Oprarátory a operace – díl 1.
V následující tabulce je přehled operací a operátorů jazyka C, které budeme postupně probírat.
	priorita
	operátor
	
	význam
	druh

	nejvyšší 
	!
	♠
	negace
	logický

	
	++, --
	♠
	inkrement, dekrement
	aritmetický

	
	-
	♣
	změna znaménka
	aritmetický

	
	(typ)
	●
	přetypování (int) (float)
	

	
	sizeof()
	●
	určuje velikost v bytech – sizeof(prom), sizeof(unsigned int)
	

	
	*, /
	♣
	násobení, dělení
	aritmetický

	
	/, %
	♠
	celočíselné dělení, zbytek po dělení
	aritmetický

	
	+, -
	♣
	sčítání, odčítání
	aritmetický

	
	<, <=, >, >=
	♣
	menší, menší nebo rovno, větší, větší nebo rovno
	relační

	
	==, !=
	♣
	je rovno, je různé
	relační

	
	&&
	●
	a zároveň AND
	logický

	
	||
	●
	nebo OR
	logický

	nejnižší
	=
	♣
	operátor přiřazení
	

	
	[bookmark: _Hlk36189172]+=, -=
	♣
	operátor přičti a odečti (c+=2 je ekvivalentní s c=c+2)
	aritmetický

