Větvení programu – díl 1.
[bookmark: _Hlk35896431][bookmark: _GoBack]Nelidsky: Větvením programu rozumíme algoritmickou konstrukci zapsanou v programovacím jazyce, která specifikuje dvě či více alternativních posloupností příkazů a kritérium pro výběr té posloupnosti, která má být vykonána.
Pozn.: Větvením algoritmu rozumíme algoritmickou konstrukci, která specifikuje dvě či více alternativních posloupností kroků a kritérium pro výběr té posloupnosti kroků, která má být vykonána.
Podmíněný příkaz
Podmínka
U podmíněného příkazu je výše zmíněným kritériem tzv. podmínka. V této fázi výkladu budeme podmínkou rozumět výraz, o kterém lze rozhodnout, zda je pravdivý nebo nepravdivý a pro konstrukci výrazu budeme zatím využívat pouze relační operátory:
	 a < b
	 a je menší než b

	 a > b
	 a je větší než b

	 a <= b
	 a je menší nebo rovno b

	 a >= b
	 a je větší nebo rovno b

	 a == b
	 a rovná se b

	 a != b
	 a není rovno b

Po dosazení konkrétních hodnot proměnných (např. zadávaných z klávesnice), lze jednoznačně určit, zda je výraz pravdivý či nepravdivý, jinými slovy, zda je či není podmínka slpněna. Protože množina teoreticky možných výsledků vyhodnocení výrazu je dvouprvková (pravda/nepravda, resp. splněna/nesplněna), umožňuje podmíněný příkaz specifikaci nejvýše dvou alternativních větví.
Příkaz if
Podmíněný příkaz je v jazyce C tvořen a) klíčovým slovem if, b) podmínkou uvedenou v závorce a c) příkazem, který se provádí pouze tehdy, je-li podmínka vyhodnocena jako pravdivá.
if (podmínka)toto celé je podmíněný příkaz

	příkaz_A;
toto je podmínka

příkaz_VŽDY;
Je-li podmínka splněna (vyhodnocena jako pravdivá), provede se bezprostředně následující příkaz (příkaz_A). Není-li podmínka splněna, příkaz_A se neprovede. V obou případech pak program pokračuje dále (vykoná se příkaz_VŽDY, který již k podmíněnému příkazu nepatří a zde reprezentuje pokračování programu).
Pozn.: Uvedená konstrukce tedy specifikuje pouze větev (příkaz), která se má provést při splnění podmínky. Alternativní větev, která by se prováděla při nesplnení podmínky, neexistuje. Proto se v souvislosti s touto konstrukcí také setkáte s označením neúplný podmíněný příkaz.
(01pp01.cpp)
int a;
cin >> a;

if (a > 5)
 cout << " a je vetsi nez 5";

cout << "\n konec ";
Jestliže uživatel zadá z klávesnice číslo 8, je podmínka splněna (je pravda, že 8 > 5) a provede se příkaz cout << "a je větší"; Pokud uživatel zadá číslo 2, není podmínka splněna a příkaz cout << "a je větší"; se neprovede.
Pozn.: Na formátování nezáleží, to děláme jen pro přehlednost programu. Program může vypadat i takto:
1. int a; cin >> a; if (a > 5)
1. cout << " a je vetsi nez 5"; cout << "\n konec ";
V případě, že potřebujeme vykonat při splnění podmínky více příkazů, musíme použít tzv. složený příkaz nebo blok příkazů.
	blok příkazů
	složený příkaz

	1. {
1. int k;
1. i = 3; j = 5;
1. k = i + j;
1. cout << “soucet je”;
1. cout << k;
1. }
	1. {
1. i = 3;
1. j = 5;
1. cout << “soucet je”;
1. cout << j+i;
1. }

