězec
 typ Variant Empty
 objektový typ Nothing

Příklad: (z modulu modUtility)

Function IsNothing(varToTest As Variant) As Integer
 'testuje "logical nothing" podle datového typu
 'Empty a Null = Nothing
 'číslo=0 = Nothing
 'řetězec nulové délky = Nothing
 'Date/Time nikdy není Nothing
 IsNothing = True
 Select Case VarType(varToTest)
 Case vbEmpty
 Exit Function
 Case vbNull

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 48

 Exit Function
 Case vbBoolean
 If varToTest Then IsNothing = False
 Case vbByte, vbInteger, vbLong, vbSingle, vbDouble, vbCurrency
 If varToTest < > 0 Then IsNothing = False
 Case vbDate
 IsNothing = False
 Case vbString
 If Len(varToTest) < > 0 And varToTest < > " " Then IsNothing = False
 End Select
End Function

3.2. Formuláře

3.2.1 Událostní procedury ve formulářích

Příklad: Hledání záznamu po stisku tlačítka podle pole, na němž stál kurzor před jeho
stiskem.

Private Sub Command7_Click()
 On Error GoTo Err_Command7_Click
 Screen.PreviousControl.SetFocus
 DoCmd.DoMenuItem acFormBar, acEditMenu, 10, , acMenuVer70
Exit-Command7_Click:
 Exit Sub
Err-Command7_Click:
 MsgBox Err.Description
 Resume Exit_Command7_Click
End Sub

Příklad: Formulář kritérií pro výběr (bez podkladové tabulky) a událost po stisknutí tlačítka
způsobující otevření nového formuláře s podkladovou tabulkou omezenou filtrem z prvního
formuláře.

(A)

Option Compare Database
Option Explicit

Private Sub Command12_Click()
 On Error GoTo Err_Command12_Click
 Dim stDocName As String

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 49

 Dim stLinkCriteria As String
 stDocName = "zaměstnání"
 stLinkCriteria = "[kraj] = " & "'" & Me![Combo6] & "'" _
 & " AND [příjmení] LIKE" & "'" & Me![Text8] & "∗" & "'"_
 & " AND [plat] > = " & Me![Text10]
 DoCmd.OpenForm stDocName, , , stLinkCriteria
Exit-Command12_Click:
 Exit Sub
Err-Command12_Click:
 MsgBox Err.Description
 Resume Exit_Command12_Click
End Sub

(B)
stDocName = "osoby"
stLinkCriteria ="[pohlaví] =" & "'" & IIf(Me![Frame0] = 1, "muž", "žena") & "'" _
 & " AND [vìk] <=" & Me![maxvek] _
 & " AND [vzdělání] =" & "'" & Me![Combo11] & "'" _
 & " AND [počet dětí] <=" & Me![maxdeti] _
 & " AND [místo] LIKE " & "'" & Me![místo] & "∗'" _
 & " AND [plat] >=" & Me![minplat]
DoCmd.OpenForm stDocName, , , stLinkCriteria

stDocName = "osoby"
stLinkCriteria = "[pohlaví] ='" & IIf(Me![Frame0] = 1, "muž", "žena") & "'" _
 & " AND [věk] <=" & Me![maxvek] _
 & " AND [vzdělání] ='" & Me![Combo11] & "'" _
 & " AND [počet dětí] <=" & Me![maxdeti] _
 & " AND [místo] LIKE '" & Me![místo] & "∗'" _
 & " AND [plat] >=" & Me![minplat]
DoCmd.OpenForm stDocName, , , stLinkCriteria

Příklad: Víceúrovňový výběr.

Máme k dispozici dvě tabulky:

OSOBY(rč, jméno, příjmení, pohlaví, stav, ...)
STAVY(pohlaví, stav)

V první tabulce jsou položky pohlaví i stav textového typu, v druhé tabulce je pohlaví
číselného typu. Tato tabulka se označuje jako číselník a obsahuje všechny možné stavy,
které osoby mohou mít.
Nemá definován žádný klíč.
Konkrétní údaje číselníku jsou uvedeny v tab. 19.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 50

pohlaví stav
1 ženatý
1 svobodný
1 rozvedený
1 vdovec
2 vdaná
2 svobodná
2 rozvedená
2 vdova

Tab. 19. Číselník stavů

Ve formuláři s podkladovou tabulkou OSOBY se stav vybírá tak, že nejdříve v přepínači
Option Group se dvěma polohami muž, žena vybereme pohlaví a to způsobí vykreslení
příslušné čtveřice stavů v seznamu ListBox a z něj pak vybereme skutečný stav. Vybraný stav
ze seznamu se přímo ukládá do položky stav v tabulce OSOBY, to znamená, že tato položka
je uvedena ve vlastnosti Control Source seznamu.
Jestliže přepínač nastavíme do 1. polohy, pak se do položky OSOBY.pohlaví uloží hodnota
"muž", přepnutí do 2. polohy generuje zápis hodnoty "žena" do uvedené položky.

Předpokládejme, že přepínač je definován tak, že první poloha vrací hodnotu 1 a druhá
poloha hodnotu 2. Nechť dále jméno seznamu je List9 a jméno skupiny voleb je Frame2. Za
těchto předpokladů je seznam ve vlastnosti Row Source definován SQL dotazem:

SELECT DISTINCTROW stav FROM stavy WHERE pohlaví=Frame2.Value;

Kdykoliv přepneme polohu ve skupině voleb, musí se znovu překreslit seznam příslušné
čtveřice stavů. Musíme tedy definovat událost After_Update přepínače. Současně však
musíme zrušit případně již definovaný stav osoby, protože ten se týká pohlaví, které bylo
nastaveno před přepnutím, a ve formuláři je třeba jej znovu zadat.

Private Sub Frame2_AfterUpdate()

pohlaví = IIf(Frame2.Value=1,"muž","žena")
List9.Visible = True
List9. Requery
stav = " "

End Sub

Poslední věc, kterou musíme ošetřit, je to, aby při procházení tabulkou pomocí selektorů
záznamů ve formuláři se ve formuláři rekonstruovalo nastavení přepínače, vykreslil se
seznam příslušné čtveřice stavů a v tomto seznamu se zvýraznil vybraný stav. Všechny tyto
akce zařadíme do události formuláře Form_Current(). Větev Else odpovídá případu, kdy
v tabulce ještě není uložena informace o pohlaví osoby, např. jsme se dostali na konec tabulky
a vkládáme údaje do nově přidávaného řádku. V tom případě musíme zajistit, aby v přepínači
nebyla vybrána žádná poloha a dokud nějakou polohu v přepínači nezvolíme, se ani
nezobrazovala žádná čtveřice stavů.

Private Sub Form_Current()

If Not IsNull(pohlaví) Then

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 51

Frame2.Value = IIf (pohlaví ="muž",1,2)
List9.Visible = True
List9.Requery
List9.Value = stav

 Else
Frame2.Value = 0
List9.Visible = False

 End If
End Sub

3.3. Objekt RecordSet

Příklad:
Cyklus modifikace ve všech řádcích tabulky (např. zvýšení poplatku za elektřinu o 10
procent).

 ...
 Dim ws As Workspace
 Dim db As Database
 Dim rst As RecordSet
 '1.
 Set ws = DBEngine.Workspaces(0)
 Set db = ws.Databases(0)

 '2 Set db = DBEngine(0)(0)

 '3. Set ws = DBEngine.Workspaces(0)
 'Set db = ws.OpenDatabase("název souboru .mdb")

 '4. Set db = CurrentDb()

 Set rst = db.OpenRecordset("název tabulky")
 rst.MoveFirst
 While Not(rst.EOF) ' Do Until rst.EOF
 rst.Edit ' rst.Edit
 rst![sazba] = rst![sazba] ∗1.1 ' rst![sazba] = rst![sazba] ∗1.1
 rst.Update ' rst.Update
 rst.MoveNext ' rst.MoveNext
 Wend ' Loop
 rst.Close
 ...