	
	*=
	♣
	operátor vynásob (c*=3 je ekvivalentní s c=c*3)
	aritmetický


Tabulka má celkem 4 hlavní sloupce. Přehled operátorů je ve druhém sloupci, jejich popis ve třetím a druh pak v posledním. V prvním sloupci je vyznačena priorita operátorů. Sloučené řádky v prvním sloupci vyjadřují, že operátory na těchto řádcích mají stejnou prioritu (např. *, /, % mají stejnou prioritu). Některé z operátorů známe (zejm. matematické operátory), jiné jsou možná překvapující, protože na místo symbolů jsou složeny z písmen (sizeof()). 
V tomto díle se ale dále budeme zabývat jen operátory a operacemi, které jsou v tabulce označeny symbolem ♠. Operátory označené symbolem ● vysvětlíme až v souvislosti s datovými typy a operátory označené symbolem ♣ se zabývat nebudeme, protože:
a) byly probrány (relační operátory v souvislosti s podmíněným příkazem)
b) známe je z matematiky (+, -, *)
c) jejich použití je velmi jednoduché (+=, -=, *= stačí popis v tabulce)
Pozn.: V souvislosti s probíranou problematikou se setkáme s následujícími pojmy: operátor, operace, operand, unární, binární, prefixový, infixový, postfixový, aritmetický, relační, logický. Tyto pojmy rozebereme níže. Nebudeme se je ale záměrně učit. Osvojíte si je postupně tím, že budou v dalších materiálech používány.
♠ Operátor %
Operátor procento reprezentuje operaci zbytek po dělení a je tedy určen pro operace s celými čísly (proměnnými, konstantami). Použití je triviální:
int z
int a;
a = 7;
z = a % 3; 		//v proměnné z bude hodnota 1
z = 12 % 6 		//v proměnné z bude hodnota 0
z = 2 * a % 5 	//v proměnné z bude hodnota 4
♠ Operátor /
Operátor / je v tabulce uveden dvakrát. Jednou jako reprezentant operace dělení, podruhé jako reprezentant operace celočíselné dělení. Problémem je že z výrazu a / b nepoznáme, zda dojde k (reálnému) dělení nebo celočíselnému dělení. Do hry zde totiž vstupují typy proměnných, resp. konstant, se kterými je operátor pracuje. 
Platí následující pravidla:
celé / celé 		celočíselné dělení
reálné / celé 	reálné dělení
celé / reálné		reálné dělení
reálné / reálné	reálné dělení
Příklady: (výsledky zaokrouhleny na 2 desetiná místa)
1. int c;	// celočíselná proměnná
1. float r;	// reálná proměnná
1. c = 3;
1. r = 7.0;		
1.                	//dělení ve výrazu	výsledná hodnota výrazu
1. ... r / c; 		//reálné			výsledek: 2.33
1. ... 12 / c; 	//celočíselné		výsledek: 4
1. ... 12 / 2.0	//reálné			výsledek: 6.00
1. ... 21 / r		//reálné			výsledek: 3.00
1. ... 7 / 3		//celočíselné		výsledek: 2
1. ... 1.0 * 7 / 3	//reálné			výsledek: 2.33
1. ... r * 7 / 3	//reálné			výsledek: 16.33
1. [bookmark: _Hlk36156158]... 7 / 3 * r	//celočíselné 		výsledek: 14.00
V příkladech na řádcích 06 až 10 je pouze oprátor lomítko (/), reálné (float) a celočíselné (int) proměnné a reálné a celočíselné konstanty. Jednoduše se zde uplatní výše uvedená pravidla. Příklady na řádcích 11 až 12 však mohou působit překvapivě dokud si neuvědomíme, jak jsou výrazy vyhodnocovány. Ve všech třech příkladech (11 až 13) jsou operátory * a /. Ty mají stejnou prioritu a výrazy jsou tedy vyhodnocovány postupně zleva doprava, přitom platí, že prvním úkonem je dosazení hodnot za proměnné (zeleně):
Příklad 11:    1.0 * 7 / 3 	~	 7.0 / 3	 	~ 	2.33
Příklad 12:    r * 7 / 3 		~	 7.0 * 7 / 3	~ 	49.0 / 3	~	16.33
Příklad 13:    7 / 3 * r 		~	 7 / 3 * 7.0	~ 	2 * 7.0	~	14.00
[bookmark: _Hlk36192105]♠ Operátory ++ a --
Operátor ++ (inkrementace, z lat. incrementum, tj. zvýšení) zvyšuje hodnotu proměnné o 1 a lze jej zapsat před proměnnou nebo za proměnnou. Umístění má vliv při vyhodnocování výrazů:
· Je-li operátor ++ ve výrazu umístěn před proměnnou, je hodnota proměnné nejprve zvýšena o 1 a následně dosazena do výrazu. 
· Je-li operátor ++ ve výrazu umístěn za proměnnou, je dosazena hodnota proměnné, dopočítán celý výraz a teprve pak je hodnota proměnné zvýšena o 1.
Před proměnnou: 
1. int a; int b;
1. a = 3;
1. b = ++a * 3;		//v b bude hodnota: 12, v a bude hodnota: 4
1. b = a++ * 3;		//v b bude hodnota: 9,  v a bude hodnota: 4
Příklad 03:    ++a * 3		~ 	zvýšení a	~	4 * 3		~	12 
Příklad 04:    a++ * 3		~ 	3 * 3		~	9		~	zvýšení a

Stejným způsobem se pracuje i s operátorem -- (dekrementace, z lat. decrementum, tj. snížení), který snižuje hodnotu proměnné o 1. 
Přestože se oprátory ++ a -- aplikují zejména na celočíselné proměnné, lze je použít i na ostatní typy (např. reálné, znakové), ale není to běžné.
(03operatory01bankomat.cpp)
Úloha Bankomat, známá též ve variantě „výčetka platidel“, nám poslouží k procvičení operátorů / a %.
Bankomat má v zásobníku bankovky v nominálních hodnotách 200 Kč, 1000 Kč a 2000 Kč. Uživatel na vstupu zadá částku, např. 7 600 Kč, a úkolem bankomatu je vyplatit tuto částku co nejměnším počtem bankovek, tj. 3x2000 Kč, 1x1000 Kč a 3x200 Kč, celkem 7mi bankovkami.
Rozbor: Algoritmus řešení je jednoduchý. V rozboru uvažujeme, že uživatel zadá částku, kterou lze danými bankovkami vyplatit (nezadá 7 635 Kč). 
Snažíme se částku vyplatit bankovkami s nejvyšší nom. hodnotou (2000 Kč). Když už to nejde (protože bychom přesáhli zadanou částku), zkusíme zbytek doplatit bankovkami s nižší nom. hodnotou (1000 Kč a posléze 200 Kč):
7 600 Kč 	3x 2000 Kč		zbyde 1 600 Kč
1 600 Kč		1x 1000 Kč		zbyde   600 Kč
  600 Kč		3x  200 Kč		zbyde     0 Kč
Řešení: (s ošetřením částek, které vyplatit nelze)
1. int bankovek2000; int bankovek1000; int bankovek200;
bankovek2000 = 0; bankovek1000 = 0; bankovek200 = 0;

