Pole

Doposud jsme pracovali s tzv. primitivnimi proménnymi, které uchovavaly jednu hodnotu.
V tadé ptipadii (napf. pocitani priméru znamek) se vSak hodi mit k dispozici jakousi sérii
proménnych, kterd ma jméno a jednotlivé proménné jsou Cislované (napt.: znamkal,
znamka?2, znamka3, ...). Takovy pozadavek je v jazyce C (a dalSich) feSen pomoci tzv. pole.

Pole je datova struktura, ve které jsou data (jednotlivé proménné) uchovana v fadé za sebou
(je tedy linedrni strukturou). Misto slova ,,proménnd* se vSak v souvislosti s polem hovofi o
prvcich. Pamét pro pole je vyhrazena tak, jak je to zobrazeno na obrazku niZe (jeden prvek
pole za druhym). Misto ¢islovani prvki se vsak v jazyce C pouziva indexovani. Velmi
zjednodusené¢ jde vlastné o Cislovani, které zacina nulou. Indexy se za nazev zapisuji do
hranatych zavorek (napf. znamky[0], znamky[1], ... nebo napf. p[0], p[1], ...). Pro pole s N
prvky ma tedy prvni prvek pole index 0 a N-ty prvek ma index N - 1.

[p[0]] p(1] ; pl2]] | pEl |
Ukézka 10ti prvkového pole (N=10) s ndzvem ,,p* a jeho podoba v paméti.
Deklarace pole
Deklarace pole ma nasledujici strukturu:
<typ> <nazev>|[<[N]>];

Deklarace se pftilis nelisi od deklarace proménné. typ je zakladni typ buiiky pole (pole je
homogenni, neni mozné ménit typ u jednotlivych bun€k, vSechny bunky tedy maji stejny typ),
nazev je identifikator pole — nazev promeénné typu pole — a N urcuje, kolik bun¢k bude pole
mit. V konkrétnim ptipad¢ tedy pole s nazvem ,,p“ o deseti prvcich, kde kazdy prvek bude
typu int bude vypadat takto:

int pole[10];
Inicializace pole

Pole mizeme inicializovat jako kazdou jinou proménnou pii jejim vzniku. U pole je to ale o

vvvvvv

int polel[5] = {10, 20, 30, 40, 50};
int pole2[] = {10, 20, 30, 40, 50};
int pole3[5] = {1, 2};

int pole4[5] = {0};

int poleNevim[5];

Na prvni fadce kompletné inicializujeme pole s péti prvky. Na druhé fadce je ukazano, jak
vytvofime ekvivalentni pole (vSechny prvky maji stejnou hodnotu) s polem polel a ptitom
neni uveden pocet prvkil v hranatych zadvorkach. To jazyk C umoziiuje a pocet prvki si
dopocita sam z hodnot uvedenych ve sloZzenych zavorkach.

Co se ale stane s polem pole3? Ma 5 prvki, ale uvedeny jsou jen 2 hodnoty. V piipadé, ze
pole ma vice prvki nez je pocet hodnot uvedenych ve slozenych zavorkach, budou zbylé
prvky pole (pro které uz nejsou uvedeny hodnoty) vynulovany. U pole3 tedy ,,vyplnime*
pouze prvni dva prvky a zbytek bude vynulovan. Stejné tak pole4 bude kompletné vyplnéné
nulami.

V ptipadé¢ poleNevim nemaji prvky definovanou hodnotu. Nékteré piekladace jazyka C
takové pole vynuluji, jiné ned¢€laji nic a prvky budou mit neurcitou hodnotu (zélezi na tom, co
bylo diive uloZeno v paméti, nez byla vyhrazena pro nase pole).

Prace s polem
Indexace

Mame-li vytvofenou proménnou typu pole, mizeme k jednotlivym bunikam piistupovat
pomoci operatoru indexace, nebo-li indexem v hranatych zavorkach. Nesmime ovSem
zapominat na to, ze prvni buiika mé index nula.