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 52

Příklad: Aktualizace záznamů s nevyplněným údajem o telefonním čísle.
 ...
 Dim db As Database, rst As RecordSet
 Dim strHledej, strMsg, strTab As String
 Set db = CurrentDb()
 strTab = "Zákazníci"
 Set rst = db.OpenRecordset(strTab,dbOpenDynaset)
 strHledej = "IsNull([telefon])"

 rst.FindFirst strHledej
 Do Until rst.NoMatch
 rst.Edit
 strMsg = "Zadejte telefonní číslo zákazníka: " _
 & rst![příjmení] & " " & rst![jméno]
 rst![telefon] = InputBox(strMsg)
 rst.Update
 rst.FindNext strHledej
 Loop
 rst.Close
 ...

Příklad:
Tentýž příklad v obecné verzi - doplňování údajů do libovolné tabulky a libovolného jejího
sloupce.

Sub DoplňHodnotuÚdaje(tabulka As String, sloupec As String)
 Dim db As Database, rst As Recordset, f As Field
 Dim strHledej As String, záznam As String, s As String, i As Integer
 Set db = CurrentDb()
 Set rst = db.OpenRecordset(tabulka, dbOpenDynaset)
 strHledej = "IsNull(" & sloupec & ")"
 rst.FindFirst strHledej
 Do Until rst.NoMatch
 rst.Edit
 záznam = ""
 For Each f In rst.Fields
 Select Case VarType(rst.Fields(f.Name))
 Case vbString
 s = rst.Fields(f.Name)
 Case vbByte, vbInteger, vbLong, vbSingle, _
 vbDouble, vbCurrency
 s = Str(rst.Fields(f.Name))
 Case vbBoolean
 s = IIf(rst.Fields(f.Name), "True", "False")
 Case vbDate
 s = Format(rst.Fields(f.Name), "dd.mm.yy")

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 53

 Case Else
 s = ""
 End Select
 záznam = záznam & f.Name & ": " & s & vbCrLf
 Next f

'alternativní zápis cyklu For
' For i = 0 To rst.Fields.Count − 1

' Select Case VarType(rst.Fields(rst.Fields(i).Name))
' Case vbString
' s = rst.Fields(rst.Fields(i).Name)
' Case vbByte, vbInteger, vbLong, vbSingle, _
' vbDouble, vbCurrency
' s = Str(rst.Fields(rst.Fields(i).Name))
' Case vbBoolean
' s = IIf(rst.Fields(rst.Fields(i).Name), "True", "False")
' Case vbDate
' s = Format(rst.Fields(rst.Fields(i).Name), "dd.mm.yy")
' Case Else
' s = ""
' End Select
' záznam = záznam & rst.Fields(i).Name & ": " & s & vbCrLf
' Next f

 rst.Fields(sloupec) = InputBox(záznam & vbCrLf & _
 "Zadej hodnotu údaje " & sloupec & ": ")
 rst.Update
 rst.FindNext strHledej
 Loop
 rst.Close
End Sub

3.4. Volání SQL dotazu z VBA

1. Uložený dotaz (výběrový, křížový, …)
DoCmd.OpenQuery název-dotazu [, pohled][, datový-mód]

pohled: acViewDesign, acViewNormal, acViewPreview
datový-mód: acAdd, acEdit, acReadOnly

2. Výběrový dotaz
Set rst = db.OpenRecordset(výběrový_dotaz,dbOpenDynaset)

3. Akční a definiční dotazy

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 54

DoCmd.RunSQL dotaz [, použít-transakci]
nebo
db.Execute dotaz

V příkazu DoCmd.RunSQL lze jako dotaz použít pouze akční nebo definiční dotaz, to
znamená dotazy INSERT INTO, DELETE, UPDATE, SELECT INTO, resp. dotazy
CREATE TABLE, DROP TABLE, ALTER TABLE,CREATE INDEX, DROP INDEX.

Příklad: Zjištění hodnoty pro položku typu automatické číslo.

Jestliže zapisujeme z programu např. pomocí akčního dotazu INSERT INTO do tabulky, pak
je nutné pro definici údaje typu automatické číslo zjistit nejvyšší přidělené číslo v dosud
zapsaných záznamech. Samozřejmě, pokud je tabulka prázdná, musí toto číslo být rovno nule.

Function MaxHodnota(tabulka As String, sloupec As String) As Byte
 Dim db As Database, rst As RecordSet
 Set db = CurrentDb()
 Set rst = db.OpenRecordset("SELECT COUNT(∗) As mxf0 FROM " & tabulka)
 If rst!mxf0 = 0 Then
 MaxHodnota = 0
 Else
 Set rst = db.OpenRecordset("SELECT MAX(" & sloupec & ") As mxf0 " & _
 "FROM " & tabulka)
 rst.MoveFirst
 MaxHodnota = rst!mxf0
 End If
 rst.Close
End Function

Příklad:

"Teploměr", přesýpací hodiny, cyklus, transakce.

 Set ws = DBEngine.Workspaces(0)
 Set db = ws.Databases(0)
 Set rst = db.OpenRecordset("název tabulky")
 teploměr = SysCmd(acSysCmdInitMeter,"text co se děje", počet-kroků)
 DoCmd.Hourglass True
 ws.BeginTrans
 ...
 For i = 1 To počet-kroků
 ...
 rst.AddNew
 ...

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 55

 rst.Update
 ...
 teploměr = SysCmd(acSysCmdUpdateMeter, i)
 Next i
 ws.CommitTrans
 rst.Close
 DoCmd.Hourglass False
 teploměr = SysCmd(acSysCmdClearStatus)

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 56

4. Složitější příklad
V tomto odstavci ukážeme dva typické formuláře z rozsáhlejší aplikace řešené autorem textu
za účelem sledování aktivit učitelů Ústavu automatizace a informatiky FSI VUT v Brně.
Aplikace je řízena z centrálního formuláře, plnícího roli jakéhosi menu.

Obr. 4.1. Menu aplikace

 Na ukázku vybereme formulář, který se aktivuje po stisku volby Úvazky učitelů.
V tomto formuláři se zadávají informace o učiteli a jeho výuce tak, že se postupným
zpřesňováním (typ studia, ročník) vytřídí seznam předmětů, z nichž se vybere vyučovaný
předmět, pro který se pak v pravé horní části formuláře vyplní podrobné informace o typu
výuky, počtu hodin, počtu skupin, počtu týdnů apod.

Obr. 4.2. Zadávání výuky předmětu učitelem ústavu

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 57

Některé položky specifikující předmět jsou nedosažitelné, protože jsou již předvyplněny
z tabulky předmětů, jiné jsou aktivní. Tvar formuláře je vidět na obr. 4.2.

 Zdrojový kód událostních procedur prvků formuláře je uveden dále, nebudeme jej
rozebírat, protože obsahuje buď již známé příkazy Visual Basicu nebo je lze s pomocí helpu
či vzhledu formuláře identifikovat a místo toho jej ponecháme čtenáři k samostatnému studiu.
Formulář je řešen jako vícestránkový, přičemž obsah jednotlivých stánek se liší.