Blok příkazů je tvořen seznamem definic (v ukázce definice int k;) a příkazů uzavřeným ve složených závorkách. Složený příkaz je tvořen pouze seznamem příkazů uzavřeným ve složených závorkách. V další textu bude pro jednoduchost užíváno už jen sousloví „blok příkazů“, popř. slovo „blok“.
Blok příkazů se zapisuje hned za if (podmínka) a v případě, že je podmínka splněna, provedou se všechny příkazy bloku.
if (podmínka)
{
		příkaz_ANO_1;
		příkaz_ANO_2;
		...
}
(01pp02.cpp)
1. int a;
1. cin >> a;
1.
1. if (a > 5)
1. {
1. 		int rozdil;
1. 		rozdil = a - 5;
1. 		cout << " a je vetsi nez 5 o ";
1. 		cout << rozdil;
1. 	}
1. 		
1. 	cout << "\n konec ";
Jestliže uživatel zadá z klávesnice číslo 8, je podmínka splněna (je pravda, že 8 > 5) a provede se blok příkazů (všechny příkazy na ř. 5 až 10). Pokud uživatel zadá číslo 2, není podmínka splněna a blok příkazů se neprovede. Příkaz na ř. 12 se provede vždy.
Příkaz if – else
Konstrukce if – else představuje tzv. úplný podmíněný příkaz, protože ošetřuje jak situaci splnění podmínky (provede se příkaz_ANO), tak i situaci, kdy podmínka splněna není (provede se příkaz_NE). Příkaz, který se má provést při nesplnění podmínky, se uvádí za klíčové slovo else.
if (podmínka)
	příkaz_ANO;
else
	příkaz_NE;
příkaz_VŽDY;
Je-li podmínka splněna (vyhodnocena jako pravdivá), provede se bezprostředně následující příkaz (příkaz_ANO). Není-li podmínka splněna, provede se příkaz následující bezprostředně za klíčovým slovem else (příkaz_NE). V obou případech pak program pokračuje dále (vykoná se příkaz_VŽDY, který již k úplnému podmíněnému příkazu nepatří a zde reprezentuje pokračování programu).
I v případě úplného podmíněného příkazu lze využívat bloky, a to jak za if(podmínka), tak za else (jen za if, jen za else, nebo za oběma).
(01pp03.cpp):
1. 	float r;
1. 	cout << " OBSAH KRUZNICE\n Zadejte polomer kruznice: ";
1. 	cin >> r;
1.
1. 	if (r >= 0)
1. 	{
1. 		float obsah;
1. 		obsah = 3.14 * r * r;
1. 		cout << " Obsah kruznice je: ";
1. 		cout << obsah;
1. 	}
1. 	else
1. 	{
1. 		cout << " Bylo zadano zaporne cislo: ";
1. 		cout << r;
1. 		cout << "\n Kruznice nemuze mit zaporny polomer. ";
1. 	}
1. 		
1. 	cout << "\n\n Konec programu ";
Příklad ukazuje užití bloků za if(podmínka) i za else. V souboru 01pp03b.cpp je příklad mírně upraven – blok je užit pouze za if(podmínka).
Používání konstrukcí if – else s bloky a bez bloků v jednom programu může být nepřehledné a matoucí. Proto se v rámci různých doporučení o formátování a úpravě kódu často setkáme s tím, že blok by měl být využíván i v případě jediného příkazu. Tímto doporučením se budeme v dalším textu řídit a vždy budeme používat blok, i když v něm bude jen jediný příkaz.
Ilustrace – upravený Př. 001 (01pp01.cpp) s využitím bloku s jedním příkazem
1. int a;
cin >> a;

if (a > 5)
{
 cout << " a je vetsi nez 5";
}

cout << "\n konec ";

Vztahy mezi podmínkami
Vnořené podmínky
Uvnitř bloku nemusejí být jen jednoduché příkazy, ale i složitější konstrukce[footnoteRef:1]. V bloku, který je např. za else může být uvnitř další if nebo if – else. V takovém případě hovoříme o vnořování podmíněných příkazů (naleznete i formulaci „vnořování podmínek“). [1: V tuto chvíli zde nechci zavádět další terminologii, protože a) není klíčová, b) v aktuální situaci to ušetří čas.]