M¢jme napt.: pole:

int pole[5] = {15, 25, 35, 45, 55};

a vyzkousejme nasledujicic vypisy:

cout << pole[0]; // prvni bunka pole, vypisSe se 15
cout << polel[l]; // druh& bunka pole, vypisSe se 25

cout << pole[5]; // chyba, sahdme mimo pole!! (indexy jsou 0-
4)

Na posledni fadce se pokousime Cist buiiku s indexem pét. To je samoziejmée chybné, protoze
pole ma posledni buniku na indexu ¢tyfi. Jazyk C nema Zadnou zabudovanou kontrolu mezi
poli. V ptipad¢ jako je vySe, dojde k potencialn¢ nebezpecnému ¢teni paméti. To mtize
zpusobit pad programu nebo ndhodné vracena data. Jazyk C prosté mechanicky vezme data

z paméti tam, kde by lezel Sesty prvek, kdybychom pole deklarovali jako Sestiprvkové (Sesty
prvek = index 5).

Kromé ur€eni indexu prvku konstantou (viz napt. konstanta 1 v: cout << pole[1l];)lze
index urcit i pomoci proménné nebo vyrazu. Na nasledujici ukazce je opét pole 10ti prvki
typu int deklarované takto:

int p[10];

int p[10];

I I | -] |

P[O] P1] pl2] e

Proved'mé postupné nasledujici ptikazy:
pll] = 12;

int k = 2;

plk] = 9;
plk-2] = 45 + p[1];
Prostudujte vyseuvedené prikazy a ovéite, ze hodoty prvnich tii prvka budou dle obr. nize:

57 12 g
plo] pl1] pi2] ple]

Ur¢it index pole 1ze dokonce 1 hodnotou jiného prvku pole. V nésledujicim piikazu vidime, ze
index je ur¢en hodnotou prvku p[2]:

pl pl2] 1 = 180;

Dosadime-li pomysIné do uvedeného piikazu za p[2] jeho hodnotu (v p[2] je 9) pak ptikaz
bude vypadat takto:

pl 9] = 180;
A nasSe pole bude obsahovat:
57 12 cas 180
p[O] p[1] pl2] ple]
Nacteni do pole a vypis pole

Mezi zékladni operace s polem bezesporu patii nacteni prvka do pole a vypis pole. Jeden
z moznych piistupti je na nasledujici ukazce:

int i;

int p[10];

for(i =0 ; 1 < 10 ; i++)

cout << plil;

for(i =0 ; i < 10 ; i++)
cout << "\t" << pl[i];
cout << "\n";

Porovnavani poli

Pole nelze jednoduSe porovnévat, jako to jde s jednoduchymi ¢iselnymi typy. Od
nasledujiciho kodu nelze o¢ekavat korektni chovéni, pokud ndm jde o srovnani obsahu poli:

if (polel == pole2)

Chceme-li srovnat obsahy poli, nezbude nam nic jiného, nez vytvofit cyklus a porovnat buiiku
po buiice. Méame-li stejné dlouhd pole, provedeme srovnani nasledovné:

int polel[10], pole2[10];
// pokusné napliite obé pole a) stejnymi hodnotamy, b) ruaznymi
//a vyzkouSejte
int shoda = 1;
for (1 = 0; 1 < 10; 1i++)
{
if (polel[i] != pole2[i]) // pole se 1isi
{
shoda = 0;
break; // prerudime cyklus a pokracujeme za nim

}
if (shoda)

{

printf ("pole se rovnaji\n");

Soucet a pramér

Dalsi typickou ulohou provadénou s polem je soucet prvkill, popt. primér prvkl pole.