int zbyva_vyplatit;
cout << "Zadejte, kolik chcete vyplatit: ";
cin >> zbyva_vyplatit;

bankovek2000 =     zbyva_vyplatit / 2000;
zbyva_vyplatit =   zbyva_vyplatit % 2000;

bankovek1000 =     zbyva_vyplatit / 1000;
zbyva_vyplatit =   zbyva_vyplatit % 1000;

bankovek200 =      zbyva_vyplatit /  200;
zbyva_vyplatit =   zbyva_vyplatit %  200;

if (zbyva_vyplatit != 0) 
{
  cout << "Nelze vyplatit\n";
}
else 
{
    cout << "\nVyplacim:\n";
    cout << "bankovky 2000 Kc v poctu: " << bankovek2000 << " ks\n";
    cout << "bankovky 1000 Kc v poctu: " << bankovek1000 << " ks\n";
    cout << "bankovky  200 Kc v poctu: " << bankovek200 << " ks\n";
}
Somostatná práce: Zjistěte, proč bankomat nefunguje, pokud má bankovky v nominálních hodnotách 200 Kč, 500 Kč a 1000 Kč (otestujte opět na částce 7 600 Kč).
Somostatná práce: Upravte program tak, aby správně reagoval na zadání záporné částky.
Terminologie
Přehled termínů
Operátor – je skupina znaků, která symbolizuje (v programu) alespoň jednu operaci[footnoteRef:1]. [1:  Ve skutečnosti je to tzv. lexikální jednotka, ale o tom později.] 