Option Compare Database
Option Explicit
Dim ppp As Integer, ccc As Integer, kkk As Single
Dim sss As String

Private Sub Form_Load()
 TabCtl33.Value = 0 ' první stránka na kartě
 ListTypStudia.Value = "MS" ' typ studia
 ListRocnik.Value = 1 ' ročník
 ListPredmety.Requery ' vybraný seznam předmětů
 ListUcitele.Value = 1 ' učitel
 ComboFunkce.Value = 201 ' funkce
 Label_pom0.Visible = False
 Label_pom1.Visible = False
 Label_pom2.Visible = False
 Label_pom3.Visible = False
 Label_pom4.Visible = False
 Label_pom5.Visible = False
 Label_pom6.Visible = False
 Label_pom7.Visible = False
 Label_pom8.Visible = False
 Label_pom9.Visible = False
 LabelCv.Caption = " "
 ComboZk.Value = " "
 ListUcFun.Value = Null
' ListUcFun.Requery
 ListUcOst.Value = Null
 ListUcOst.Requery
 TextPocetOstatni.Value = 0
' TextPocetOstatni.Enabled = False
 CommandSaveChange.Enabled = False
 CheckTydny.Value = False
 TextTydny.Enabled = False
 TextSkupiny.Enabled = False
 TextStudenti.Enabled = False
 CheckTydny.Enabled = False
 ComboTyp_prcv.Enabled = False
 TextPredmet.Enabled = False
End Sub

Private Sub InicializaceDetailů(enab As Integer)
 TextTydny.Enabled = False
 CheckTydny.Value = False
 TextSkupiny.Value = 0
 TextStudenti.Value = 0
 ComboTyp_prcv.Value = 0
 LabelCv.Caption = " "
 ComboZk.Value = " "
 If enab = 1 Then

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 58

 TextSkupiny.Enabled = False
 TextStudenti.Enabled = False
 CheckTydny.Enabled = False
 ComboTyp_prcv.Enabled = False
 TextPredmet.Enabled = False
 End If
End Sub

Private Sub ListUcitele_AfterUpdate()
 TextPocetOstatni.Value = 0
 ListUcOst.Requery
End Sub

Private Sub ComboOstatni_AfterUpdate()
' TextPocetOstatni.Enabled = True
 TextPocetOstatni.Value = 0
End Sub

Private Sub ListTypStudia_AfterUpdate() ' typ studia
 ListRocnik.Value = 1
 Select Case ListTypStudia.Value
 Case "DS"
 ListRocnik.RowSource = "1"
 Case "BS"
 ListRocnik.RowSource = "1;2;3"
 Case "MS"
 ListRocnik.RowSource = "1;2;3;4;5"
 Case "DIS"
 ListRocnik.RowSource = "1;2;3;4;5;6"
 End Select
 ListRocnik.Requery
 ListPredmety.Requery
 TextPredmet.Value = " "
 TextTydny.Value = 0
 InicializaceDetailů (1)
 If ListTypStudia.Value = "DIS" Then
 ComboTyp_prcv.Value = 2
 Else
 ComboTyp_prcv.Value = 0
 End If
End Sub

Private Sub ListRocnik_AfterUpdate() ' ročník
 ListPredmety.Requery
 ListPredmety.Value = 0
 TextPredmet.Value = " "
 TextTydny.Value = 0
 InicializaceDetailů (1)
End Sub

Private Sub ListPredmety_AfterUpdate() ' předměty
 Dim db As Database, rst As Recordset
 Set db = CurrentDb()
 Set rst = db.OpenRecordset("predmety")
 rst.Index = "PrimaryKey"
 rst.Seek "=", ListPredmety.Value
 TextSkupiny.Enabled = True
 TextStudenti.Enabled = True
 CheckTydny.Enabled = True

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 59

 ComboTyp_prcv.Enabled = True
' TextPredmet.Enabled = True
 TextPredmet.Value = rst!nazev
 TextTydny.Value = rst!tydnu
 ppp = rst!predn
 ccc = rst!cvic
 sss = rst!semestr
 rst.Close
 If sss = "zim" Then
 Label_pom5.Caption = 0 ' t_LS
 Label_pom7.Caption = 0 ' h_LS
 Else
 Label_pom4.Caption = 0 ' t_ZS
 Label_pom6.Caption = 0 ' h_ZS
 End If
' další složky z recordsetu
 InicializaceDetailů (0)
End Sub

Private Sub CheckTydny_AfterUpdate()
 TextTydny.Enabled = CheckTydny.Value
End Sub

Private Sub CommandPridatFunkci_Click()
 On Error GoTo Err_CommandPridatFunkci_Click
 Dim db As Database, rst As Recordset
 Dim strQ As String, mx As Integer

 Set db = CurrentDb()

'(1) Set rst = db.OpenRecordset("uc_fun")
' mx = 0
' rst.MoveFirst
' While Not rst.EOF
' If rst!IDautom > mx Then mx = rst!IDautom
' rst.MoveNext
' Wend
' mx = mx + 1
' MsgBox "mx1=" + Str(mx)
' rst.Close

'(2) Set rst = db.OpenRecordset("MXuc_fun", dbOpenDynaset)
' rst.MoveFirst
' mx = rst!mxf + 1
' MsgBox "mx2=" + Str(mx)
' rst.Close

'(3) Set rst = db.OpenRecordset("SELECT MAX(IDautom) As mxf0 FROM uc_fun")
' rst.MoveFirst
' mx = rst!mxf0 + 1
' MsgBox "mx3=" + Str(mx)
' rst.Close

'(4)
 mx = MaxHodnota("uc_fun", "IDautom") + 1
' MsgBox "MaxHodnota=" + Str(mx)
 Label_pom0.Caption = mx
 If Not IsNull(ListUcitele.Value) And Not IsNull(ComboFunkce.Value) Then
 strQ = "INSERT INTO uc_fun" _
 & "(IDuc,IDfu,IDautom)" _

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 60

 & "VALUES (ListUcitele.Value,ComboFunkce.Value,Label_pom0.Caption)"
' & "VALUES (ListUcitele.Value,ComboFunkce.Value,MaxHodnota('uc_fun', 'IDautom') + 1)"
 DoCmd.RunSQL strQ
 ListUcFun.Requery
 Else
 MsgBox "Nový záznam o funkci nelze zapsat," & vbCrLf & _
 "protože údaje jsou neúplné"
 End If

'(5) If Not IsNull(ListUcitele.Value) And Not IsNull(ComboFunkce.Value) Then
' strQ = "INSERT INTO uc_fun" _
' & "(IDuc,IDfu" _
' & "VALUES (ListUcitele.Value,ComboFunkce.Value)"
' DoCmd.RunSQL strQ
' ListUcFun.Requery
' Else
' MsgBox "Nový záznam o funkci nelze zapsat," & vbCrLf & _
' "protože údaje jsou neúplné"
' End If

Exit_CommandPridatFunkci_Click:
 Exit Sub
Err_CommandPridatFunkci_Click:
 MsgBox Err.Description
 Resume Exit_CommandPridatFunkci_Click
End Sub

Private Sub CommandZrusitFunkci_Click()
 On Error GoTo Err_CommandZrusitFunkci_Click
 Dim strQ As String
 If Not IsNull(ListUcFun.Value) Then
 strQ = "DELETE * FROM uc_fun WHERE IDautom=ListUcFun.Value"
 DoCmd.RunSQL strQ
 ListUcFun.Value = Null
 ListUcFun.Requery
 Else
 MsgBox "Nelze nic zrušit, protože žádný záznam" & vbCrLf & _
 "o zastávané funkci nebyl vybrán"
 End If
Exit_CommandZrusitFunkci_Click:
 Exit Sub
Err_CommandZrusitFunkci_Click:
 MsgBox Err.Description
 Resume Exit_CommandZrusitFunkci_Click
End Sub

Private Sub CommandPridatOstatni_Click()
On Error GoTo Err_CommandPridatOstatni_Click
 Dim db As Database, rst As Recordset
 Dim strQ As String, mx As Integer
 Set db = CurrentDb()
 mx = MaxHodnota("uc_ost", "IDautom") + 1
 Label_pom1.Caption = mx
 If Not IsNull(ListUcitele.Value) And Not IsNull(ComboOstatni.Value) _
 And TextPocetOstatni.Value > 0 Then
 strQ = "INSERT INTO uc_ost" _
 & "(IDuc,IDost,pocet,IDautom)" _
& "VALUES (ListUcitele.Value,ComboOstatni.Value,TextPocetOstatni.Value,Label_pom1.Caption)"
 DoCmd.RunSQL strQ
 ListUcOst.Requery

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 61

 Else
 MsgBox "Nový záznam o činnosti nelze zapsat," & vbCrLf & _
 "protože údaje jsou neúplné"
 End If
Exit_CommandPridatOstatni_Click:
 Exit Sub
Err_CommandPridatOstatni_Click:
 MsgBox Err.Description
 Resume Exit_CommandPridatOstatni_Click
End Sub