V nasledujicim prikladu tedy mame proménnou soucet, kterd mé na zacatku hodnotu 0 a
nasledné do ni v cyklu pfic¢itime hodnoty jednotlivych prvki pole. Na konci vypisujeme
prumér. VSimnéte si pietypovani pii vypisu priméru (viz operator / a celo¢iselné, realné
déleni).

int i, soucet = 0;

int pl6];

//nacitame 6 hodnot z klavesnice a ukladdame je do pole
for(1 =0 ; i< 6 ; i ++)

{

cin >> pl[il;

i=0;
for(; 1 <6 ; 1 ++)
{
soucet = soucet + pl[il;
}
cout << "Prumer je " << (float)soucet / i << "\n";

Minimum — hledndni nejmensi hodnoty v poli

Nejjednodussi metodou hleddni minima je postupné prochazet celé pole prvek za prvkem a
v n&jaké pomocné proménné si ,,pamatovat” nejmensi hodnotu, kterou jsme zatim
zaznamenali. Pokud pfi proch4zeni prvki narazime na nizs§i hodnotu, zapamatujeme si prave

ji a pokrac¢ujeme v prochazeni. Az dojdeme na konec pole, mame v pomocné proménné
ulozenu nejmensi hodnotu, ktera se v poli vyskytuje.

Nasledujici program piedstavuje vyse nastinény popis. Dillezitym detailem je pocatecni
nastaveni proménné pamet.

Ta se bézné nastavuje na hodnotu prvniho prvku pole (zde pole [0]) a dale se pak polem
prochazi od druhého prvku. Tento postup je logicky. Pii postupném prochézeni polem je
kontrolovan nejprve prvni prvek, v danou chvili je jedinym prvkem, ktery jsme zatim
,videli“, tudiz jde o zatim nejmensi prvek, na ktery jsme v poli narazili.

int p[8];
int k;
for (k=0; k<8 ; k=%k+ 1)
{
cin >> plkl];
}

cout << "\n\n";

int i;
int pamet = p

(0]
for(i=1; 1i<8 ;1 =1+ 1)//jdeme od druhého prvku

cout << "Minimum je " << pamet;

Dalsi béznou ulohou je kromé nalezeni nejmensi hodnoty 1 vypsani indexu pole, kde se tato
hodnota nachazi. Upravme vyse uvedeny program tak, aby vypsal i index prvku, ve kterém je
nejmensi hodnota. Pro tento Gc¢el doplnime do programu proménnou pozice, ve které si
budeme pamatovat index prvku s nejmensi hodnotou.

int p[8];

int k;
for (k=0; k<8 ; k=%k+ 1)
{
cin >> plk]l;
}

cout << "\n\n";

int 1i;

int pamet = p[0];

int pozice = 0; //pamatujeme si index
for(i=0; 1 <8 ; 1=1+4+1)

cout << "Min. je " << pamet << " a je na indexu " << poz;

Pozor, pokud je napt. nejmensi hodnota 1 a v poli je 2x (ve dvou riznych prvcich), bude
vypsan index prvniho prvku obsahujici hodnotu 1.

Nyni zkuste predélat vySe uvedeny program tak, aby misto minima, hledal maximum. Teprve
pak se podivejte na dalsi ptiklad, ktery fesi sou¢asné minimum i maximum.

int i;
int pole[8];

for (1 =0; 1 <8 ; 1i=1+ 1)
{
cin >> polel[i];

}

cout << "\n----------—--—-—-- \n";
int max = pole[0], max index = 0;
int min = pole[0], min index = 0;

for(i=0; 1<8; 1=1+1)
{
if(polel[i] > max)

{

max = pole[i]; max index = 1i;
}
if(pole[i] < min)
{

min = pole[i]; min index = 1i;

}
cout << "maximum Jje "<<max<<" a index Je "<<max index;
cout << "\n minimum je "<<min<<" a index Jje "<<min index;

Program neni napsan zamérné efektivné, aby byl co nejsrozumitelné;jsi. Zkuste jej upravit tak,
aby se v cyklu ,,zbytecné” nevyhodnocovaly vzdy dvé podminky.