např. operátory: +, *, ==
Operace – postup, kterým jsou na základě vstupních hodnot získány hodnoty výstupní
např. operátory: sčítání, dělení, celočíselné dělení
Operand – vstuní hodnota operace (též argument)
Unární operace – vyžaduje právě 1 operand.
	např.: ! negace, - změna znaménka, inkrementace
Binární operace – vyžaduje právě 2 operandy.
	např.: sčítání, násobení, dělení
Prefixový operátor – zapisujeme před operand (většina unárních operátorů je prefixová).
Infixový operátor – zapisujeme jej mezi operandy (většina binárních operátorů je infixová).
Postfixový operátor – zapisujeme za operand.
[bookmark: _GoBack]Komentáře
Operátor tedy reprezentuje (symbolizuje) v programu operaci, která je prováděna s operandy.  
Operátor / reprezentuje 2 operace, a to (reálné) dělení a celočíselné dělení, jde o operátor binární, protože potřebuje 2 operandy, je operátorem infixovým, protože jej zapisujeme mezi operandy.
Operátor – reprezentuje 2 operace, a to binární operaci odečítání a unární operaci změna znaménka. V prvním případě se používá jako infoxový, ve druhém jako prefixový.
Operátory, které reprezentují 2 a více oprací, nazýváme přetížené operátory (jeden operátor pro více operací). Operátor / a operátor – jsou přetížené.
Operátor ++ reprezentuje operaci inkrementace, je unární, protože potřebuje práve jeden operand a lze jej použít jako prefixový nebo postfixový.
Protože = (operátor přiřazení) je v jazyce C také operátorem (např. v Pascalu tomu tak není), musí mít nějakou výstupní hodnotu (výsledek operace). U sčítání 3+2 je výstupní hodnota 5. U přiřazení a = 7 je výstupní hodnotou 7 (tedy přiřazená hodnota – tak hovoří norma jazyka C). Tato skutečnost tak dovoluje např. následující konstrukci:
a = b = c = 7;
V uvedeném příkazu je 3x operátor přiřazení, takže výraz je vyhodnocován zleva doprava. Operátor přiřazení ale koná tak, že je nejprve vyhodnocena pravá strana (ozn. oranžově) a až následně je hodnota pravé strany přiřazena do proměnné na levé straně.
Nejprve tedy řešíme první přiřazení zleva (ozn. zeleně):
a = b = c = 7;
Na pravé straně (ozn. oranžově) je ovšem další - druhý příkaz přiřazení. 
Musíme tedy řešit nejprve druhý příkaz přiřazení a v prvním kroku jeho pravou stranu:
a = b = c = 7;
Na této pravé straně, je ale ještě další – třetí příkaz přiřazení, který má také svou pravou stranu:
a = b = c = 7;
Poslední – třetí příkaz přiřazení c = 7 má už na pravé straně konstantu. Pravá strana má tedy výsledek a můžeme přejít ke druhému kroku příkazu přiřazení. Ve druhém kroku tedy do proměnné c vložíme hodnotu 7. Výsledek této operace (c = 7) je 7. Tento výsledek dosadíme:
a = b = 7;
Obdobně vyřešíme b = 7 a následně:
a = 7;
Výsledkem je, že v proměnné a, b, c je hodnota 7.
Výše uvedený rozbor lze shrnout takto:
a = b = c = 7; 	~ 	a = (b = (c = 7));
Somostatná práce: prostudujte 03operatory02prehled.cpp 
Operace a operátory v podmínkách
V podmínkách (podmíněné příkazy, cykly) jsme se zatím setkali pouze s jednoduchými relacemi mezi proměnnou a konstantou (a > 0). Běžně se ale v podmínkách vyskytují složitější výrazy, resp. kombinace aritmetických, logických a relačních operátorů. Na některé kombinace aritmetických a relačních se nyní podíváme. Logické probereme až v souvislosti s datovými typy a typovou konverzí.
Relační operátory porovnávají hodnoty. Tyto hodnoty ovšem nemusejí být vyjádřeny pouze konstantami nebo proměnnými, ale i výrazy:
proměnné
a = 7;
b = 4;
podmínka                                  výsledek            poznámka
2 * a > 10  ~  2 * 7 > 10  ~  14 > 10  ~  splněna (pravda)
3 == a / 2  ~  3 == 7 / 2  ~   3 == 3  ~  splněna (pravda)
b % 2 == 0  ~  4 % 2 == 0  ~   0 == 0  ~  splněna (pravda)    sudé číslo
b % 2 != 0  ~  4 % 2 != 0  ~   0 != 0  ~  nesplněna(nepravda) liché číslo
(03operatory03.cpp) 
1. int i;
i = 1;
while( i <= 10 )
{
    cout << "\n" << i;

    if ( i % 2 == 0 )  //nebo: i % 2 != 1
    {
        cout << "\t je sude cislo";
    }
    else
    {
        cout << "\t je liche cislo";
    }
    
    i++;
}
V podmínce úplného podmíněného příkazu je výraz i % 2 == 0. Pokud je podmínka splněna, znamená to, že zbytek po dělení 2 je nulový, číslo je tedy sudé a provede se blok (ř. 08 až 10). Alternativní zápis podmínky je uveden v komentáři na ř. 07. Proměnná i je řídící proměnnou cyklu a pro iterační výraz byl na ř. 16 místo dosud používaného i = i + 1 využit operátor ++. Příkaz i++; může vypadat na první pohled zvláštně, protože výsledek operace neukládáme do nějaké proměnné, ani jej nevypisujeme na výstup, ale to nevadí, protože nám jde jen o zvýšení hodnoty iterační proměnné i o 1, a to se také stane.
image2.png




image3.png




image10.png




image20.png




image31.png




image4.png




image5.png




image6.png




image30.png
ey
e




image40.png




image1.png




