Cyklus s podmínkou na konci (do – while)
[image:]Cyklus s podmínkou na konci je ve většině programovacích jazyků zapisován s pomocí konstrukce zvané krátce do – while.
	do
	příkaz;
while (podmínka);

	do{
	příkaz_1;
	příkaz_2;
	...
}while (podmínka);

Cyklus do – while je v jazyce C tvořen a) klíčovým slovem do, b) příkazem či blokem příkazů, c) klíčovým slovem while a d) podmínkou uvedenou v závorce.
Jakmile řízení programu dorazí k cyklu do - while:
1. Provedou se příkazy těla cyklu (blok příkazů).
2. Je vyhodnocena podminka.
3. [bookmark: _Hlk38916721]Pokud je podmínka splněna, pokračuje se znovu od bodu 1.
4. Není-li podmínka splněna, cyklus končí.
Z uvedeného vyplývá, že příkazy těla cyklu budou provedeny aspoň jednou, bez ohledu na podmínku, protože ta se vyhodnocuje až po provedení příkazů těla cyklu.
(05do-while01.cpp)
	double p, sum = 0;
	cout << "1. zadavej cenu polozek nakupu\n2. ukonci zadanim cisla 0\n";

	do{
	 cin >> p;
	 sum += p;
	}while(p != 0);

	cout << "Celkova cena nakupu je: " << sum << " Kc";
Program počítá celkovou cenu nákupu (sum) na základě ceny jednotlivých položek (p). Cyklus do – while, resp. zadávání končí ve chvíli, kdy je do proměnné p zadána hodnota 0. Následně je vypsán celkový součet zadaných položek.
(05do-while02.cpp)
01 	int a, sum = 0;
02 	cin >> a;
03 	
04 	do{
05 sum += a % 10;
06 a = a / 10;
07 	}while(a != 0);
08
09 	cout << „Ciferny soucet zadaneho cisla je: " << sum;
Program spočítá tzv. ciferný součet zadaného čísla (sečte jednotlivé číslice). Princip ilustruje následující vyobrazení (předpokládejme zadání čísla 2378):
	před cyklem
	po I. iteraci
	po II. iteraci
	po III. iteraci
	po IV. iteraci

	sum == 0
a == 2378

	sum == 8
a == 237

	sum == 15 (8+7)
a == 23
	sum == 18 (15+3)
a == 2
	sum == 20 (18+2)
a == 0

Stejný princip, jiná ilustrace:
I. iterace (a je 2378, sum je 0):
1. sum += a % 10; z 2378 získáme poslední číslici a přičteme do sum 	(sum je 8)
1. a = a / 10; z 2378 získáme vše kromě poslední číslice a vložíme do a	(a je 237)
II. iterace (a je 237, sum je 8):
1. sum += a % 10; z 237 získáme poslední číslici a přičteme do sum 	(sum je 15)
1. a = a / 10; z 237 získáme vše kromě poslední číslice a vložíme do a	(a je 237)
...
	
rozšiřující - Euklidův algoritmus(05do-while03.cpp)
1. 	int a, b;
1. 	cin >> a;
1. 	cin >> b;
1. 	
1. 	do{
1. 	
1. 		if(a>b)
1. 			a = a - b;
1. 		else
1. 			b = b - a;
1. 			
1. 	}while(b != 0);
1.
1. 	cout << "Nejvyssi spolecny delitel je: " << a;
Příklad je pouze pro zájemce, příp. studenty s aprobací M-IT. Je implementací Euklidova algoritmu pro výpočet nejvyššího společného dělitele dvou čísel.
[image:]Cyklus se známým počtem opakování (for)
Cyklus se známým počtem opakování je ve většině programovacích jazyků znám jako tzv. cyklus for.
for(inicializace ; podminka ; iteracni_vyraz)
 prikaz;
Stejně jako u podmínky a dříve probraných cyklů, lze i u cyklu for místo jednoho příkazu, který bude opakován, použít blok příkazů (či složený příkaz):
for(inicializace ; podminka ; iteracni_vyraz)
{
 prikaz_1;
 prikaz_2;
 ...
}
Cyklus for je tedy v jazyce C tvořen a) klíčovým slovem for, b) kulatými závorkami, které obsahují inicializaci (řídící proměnné), podmínku a iterační výraz a c) příkazem či blokem příkazů, které představují tělo cyklu.
Jakmile řízení programu dorazí k cyklu for:
1. Provede se inicializace.
2. Je vyhodnocena podminka.
3. Pokud je podmínka splněna:
a. provede se tělo cyklu,
b. provede se iteracni_vyraz,
c. pokračuje se znovu od bodu 2.
4. Není-li podmínka splněna, cyklus končí.
Cyklus for lze kdykoli přepsat pomocí cyklu while takto (tento zápis současně názorněji ilustruje funkci cyklu for):
inicializace;
while(podminka)
{
 prikaz_1;
 prikaz_2;
 ...
 iteracni_vyraz;
}
Pozn.: Z uvedeného mj. vyplývá, že inicializace je provedena pouze jednou.
(05for01.cpp) s ukázkou přepisu s pomocí cyklu while
	1. int i;

for(i = 1 ; i <= 3 ; i++)
{
 cout << i << ", ";
}
	1. int i;

i = 1;
while(i <= 3)
{
 cout << i << ", ";
 i ++;
}

Program na výstup vypíše:
1, 2, 3,
a) Nejprve je provedena inicializace (i = 1). V proměnné i je hodnota 1.
b) Je vyhodnocena podmínka (i <= 3). Protože je splněna, provede se první iterace a na výstup je vypsáno "1, " a je proveden iterační výraz (i++). V proměnné i je hodnota 2.
c) Znovu je vyhodnocena podmínka (i <= 3), protože opět platí, provede se další iterace a na výstup je připsáno "2, " a je proveden iterační výraz (i++). V proměnné i je hodnota 3.
d) Znovu je vyhodnocena podmínka , protože opět platí, provede se další iterace a na výstup je připsáno "3, ", a je proveden iterační výraz (i++). V proměnné i je hodnota 4.
e) Znovu je vyhodnocena podmínka, nyní již neplatí a cyklus končí (k další iteraci nedojde)

image2.png

image3.png

image4.png

image5.png
e,

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png
o

image12.png
JDVS—

image13.png

image14.png

image2.emf

image15.png

image16.png

image17.png

image18.png
R

image1.emf