Private Sub CommandZrusitOst_Click()
On Error GoTo Err_CommandZrusitOst_Click
 Dim strQ As String
 If Not IsNull(ListUcOst.Value) Then
 strQ = "DELETE * FROM uc_ost WHERE IDautom=ListUcOst.Value"
 DoCmd.RunSQL strQ
 ListUcOst.Value = Null
 ListUcOst.Requery
 Else
 MsgBox "Nelze nic zrušit, protože žádný záznam" & vbCrLf & _
 "o ostatní činnosti učitele nebyl vybrán"
 End If
Exit_CommandZrusitOst_Click:
 Exit Sub
Err_CommandZrusitOst_Click:
 MsgBox Err.Description
 Resume Exit_CommandZrusitOst_Click
End Sub

Private Sub CommandOpravitOst_Click()
On Error GoTo Err_CommandOpravitOst_Click
 Dim db As Database, rst As Recordset
 Dim strQ As String
 If Not IsNull(ListUcOst.Value) Then
 Set db = CurrentDb()
 Set rst = db.OpenRecordset("uc_ost")
 rst.Index = "PrimaryKey"
 rst.Seek "=", ListUcOst.Value
' TextPocetOstatni.Enabled = True
 Label_pom1.Caption = rst!IDautom
 ComboOstatni.Value = rst!IDost
 TextPocetOstatni.Value = rst!pocet
 rst.Close
 ListUcitele.Enabled = False
 TextPocetOstatni.SetFocus ' změna fokusu, aby se tlačítko opět mohlo znepřístupnit
 CommandSaveChange.Enabled = True
 Else
 MsgBox "Nelze nic opravovat, protože žádný záznam" & vbCrLf & _
 "o ostatní činnosti učitele nebyl vybrán"
 End If
Exit_CommandOpravitOst_Click:
 Exit Sub
Err_CommandOpravitOst_Click:
 MsgBox Err.Description
 Resume Exit_CommandOpravitOst_Click
End Sub

Private Sub CommandSaveChange_Click()
On Error GoTo Err_CommandSaveChange_Click

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 62

 Dim strQ As String
 strQ = "UPDATE uc_ost SET IDost=ComboOstatni.Value, pocet=TextPocetOstatni.Value " & _
 "WHERE IDautom=Label_pom1.Caption"
 DoCmd.RunSQL strQ
 ListUcOst.Requery
 ListUcitele.Enabled = True
 ComboOstatni.SetFocus
 CommandSaveChange.Enabled = False
Exit_CommandSaveChange_Click:
 Exit Sub
Err_CommandSaveChange_Click:
 MsgBox Err.Description
 Resume Exit_CommandSaveChange_Click
End Sub

Private Sub ComboTyp_prcv_AfterUpdate()
 Dim db As Database, rst As Recordset
 Set db = CurrentDb()
 Set rst = db.OpenRecordset("pred_cv")
 rst.Index = "PrimaryKey"
 rst.Seek "=", ComboTyp_prcv.Value
 kkk = rst!koef
 rst.Close
 Select Case ComboTyp_prcv.Value
 Case 1, 7, 11, 15
 LabelCv.Caption = "P"
 Select Case ListPredmety.Value
 Case "1in", "1in-", "ai", "bzi", "0in", "dtx", "fza", "rdb", "rmt", "rps", "scn", _
 "vci", "vir", "vjc", "vm2", "v2a", "vzp", "vb0", "vd", "vdp", "vr0", "vu0"
 ComboZk.Value = " "
 Case Else
 ComboZk.Value = "zk"
 End Select
 Case 2
 LabelCv.Caption = "Konz"
 ComboZk.Value = "zk"
 Case 3, 8, 12, 16
 LabelCv.Caption = "C1"
 Select Case ListPredmety.Value
 Case "dtx", "fza", "rdb", "rmt", "rps", "scn", _
 "vci", "vir", "vjc", "vm2", "v2a", "vzp", "vb0"
 ComboZk.Value = "kz"
 Case "bzi", "0in", "vd", "vdp", "vr0", "vu0"
 ComboZk.Value = "z"
 Case Else
 ComboZk.Value = " "
 End Select
 Case 4, 9, 13, 17
 LabelCv.Caption = "C2a"
 Select Case ListPredmety.Value
 Case "1in", "1in-", "ai", "dtx", "fza", "rdb", "rmt", "rps", "scn", _
 "vci", "vir", "vjc", "vm2", "v2a", "vzp", "vb0"
 ComboZk.Value = "kz"
 Case "bzi", "0in", "vd", "vdp", "vr0", "vu0"
 ComboZk.Value = "z"
 Case Else
 ComboZk.Value = " "
 End Select
 Case 5, 10, 14, 18
 LabelCv.Caption = "C2b"

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 63

 Select Case ListPredmety.Value
 Case "1in", "1in-", "ai", "dtx", "fza", "rdb", "rmt", "rps", "scn", _
 "vci", "vir", "vjc", "vm2", "v2a", "vzp", "vb0"
 ComboZk.Value = "kz"
 Case "bzi", "0in", "vd", "vdp", "vr0", "vu0"
 ComboZk.Value = "z"
 Case Else
 ComboZk.Value = " "
 End Select
 Case 6
 LabelCv.Caption = "sem."
 ComboZk.Value = " "
 End Select
End Sub

Private Sub CommandSaveUV_Click()
On Error GoTo Err_CommandSaveUV_Click
 Dim strQ As String, mx As Integer, koef_zk As Single
 mx = MaxHodnota("uc_uv", "IDuv") + 1
 Label_pom2.Caption = mx
 Select Case ListTypStudia.Value
 Case "DS"
 Label_pom3.Caption = "51"
 Case "BS"
 Label_pom3.Caption = "81"
 Case "MS"
 Label_pom3.Caption = "11"
 Case "DIS"
 Label_pom3.Caption = "??"
 End Select
 If sss = "zim" Then
 Label_pom4.Caption = TextTydny.Value ' t_ZS
 Label_pom6.Caption = IIf(Left(LabelCv.Caption, 1) = "C", ccc, ppp) ' h_ZS
 Else
 Label_pom5.Caption = TextTydny.Value ' t_LS
 Label_pom7.Caption = IIf(Left(LabelCv.Caption, 1) = "C", ccc, ppp) ' h_LS
 End If
 Label_pom8.Caption = kkk
 Select Case ComboZk.Value
 Case "zk"
 koef_zk = 0.7
 Case "kz"
 koef_zk = 0.5
 Case Else
 koef_zk = 0
 End Select
 If IsNull(ComboTyp_prcv.Value) Or (TextSkupiny.Value = 0) Or _
 (TextStudenti.Value = 0) Then
 MsgBox "Nový záznam o výuce nelze zapsat," & vbCrLf & _
 "protože údaje jsou neúplné"
 Else
 Label_pom9.Caption = (Label_pom4.Caption * Label_pom6.Caption + _
 Label_pom5.Caption * Label_pom7.Caption) * TextSkupiny.Value * kkk _
 + TextStudenti.Value * koef_zk
 strQ = "INSERT INTO uc_uv" _
 & "(IDuv,IDuc,IDpred,rocnik,forma_st,t_ZS,t_LS,h_ZS,h_LS," & _
 "IDprcv,typ_prcv,forma_zk,n_skupin,n_stud,koef,sum_radek)" & _
 "VALUES (Label_pom2.Caption,ListUcitele.Value,ListPredmety.Value," & _
 "ListRocnik.Value,Label_pom3.Caption," & _
 "Label_pom4.Caption,Label_pom5.Caption,Label_pom6.Caption,Label_pom7.Caption," & _

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 64

 "ComboTyp_prcv.Value,LabelCv.Caption,ComboZk.Value," & _
 "TextSkupiny.Value,TextStudenti.Value,Label_pom8.Caption,Label_pom9.Caption)"
 DoCmd.RunSQL strQ
 ListUcOst.Requery
 End If
Exit_CommandSaveUV_Click:
 Exit Sub
Err_CommandSaveUV_Click:
 MsgBox Err.Description
 Resume Exit_CommandSaveUV_Click
End Sub

Private Sub CommandKonec_Click()
On Error GoTo Err_CommandKonec_Click
 DoCmd.Close
Exit_CommandKonec_Click:
 Exit Sub
Err_CommandKonec_Click:
 MsgBox Err.Description
 Resume Exit_CommandKonec_Click
End Sub

 Zdroj řádků seznamu předmětů je reprezentován následujícím SQL dotazem.