 (01pp04.cpp):
1. int x;
1. cin >> x;
1.
1. if(x == 0)
1. {
1. cout << "je to nula";
1. }
1. else
1. {
1. if(x > 0)
1. {
1. cout << "zadane cislo je kladne";
1. }
1. else
1. {
1. cout << "zadane cislo je zaporne";
1. }
1. }
V případě, že uživatel zadá z klávesnice číslo 0 je splněna podmínka (ř. 4) a provede se blok příkazů (ř. 5 až 6). Blok za else (ř. 9 až 18) se neprovede. Program vypíše „je to nula“.
Pokud uživatel zadá např. číslo 50, není splněna podmínka (ř. 4), neprovede se blok za if (blok na ř. 5 až 7) a řízení programu přejde do bloku za else. V tomto bloku je vnořena další úplná podmínka if – else. Podmínka na ř. 10 je splněna (50 > 0) a proto se provede blok (ř. 11 až 13). Program vypíše „zadane cislo je kladne“.
Pokud uživatel zadá číslo -99, není splněna podmínka (ř. 4), neprovede se blok za if (blok na ř. 5 až 7) a řízení programu přejde do bloku za else. V tomto bloku je vnořena další úplná podmínka if – else. Podmínka na ř. 10 není splněna a proto se provede blok za else (ř. 15 až 17). Program vypíše „zadane cislo je zaporne“.
Série podmínek
Stejnou úlohu, jaká je řešena v předchozím příkladě, lze naprogramovat i s pomocí série na sobě nezávislých neúplných podmínek.
(01pp05.cpp):
1. int x;
1. cin >> x;
1.
1. if(x == 0)
1. {
1. cout << "je to nula";
1. }
1.
1. if(x > 0)
1. {
1. cout << "je kladne";
1. }
1.
1. if(x < 0)
1. {
1. cout << "je zaporne";
1. }
Příklady k prostudování
V této části najdete 2 příklady řešení algoritmů, které jsme si představili v rámci úvodní přednášky. Jde o hledání nejvyšší hodnoty v trojici zadaných čísel. Oba příklady jsme rozebírali hlavně s ohledem na efektivitu algoritmu, zde nám ale poslouží k procvičení větvení programu.
(01pp06.cpp)
[image: max z troch cisel]
int a; int b; int c;
cout << "zadej A: "; cin >> a;
cout << "zadej B: "; cin >> b;
cout << "zadej C: "; cin >> c;

if(a > b)
{
 if(a > c)
 {
 cout << "Nejvyssi zadana hodnota byla: ";
 cout << a;
 }
 else
 {
 cout << "Nejvyssi zadana hodnota byla: ";
 cout << c;
 }
}
else
{
 if(b > c)
 {
 cout << "Nejvyssi zadana hodnota byla: ";
 cout << b;
 }
 else
 {
 cout << "Nejvyssi zadana hodnota byla: ";
 cout << c;
 }
}
(01pp07.cpp)
[image:]V programu je pro ilustraci přidána ještě čtvrtá proměnná.
1. int a; int b; int c; int d;
cout << "zadej A: "; cin >> a;
cout << "zadej B: "; cin >> b;
cout << "zadej C: "; cin >> c;
cout << "zadej D: "; cin >> d;

int XMax;
XMax = a;

if(b > XMax)
{
	 XMax = b;
}

if(c > XMax)
{
	 XMax = c;
}

if(d > XMax)
{
	 XMax = d;
}

cout << "Nejvyssi zadana hodnota byla: ";
cout << XMax;
image2.png
e

image3.png

image4.png

image5.png
zatiatok

ash

bec

asc

up b / wyst

]

kaniec

image6.png
XMax:=B

[Tskxmax]

image1.png