SELECT DISTINCTROW [predmety].[kod], [predmety].[rocnik], [predmety].[semestr],
[predmety].[nazev], [predmety].[studium], [predmety].[obor], [predmety].[tydnu],
[predmety].[predn], [predmety].[cvic], [predmety].[typcvic], [predmety].[kredit], [predmety].[zk]
FROM [predmety] WHERE studium=ListTypStudia.Value AND rocnik=ListRocnik.Value;

 Druhým formulářem, který zde budeme demonstrovat, je formulář, který se otevře po
stisku tlačítka Výpočty ZH a je určen k výpočtu započitatelných hodin učitele, odborů ústavu
atd. Zatímco v prvním formuláři převládaly výběrové a akční dotazy SQL, ve formuláři z obr.
4.3 vzhledem k jeho funkci jsou hlavní agregační funkce dotazů.

Seznam přímá výuka + zk, kz je plněn dotazem

SELECT DISTINCTROW [Uc_UV].[IDuv], [Uc_UV].[rocnik], [Uc_UV].[forma_st],
[Uc_UV].[IDpred], [Uc_UV].[typ_prcv], [Uc_UV].[koef], [predmety].[nazev], [Uc_UV].[t_ZS],
[Uc_UV].[t_LS], [Uc_UV].[h_ZS], [Uc_UV].[h_LS], [Uc_UV].[forma_zk], [predmety].[obor],
[Uc_UV].[n_skupin], [Uc_UV].[n_stud], [Uc_UV].[sum_radek] FROM Uc_UV,predmety
WHERE Uc_UV.IDuc=ComboV_uc.Value AND Uc_UV.IDpred=predmety.kod;

Vlastní zdrojový kód událostních procedur prvků tohoto formuláře je uveden za obrázkem
4.3.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 65

Obr. 4.3. Výpočty započitatelných hodin

Option Compare Database
Option Explicit

Private Sub Form_Load()
 Me!ComboV_uc = 0
 ListV_ostatni.Requery
 ListV_funkce.Requery
 ListV_vyuka.Requery
End Sub

Private Sub ComboV_uc_AfterUpdate()
 Dim db As Database, rst As Recordset
 Dim a As Single, celkem As Single
 Set db = CurrentDb()
 celkem = 0
 Me!Textsum_cin = 0
 Me!Textsum_fun = 0
 Me!Textsum_vyuka = 0

 Set rst = db.OpenRecordset("SELECT SUM(extra_cin.koef * uc_ost.pocet) " _
 & "AS sum_cin " _
 & "FROM uc_ost,extra_cin " _
 & "WHERE uc_ost.IDuc=" & Me!ComboV_uc & " AND " _
 & "uc_ost.IDost=extra_cin.IDextra", dbOpenSnapshot)
 If IsNull(rst!sum_cin) Then
 a = 0
 Else
 rst.MoveFirst
 a = rst!sum_cin

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 66

 Me!Textsum_cin = Format(a, "###0.0")
 End If
 ListV_ostatni.Requery
 rst.Close
 celkem = celkem + a

 Set rst = db.OpenRecordset("SELECT SUM(funkce.ZH) AS sum_fun " _
 & "FROM uc_fun,funkce " _
 & "WHERE uc_fun.IDuc=" & Me!ComboV_uc & " AND " _
 & "uc_fun.IDfu=funkce.IDfun", dbOpenSnapshot)
 If IsNull(rst!sum_fun) Then
 a = 0
 Else
 rst.MoveFirst
 a = rst!sum_fun
 Me!Textsum_fun = Format(a, "###0.0")
 End If
 ListV_funkce.Requery
 rst.Close
 celkem = celkem + a

 Set rst = db.OpenRecordset("SELECT SUM(uc_UV.sum_radek) AS sum_vyuka " _
 & "FROM uc_UV " _
 & "WHERE uc_UV.IDuc=" & Me!ComboV_uc, dbOpenSnapshot)
 If IsNull(rst!sum_vyuka) Then
 a = 0
 Else
 rst.MoveFirst
 a = rst!sum_vyuka
 Me!Textsum_vyuka = Format(a, "###0.0")
 End If
 ListV_vyuka.Requery
 rst.Close
 celkem = celkem + a

 Me!TextSum_ZH = Format(celkem, "###0.0")

End Sub

Private Sub CommandCelkemOdbory_Click()
On Error GoTo Err_CommandCelkemOdbory_Click
 Dim db As Database
 Dim rstOdb As Recordset, rstUc As Recordset, rst As Recordset
 Dim ZH As Single, ost As Single, fun As Single, vyuka As Single
 Dim celkemUc As Single, celkem As Single
 Dim strQ As String

 strQ = "DELETE * FROM VyslOdbory"
 DoCmd.RunSQL strQ

 Set db = CurrentDb()
 Set rstOdb = db.OpenRecordset("VyslOdbory")
 Set rstUc = db.OpenRecordset("Ucitele")

 rstUc.MoveFirst
 celkem = 0
 Do While Not rstUc.EOF
 celkemUc = 0

 Set rst = db.OpenRecordset("SELECT SUM(uc_UV.sum_radek) AS sum_vyuka " _

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 67

 & "FROM uc_UV " _
 & "WHERE uc_UV.IDuc=" & rstUc!IDped, dbOpenSnapshot)
 If IsNull(rst!sum_vyuka) Then
 vyuka = 0
 Else
 rst.MoveFirst
 vyuka = rst!sum_vyuka
 End If
 rst.Close

 celkemUc = celkemUc + vyuka

 Set rst = db.OpenRecordset("SELECT SUM(extra_cin.koef * uc_ost.pocet) " _
 & "AS sum_cin " _
 & "FROM uc_ost,extra_cin " _
 & "WHERE uc_ost.IDuc=" & rstUc!IDped & " AND " _
 & "uc_ost.IDost=extra_cin.IDextra", dbOpenSnapshot)
 If IsNull(rst!sum_cin) Then
 ost = 0
 Else
 rst.MoveFirst
 ost = rst!sum_cin
 End If
 rst.Close

 celkemUc = celkemUc + ost

 Set rst = db.OpenRecordset("SELECT SUM(funkce.ZH) AS sum_fun " _
 & "FROM uc_fun,funkce " _
 & "WHERE uc_fun.IDuc=" & rstUc!IDped & " AND " _
 & "uc_fun.IDfu=funkce.IDfun", dbOpenSnapshot)
 If IsNull(rst!sum_fun) Then
 fun = 0
 Else
 rst.MoveFirst
 fun = rst!sum_fun
 End If
 rst.Close

 celkemUc = celkemUc + fun

 rstOdb.AddNew
 rstOdb!Iduc = rstUc!IDped
 rstOdb!odbor = rstUc!odbor
 rstOdb!jmeno = rstUc!jmeno
 rstOdb!ZH = vyuka
 rstOdb!ost = ost
 rstOdb!fun = fun
 rstOdb!Uc_celkem = celkemUc
 rstOdb.Update

 rstUc.MoveNext
 celkem = celkem + celkemUc
 Loop

 rstOdb.Close
 rstUc.Close
 ListUAI.Requery
 ListOdbory.Requery
 ListSumyUc.Requery

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 68

Exit_CommandCelkemOdbory_Click:
 Exit Sub
Err_CommandCelkemOdbory_Click:
 MsgBox Err.Description
 Resume Exit_CommandCelkemOdbory_Click
End Sub

Private Sub CommandZrusitVyuku_Click()
On Error GoTo Err_CommandZrusitVyuku_Click
 Dim strQ As String
 If Not IsNull(ListV_vyuka) Then
 strQ = "DELETE * FROM uc_uv WHERE IDuv=ListV_vyuka.Value"
 DoCmd.RunSQL strQ
 ListV_vyuka.Value = Null
 ListV_vyuka.Requery
 Call ComboV_uc_AfterUpdate
 Else
 MsgBox "Nelze nic zrušit, protože žádný záznam" & vbCrLf & _
 "o výuce předmětu nebyl vybrán"
 End If
Exit_CommandZrusitVyuku_Click:
 Exit Sub
Err_CommandZrusitVyuku_Click:
 MsgBox Err.Description
 Resume Exit_CommandZrusitVyuku_Click
End Sub

Private Sub CommandOpravitVyuku_Click()
On Error GoTo Err_CommandOpravitVyuku_Click
 Dim stDocName As String
 Dim stLinkCriteria As String
 If Not IsNull(ListV_vyuka) Then
 stDocName = "OpravaVyuky"
 DoCmd.OpenForm stDocName, , , stLinkCriteria, , , ListV_vyuka
 Else
 MsgBox "Nelze nic opravovat, protože žádný záznam" & vbCrLf & _
 "o výuce předmětu nebyl vybrán"
 End If
Exit_CommandOpravitVyuku_Click:
 Exit Sub
Err_CommandOpravitVyuku_Click:
 MsgBox Err.Description
 Resume Exit_CommandOpravitVyuku_Click
End Sub

Private Sub CommandKonecVypoctu_Click()
On Error GoTo Err_CommandKonecVypoctu_Click
 DoCmd.Close
Exit_CommandKonecVypoctu_Click:
 Exit Sub
Err_CommandKonecVypoctu_Click:
 MsgBox Err.Description
 Resume Exit_CommandKonecVypoctu_Click
End Sub

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 69

5. Témata projektů

1. Sestavte program, který bude poskytovat informace o odjezdech autobusů z výchozí
stanice (např. Brno). Uživatel zadá cílovou stanici a čas, kdy do ní chce přijet.
Program mu poskytne informaci o odjezdu autobusu a zda je možné zakoupit
jízdenku. V případě, že je autobus obsazen, může uživatel požadovat informaci
o následujícím nebo předcházejícím spoji.

2. Sestavte program, který povede evidenci skladu. O každém skladovaném materiálu si
program pamatuje číslo, stav zásob a požadovanou minimální zásobu. Uživatel se
může informovat o stavu zásob, požadovat seznam materiálu, jehož stav poklesl pod
minimální množství. Dále uživatel může požadovat zrušení evidence, případně
zaevidování nového materiálu, aktualizaci při dodání, resp. vyexpedování materiálu.

3. Sestavte program na pomoc zdravotním sestrám v nemocnici. Program si pamatuje
u každého pacienta jméno, číslo pokoje, druh léku, který užívá, dobu, kdy lék užívá
(ráno, v poledne, večer) a množství. Sestra zadá dobu a počítač ji informuje, do
kterých pokojů, komu a jaké‚ léky má přinést. Dále má sestra možnost evidovat
nového pacienta, případně zrušit údaje o pacientovi propuštěném z nemocnice.

4. Sestavte program na pomoc čtenáři v knihovně. O každé knize je evidován autor,
název knihy, tématická skupina a počet výtisků, které je možno ještě zapůjčit. Čtenář
zadá některé z těchto údajů (např. autora, tématický okruh, název, případně kombinace
těchto voleb) a počítač mu poskytne seznam knih, které přicházejí v úvahu, a
informaci, zda je možné knihu zapůjčit. Dále program umožní zaevidování vypůjčení
výtisku a jeho vracení (snížení nebo zvýšení počtu volných výtisků).

5. Program na pomoc diabetikům. Oběd diabetika nesmí překročit určitou energetickou
hodnotu. Předpokládejme, že oběd se skládá z polévky, z hlavního jídla, zákusku
(resp. salát, kompot) a nápoje. U každého chodu je k dispozici několik variant
s různou energetickou hodnotou. Sestavte jídelníček diabetika na týden dopředu.
Energetická hodnota jídla přitom musí dosáhnout alespoň 90% určené hodnoty.

6. Sestavte program pro evidenci motorových vozidel. U každého evidovaného vozidla
je známa SPZ, druh vozidla, barva vozidla a jeho majitel. Službu konající policista
zadá některý z těchto údajů (např. část SPZ a barvu auta, část SPZ a druh vozidla,
pouze část SPZ, pouze barvu a všechny další kombinace) a počítač mu zpřístupní
seznam vozidel, která odpovídají zadanému popisu, a pro majitele vytiskne předvolání
na policii.

7. Sestavte evidenci dárců krve (jméno, krevní skupina, RH-faktor, datum posledního
odběru). Obsluha zadá datum, krevní skupinu a požadované množství krve a čeká na
seznam vhodných dárců a náhradníků, kteří budou pozváni k odběru. Pozn.: Dárce
může darovat 200 ml krve jednou za tři měsíce. Nezapomeňte, že některé skupiny
mohou darovat krev i jiným skupinám. Uvažujte i RH-faktor.

8. Sestavte program, který určí výši prospěchového stipendia studentů. Pro každou
studijní skupinu uložte abecední seznam studentů spolu s jejich výsledky
u jednotlivých zkoušek. Vytiskněte jmenný seznam studentů všech skupin, ve kterém
bude u každého jména uvedena skupina, průměrný prospěch a výše stipendia.
Umožněte tak‚ určit nejlepší a nejhorší studenty v jednotlivých skupinách a situaci
v každém ročníku.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 70

9. Agenda časopisů. Evidujte časopisecké články tak, že u každého článku si pamatujete
jméno časopisu, který ho uveřejnil, datum, obor, klíčová slova. Dávejte uživateli
informace o článcích podle oboru, podle klíčových slov, podle časopisu, podle data a
poskytujte různé další služby.

10. Sestavte program, který vytvoří katalog cestovní kanceláře. Katalog bude obsahovat
tyto údaje: číslo zájezdu, země, místo, počet dní, datum odjezdu, cena, druh
dopravního prostředku. Poskytujte uživateli informace o zájezdech podle zadaných
požadavků, např. země, přibližného termínu odjezdu, cenových relací, výběru
dopravního prostředku ap.

11. Rozhlasová stanice vysílá hitparádu písniček populární hudby. Z dvaceti skladeb
posluchači určí 5, které se jim nejvíce líbí. Žebříček popularity bude určen z datového
souboru, jehož záznamy obsahují tyto informace: Jméno a příjmení posluchače a pět
písniček seřazených podle priority, tomu by odpovídaly body, např. za 1. místo
9 bodů, za 2. místo 6 bodů ap. Program určí nový žebříček popularity a seznam
posluchačů v pořadí, nakolik se jejich tipy s ním shodují.

12. Vytvořte program pro tisk výsledků soutěže v krasobruslení. V databázi jsou uloženy
tyto údaje: Jméno soutěžícího, stát, který reprezentuje, 9 známek rozhodčích za
provedení a 9 známek za umělecký dojem. U každého závodníka se v každé z obou
kategorií hodnocení ruší nejvyšší a nejnižší známka a ze zbytku se vytváří průměr.
Tiskněte průběžně pořadí na prvních třech místech po každém výsledku a nakonec
celkové pořadí.

13. Vytvořte program pro výpočet výsledků v cyklistické časovce jednotlivců. V databázi
jsou uloženy tyto údaje: Jméno cyklisty, stát, čas startu a dojezdu do cíle. Vytvořte
přehlednou tabulku výsledků, seřazenou podle dosaženého času.

14. V registru svazků bývalé státní bezpečnosti (StB) byly vedeny údaje
o spolupracovnících s udáním kategorie jejich spolupráce (agent, důvěrník, kandidát
tajné spolupráce apod.). Napište program, který by umožnil takový svazek vytvořit na
počítači a poskytoval informace oprávněným uživatelům o spolupracovnících vybrané
kategorie. Oprávnění přístupu k datům zabezpečte heslem, které se při vkládání
z klávesnice nebude zobrazovat.

15. Sestavte program, který vytvoří trestní rejstřík. V rejstříku budou následující údaje:
Jméno a příjmení odsouzen‚ho, přečin, za nějž byl odsouzen, doba odnětí svobody,
nápravná skupina, místo vykonávání trestu. Umožněte uživateli vypsat informace
o osobách odsouzených za určitý druh trestné činnosti, jména recidivistů, kteří byli
odsouzeni vícekrát za některý druh zločinu i s jeho uvedením, jména osob, které
strávili ve vězení více než zadaný počet let ap.

16. Sestavte program pro registraci kup˘nových knížek. V databázi budou uloženy
následující údaje: Jméno a příjmení, bydliště (místo, ulice), rodné číslo, datum
zaregistrování, číslo registračního místa. Program musí vyhodnotit pokus
o zaregistrování více než jedné knížky jednou osobou. Podle zadaných voleb
poskytuje informace např. o celkovém počtu zaregistrovaných, o počtu registrací za
určité období, v jednom registračním místě a možné kombinace těchto voleb.

17. Sestavte program pro seznamovací kancelář. V databázi budou údaje o osobách:
Jméno a příjmení, pohlaví, věk, vzdělání, výška, váha a požadavky na zvolené
charakteristiky partnera. Program by měl každému klientovi vypsat informace o třech
nejvhodnějších partnerech opačného pohlaví, přitom se předpokládá, že muž by neměl

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 71

být menší než žena, Úroveň vzdělání by se neměla lišit o více než jeden stupeň.
Hodnocení charakteristik navrhne programátor.

18. Sestavte program testující úroveň znalostí. Předpokládejme, že lze vybírat ze
3 možností a), b), c). Otázky testu jsou uloženy v záznamech databáze včetně
správného řešení a bodového ohodnocení správné odpovědi. Program se dotáže na
jméno a zadá otázky testu. Výstupem je zpráva o dosaženém výsledku, např.
v procentech z maximálního počtu bodů.

19. Předpokládejme, že máme k dispozici dva datové soubory. V jednom jsou uloženy
údaje o objednávkách zahrnující číslo objednávky, název zboží, požadované množství,
název dodavatele,datum dodávky. V druhém souboru jsou údaje z dodacích listů
obsahující číslo objednávky, název zboží, název dodavatele, dodané množství, datum
dodání. Sestavte program, který příslušnému dodavateli napíše urgenci, pokud
kontrahované množství určitého zboží není dodáno např. do 14 dnů po dohodnutém
termínu dodávky.

20. Sestavte program, který určí výši úroku na spořitelních vkladních knížkách za
kalendářní rok. Máme k dispozici dva soubory. První obsahuje tyto informace: Číslo
spořitelní knížky, výše vkladu, resp. výběru a datum. Vklad je reprezentován kladným
číslem, výběr záporným číslem. Předpokládejme, že 1.1. byl uložen zůstatek
z předchozího roku a všechny knížky v souboru mají stejný úrok. Ten se však může
průběhu roku měnit podle vývoje inflace a tyto informace jsou uloženy v druhém
souboru. Předpokládejme, že první záznam obsahuje hodnotu výchozího úroku k 1.1. a
další záznamy hodnotu nového úroku a datum, odkdy byl zaveden.

21. Napište program pro amortizaci materiálu. O každém evidovaném materiálu se udržují
tyto informace: Evidenční číslo, druh materiálu, pořizovací cena, hodnota odpisu za
jeden rok v procentech z pořizovací ceny, datum posledního odpisu, zůstatková cena.
Program v závislosti na momentálním datu a datu posledního odpisu sníží zůstatkovou
cenu materiálu. Pokud tato hodnota poklesne pod určitý zlomek z pořizovací ceny,
vyřadí materiál z evidence a informaci o tom uloží do druh‚ho souboru, který může
být např. podkladem pro nabídku partiového prodeje.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 72

6. Kontrolní otázky
I. Návrh datových struktur

Pro následující relační schámata je úkolem provést dekompozici na několik relačních
schémat v 3. normální formě tak, aby nedošlo ke ztrátě informace (v případě potřeby je
možné výchozí schéma před dekompozicí upravit (rozšířit)):

1. PACIENTI(rodné-č, jméno, příjmení, diagnóza, den-nástupu, č-oddělení, název-oddělení)

2. BYDLIŠTĚ(rodné-č, jméno, příjmení, místo, ulice, ČP, PSČ, městská-čtvrt, okres, kraj)

3. TRESTNÍ-REJSTŘÍK(rodné-č, jméno, příjmení, trestný-čin, paragraf, sazba-od, sazba-do,
 výše-trestu, nápravná-skupina)

4. AUTA(SPZ, typ, barva, obsah-válců, rok-výroby, prodejní-cena, dovezené{typ boolean},
 rodné-č-majitele, jméno, příjmení)

5. VÝPŮJČKA(rodné-č, jméno, příjmení, název-knihy, nakladatelství, autor, ISBN, tématické-
zaměření)

6. STUDENTI(rodné-číslo, jméno, příjmení, škola, fakulta, typ-studia, délka-studia, obor,
místo)

II. Dotazy v relační algebře

V následujících příkladech jsou dánay2, 3 nebo 4 tabulky a je třeba zformulovat dotaz
relační algebry, který z nich určí požadované informace.

1. HEREC(č-herce, jméno, příjmení)
 REPERTOÁR(č-hry, název-hry)
 OBSAZENÍ(č-herce,č-hry)

Dotazem relační algebry určit všechny herce (jejich jména a příjmení), kteří hrají ve hře
‘Hamlet’.

2. SKLAD(č-skladu, adresa, ...)
 MNOŽSTVÍ(č-skladu, č-součástky, počet-kusů)

Dotazem relační algebry zjistit adresy všech skladů, kde mají součástku ‘10’ alespoň ve 20
kusech.

3. MAJITEL(rodné-č, jméno, příjmení)
 BARVA(kód-barvy, barva)
 TYP(kód-typu, název-typu)
 MÁ-AUTO(rodné-č, SPZ, kód-typu, kód-barvy)

Dotazem relační algebry zjistit jména a příjmení všech majitelů modré Felicie z okresu
Kroměříž.
Pozn. Okres Kroměříž identifikujeme úvodními znaky "KM" v číslu auta,
(v Accessu bychom v této selekci použili zápis LEFT(MÁ-AUTO.číslo, 2) = "KM"

4. LÉKAŘ(č-licence, specializace)
 PACIENT(rodné-č, jméno, příjmení)

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 73

 NÁVŠTĚVA(rodné-č, č-licence, datum)

Dotazy relační algebry zjistit
a) specializace lékařů, jejichž pomoc vyhledal pacient s rodným číslem 600101/111
b) jméno a příjmení tohoto pacienta

5. UČITEL(os-číslo, jméno, příjmení)
 PŘEDMĚT(kód-př, název-předmětu)
 CO-UČÍ(os-číslo, kód-př)

Dotazem relační algebry zjistit názvy všech předmětů, které učí učitel ‘Karásek’.
(Předpokládáme, že neexistují 2 učitelé se stejným jménem.)

III. SQL

V následujících příkladech je úkolem zjistit z daných tabulek požadované informace pomocí
jazyka SQL.
1. UČITELÉ(č-uč, jméno, příjmení, č-odboru)
 ODBORY(č-odboru, název-odboru)

Dotazem SQL zjistit názvy všech odborů a počty učitelů na nich zařazených.

2. ZAMĚSTNANCI(rodné-č, jméno, příjmení)
 DĚTI(rodné-č-rodiče, jméno-dítěte)

Dotazem SQL zjistit všechny bezdětné zaměstnance.

3. PRODEJCI(č-prodejce, jméno, příjmení)
 FAKTURY(č-faktury, č-zboží, počet-kusů, datum)
 ZBOŽÍ(č-zboží, cena-za-kus)

Dotazem SQL zjistit všechny prodejce a celkové částky, které jimi byly vyfakturovány.

4. HEREC(č-herce, jméno, příjmení)
 REPERTOÁR(č-hry, název-hry)
 OBSAZENÍ(č-herce,č-hry)

Dotazem SQL určit, kolik herců je obsazeno ve hře ‘Hamlet’.

5. HEREC(č-herce, jméno, příjmení)
 REPERTOÁR(č-hry, název-hry)
 OBSAZENÍ(č-herce,č-hry)

Dotazem SQL určit všechny herce (jejich jména a příjmení), kteří hrají ve hře ‘Hamlet’ a
uspořádat je v abecedním pořadí.

6. SKLAD(č-skladu, adresa, ...)
 MNOŽSTVÍ(č-skladu, č-součástky, počet-kusů)

Dotazem SQL zjistit adresy všech skladů, kde mají součástku ‘10’ alespoň ve 20 kusech

7. MAJITEL(rodné-č, jméno, příjmení)

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 74

 BARVA(kód-barvy, barva)
 TYP(kód-typu, název-typu)
 MÁ-AUTO(rodné-č, SPZ, kód-typu, kód-barvy)

Dotazem SQL zjistit jména a příjmení všech majitelů modré Felicie.

8. LÉKAŘ(č-licence, specializace)
 PACIENT(rodné-č, jméno, příjmení)
 NÁVŠTĚVA(rodné-č, č-licence, datum)

Dotazem SQL zjistit specializace lékařů, jejichž pomoc vyhledal pacient s rodným číslem
600101/111

9. LÉKAŘ(č-licence, specializace)
 PACIENT(rodné-č, jméno, příjmení)
 NÁVŠTĚVA(rodné-č, č-licence, datum)

Dotazem SQL zjistit datum všech návštěv pacienta s rodným číslem 600101/111

10.UČITEL(os-číslo, jméno, příjmení)
 PŘEDMĚT(kód-př, název-předmětu)
 CO-UČÍ(os-číslo, kód-př)

Dotazem relační algebry zjistit názvy všech předmětů, které učí učitel ‘Karásek’.
(Předpokládáme, že neexistují 2 učitelé se stejným jménem.)

IV. Visual Basic pro aplikace Accessu

1. Napsat proceduru ve Visual Basicu, která z tabulky OSOBY1(rodné-č, jméno, příjmení,

místo, ulice, čp, PSČ) překopíruje všechny záznamy osob bydlících v Brně do tabulky
OSOBY2 se stejnou strukturou. Úlohu vyřešte bez použití SQL s pomocí objektů typu
recordset.

2. Napsat proceduru ve Visual Basicu, která z tabulky skladových položek SKLAD(ID,
název, počet-kusů) překopíruje do tabulky OBJEDNAT(ID, název) všechny položky,
jejichž počet kusů na skladě je nulový. Úlohu vyřešte bez příkazu SQL s využitím objektů
typu recordset.

3. Napsat proceduru ve Visual Basicu, která do tabulky OSOBY1(rodné-č, jméno, příjmení)
přidá všechny řádky tabulky OSOBY2(rodné-č, jméno, příjmení). Úlohu vyřešte bez
použití SQL s pomocí objektů typu recordset.

4. Napsat funkci ve Visual Basicu, jejíž návratovou hodnotou je název uměleckého díla, za
které byla v dražbě nabídnuta nejvyšší cena. Jsou k dispozici 2 tabulky: DÍLA(ID, název),
NABÍDKY(ID, cena, zájemce). Úlohu vyřešte bez použití SQL s pomocí objektů typu
recordset.

5. Napište funkci ve Visual Basicu, jejíž návratovou hodnotou je rodné číslo první osoby z
tabulky ZÁKAZNÍCI(rodné-č, jméno, příjmení), která v tabulce OBJEDNÁVKY(rodné-č,
zboží-č, rok, …) nemá žádný záznam v roce 2000. Úlohu vyřešte bez použití SQL
s pomocí objektů typu recordset.

6. Napište funkci ve Visual Basicu, jejíž návratovou hodnotou je, kolik procent zákazníků
z tabulky ZÁKAZNÍCI(rodné-č, jméno, příjmení) nemá žádný letošní záznam v tabulce

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 75

OBJEDNÁVKY(rodné-č, zboží-č, rok, …). Úlohu vyřešte bez použití SQL s pomocí
objektů typu recordset.

7. Napište funkci ve Visual Basicu, jejíž návratovou hodnotou je rodné číslo čtenáře z tabulky
ČTENÁŘI(rodné-č, jméno, příjmení), který v tabulce VÝPŮJČKY(rodné-č, ISBN) má
největší počet záznamů. Úlohu vyřešte bez použití SQL s pomocí objektů typu recordset.

8. Napište funkci ve Visual Basicu, jejíž návratovou hodnotou je pořadí prvního řádku, na
kterém se dvě tabulky stejné struktury a stejného počtu řádků liší v hodnotě klíčového pole
ID. Jestliže všechny odpovídající si řádky mají stejné hodnoty klíče, pak funkce vrátí
hodnotu 0. Úlohu vyřešte bez použití SQL s pomocí objektů typu recordset.

 Miloš Šeda: Databázové systémy. VUT FSI v Brně, listopad 2002.

 76

Literatura
[1] Benyon-Davies, P.: Database Systems. Macmillan Press, London, 1996. ISBN 0-333-

63667-8.
[2] Bíla, J., Král, F.: Databázové a znalostní systémy. Skriptum ČVUT FS, Praha, 1999.
[3] Date, C.J.: An Introduction to Database Systems. Addison-Wesley, New York, (6th

edition), 1995.
[4] Duží, M.: Konceptuální modelování – datový model HIT. Slezská univerzita, Ostrava,

2000.
[5] Elmasri, R. and Navathe, S.B.: Fundamentals of Database Systems. The

Benjamin/Cummings Publishing Company, Amsterdam, (2nd edition), 1997.
[6] Farana, R.: Tvorba relačních databázových systémů. VŠB TU, Ostrava, 1999.
[7] Farana, R.: Aplikace počítačů v řízení. Relační databáze. VŠB TU, Ostrava, 1995.
[8] Fortier, P.J.: Database Systems Handbook. McGraw-Hill, 1997, ISBN 0-07-021626-6.
[9] Havlát, T., Benešovský, M.: Úvod do databázových systémů. Skriptum UJEP PřF, Brno,

1984.
[10] McCullough-Dieter, C.: Mistrovství v Oracle 8. Computer Press, Praha, 1999.
[11] Pokorný, J.: Visual Basic pro aplikace Accessu 2000. Kopp, České Budějovice, 2000.
[12] Pokorný, J.: Office 97 a Internet. Kopp, České Budějovice, 1997.
[13] Pokorný J.: Učíme se SQL. PLUS, Praha, 1993.
[14] Pokorný, J.: Konstrukce databázových systémů. Skriptum ČVUT FEL, Praha, 1999.
[15] Pokorný, J., Halaška, I.: Databázové systémy. Vybrané kapitoly a cvičení. Karolinum,

Praha, 1993.
[16] Pokorný, J., Halaška, I.: Databázové systémy. Vybrané kapitoly a cvičení. Karolinum –

nakladatelství Univerzity Karlovy, Praha, 1998.
[17] Straka, M.: Vývoj databázových aplikací. Grada, Praha, 1992.
[18] Šimůnek, M.: SQL - kompletní kapesní průvodce. Grada, Praha, 1999.
[19] Viescas, J.: Mistrovství v Microsoft Access 2000. Computer Press, Praha, 2000.

Poděkování:
Autor děkuje za podporu z Projektu rozvoje bakalářských programů na Fakultě strojního
inženýrství VUT v Brně a za možnost začlenit do textu odborné poznatky získané při řešení
výzkumného záměru CEZ J22/98: 261100009 „Netradiční metody studia komplexních a
neurčitých systémů“.

	Obsah
	1. Teoretické aspekty zpracování dat
	1.1. Úvod
	1.2. Databázové systémy
	1.3. Modely dat

	2. Dotazovací jazyk SQL
	2.1. Výběrový dotaz
	2.2. Křížový dotaz
	2.3. Akční (aktualizační) dotazy
	2.4. Definiční dotazy

	3. Visual Basic pro aplikace MS Access
	Definice konstant
	3.1. Řídící struktury Visual Basicu
	3.2. Formuláře
	3.3. Objekt RecordSet
	3.4. Volání SQL dotazu z VBA

	4. Složitější příklad
	5. Témata projektů
	6. Kontrolní otázky
	Literatura

